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ABSTRACT 
Reducing sugars produced from agro-industrial wastes by means 
of hydrolysis represent a promising alternative of chemicals and 
energy. Yet, large scale production still struggles with several 
factors involving process complexity, sugars degradation, 
corrosion, enzyme recyclability and economic feasibility. More 
recently, sub and supercritical water hydrolysis has been reported 
for the production of reducing sugars as a readily available 
alternative to acid and enzymatic biomass hydrolysis. Accordingly, 
in this work the results of batch and semicontinuous lab scale 
subcritical water hydrolysis experiments of agro-industrial 
wastes of pea pot and corn stover are discussed. Experiments 
were carried in the temperature range 250 to 300 °C, pressures 
up to 3650 psi, residence times up to 30 minutes in batch mode 
operation or water flowrates up to 12 mL/min in semicontinuous 
mode operation. Produced sugars were assessed in the effluent 
of each experimental run by means of dinitrosalicilic acid method 
(DNS). A maximum total reducing sugar (TRS) yield of 21.8% 
was measured for batch pea pot subcritical water hydrolysis 
experiments at 300°C, 15 minutes, 3650 psi and 1:6 biomass to 
water mass ratio. Semicontinuous subcritical water hydrolysis 
of corn stover showed a maximum TRS accumulated yield of 
19% at 290 °C, 1500 psi and water flowrate of 9 mL/min. The 
results showed the feasibility of producing reducing sugars from 
agro-industrial wastes currently discarded through subcritical 
hydrolysis.
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RESUMEN
Los azucares reductores totales (TRS) producidos a partir de 
desechos agroindustriales por medio de hidrólisis representan una 
solución prometedora para la obtención de químicos y energía. Sin 
embargo, la producción a gran escala de estos azucares presenta 
algunos factores limitantes como son alta complejidad de los 
procesos, degradación de azúcar, corrosión, reciclabilidad de las 
enzimas y factibilidad económica. Recientemente, la hidrólisis 
en agua sub y supercrítica se ha reportado como una alternativa 
viable a la hidrólisis ácida y enzimática. Consecuentemente, en 
este trabajo se reportan los resultados de la hidrólisis batch y 
semicontinua a nivel de laboratorio de residuos agroindustriales de 
la cáscara de arveja y follaje de maíz. Los experimentos se llevaron 
a cabo en el rango de temperatura de 250 a 300 °C, presiones 
hasta 3650 psi, tiempos de reacción batch de hasta 30 minutos y 
flujos de agua de hasta 12 mL/min en el modo semicontinuo. Los 
azucares producidos se evaluaron en el efluente de cada corrida 
experimental por medio del método del ácido dinitrosalicilico (DNS). 
Una productividad máxima de TRS de 21.8% se midió en la hidrólisis 
batch en agua subcrítica a 300 °C, 15 min, 3650 psi y relación 
másica biomasa a agua de 1:6. Para la hidrólisis semicontinua se 
midió una productividad acumulada de 19% de TRS a 290 °C, 1500 
psi y flujo de agua de 9 mL/min. Los resultados de productividad 
de azucares reductores demuestran la versatilidad del proceso 
de hidrólisis subcrítica para la potencial valorización de diversos 
desechos agroindustriales.
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Reducing sugars produced from agro-industrial wastes using 
hydrolysis represent a promising alternative of chemicals and energy 
[1]. It is well known that cellulose and hemicellulose fractions in 
waste biomass can be hydrolyzed to hexoses and siloxes, which in 
turn can be considered chemical synthesis building blocks, through 
several processes that mainly involve a physical, chemical, physic-
chemical or biological pretreatment, followed by the addition of 
acid, basic or enzymatic catalyst [2]. In this regard, agro-industrial 
wastes from food crops and vegetables outer shells is commonly 
discarded and sent to sanitary landfills without further valorization. 
Wastes generated in produce markets in Colombia are comprised 
mainly of  pea pot and corn stover residues, because both are sold 
preferably in a consumer-friendly presentation without shells. Due to 
the presence of free sugars, as well as cellulose and hemicellulose 
fractions, and the large amounts generated each day that constitute 
mainly a waste management problem, pea pot, and corn stover are 
readily available as a raw material for sugars production [3], [4]. 
While several studies have focused on the production of sugar from 
corn stover [5], pea pot hydrolysis, even by conventional base and 
acid catalyzed methods, has been scarcely studied. Therefore, in 
this study the experimental results of batch and semicontinuous 
subcritical water hydrolysis of pea pot and corn stover wastes are 
reported and the effect of operation mode and process variables in 
reducing sugars yield is discussed.

INTRODUCTION1.

THEORICAL FRAMEWORK2.
In recent years, hydrolysis carried out at sub and supercritical water 
conditions has emerged as a promising alternative to acid and 
enzymatic hydrolysis [6]. Figure 1 shows the phase diagram of water 
in which subcritical and supercritical water regions are indicated. 
The technology takes advantage of the well-known tunable 
properties of water in the vicinity or above the supercritical point 
(374 °C) to favor or disfavor acid/basic catalysis [7]. At the same 
time, sub/supercritical water can easily penetrate the lignocellulosic 
matrix due to its low viscosity and high diffusivity, whereas its low 
dielectric constant enhances the solubility of organic compounds 
[8]. Regarding sugars production by subcritical and supercritical 
water, hydrolysis is less aggressive than conventional methods such 
as acid and alkali hydrolysis because they degrade less sugar and 
do not generate solid waste. Compared to enzymatic hydrolysis, the 
advantage is the high cellulose hydrolysis rate [9].

Figure 1. Phase diagram of water with subcritical and 
supercritical regions

3. STATE OF THE TECHNIQUE

4. EXPERIMENTAL 
DEVELOPMENT

Several subcritical and supercritical water hydrolysis studies have 
been conducted in batch, semi-continuous, and continuous mode 
operation with different lignocellulosic residues, as reviewed 
in detail by [6]. In batch mode, biomass and water are loaded 
simultaneously to the reactor in a specific weight ratio in which 
water is in excess, heated up, and left to react for a specific time. 
Since no product is removed during the reaction, produced sugars 
could be easily degraded. In semicontinuous mode operation, a 
fixed amount of lignocellulosic biomass is packed to the reactor 
and water flows continuously, removing reaction products to avoid 
degradation [7]. This mode of operation has received the most 
attention, mainly in lab- scale studies, due to the difficulties that 
could arise from pumping a biomass slurry at sub/supercritical 
conditions in continuous mode operation. Batch and semicontinuous 
experiments are usually carried out in the temperature range  
180 °C to 300 °C. Accordingly, in this work we report on the 
production of total reducing sugars by lab- scale batch and 
semicontinuous subcritical water hydrolysis of pea pot and corn 
stover, to establish the process conditions in each reactor set-up 
that allow obtaining high reducing sugars yields and the effect of 
the studied main factors and its interactions in each process. 

AGROINDUSTRIAL WASTES

Pea pot (Pisum sativum L.) and corn stover (Zea mays L.) wastes 
were collected in Paloquemao Produce Market in the city of Bogotá, 
Colombia. Both residues were separately comminuted in a knife mill 
and sieved below 400 µm. Comminuted samples were stored in a 
freezer without any other pre-treatment. Cellulose, hemicellulose 
and lignin composition of pea pot, corn stover, sugarcane bagasse 
and rice bran are shown in Table 1 for comparison purposes. Sugar 
cane bagasse hydrolysis by conventional as well as emerging 
methods has been extensively reported in literature [10], [11],  
which can be attributed to the high cellulose and relatively low lignin 
contents when compared to other lignocellulosic materials. Lignin 
is an especially problematic component of agricultural residues [10] 
as decomposition of lignin produces phenolic compounds, which 
strongly inhibit the action of yeast [12].
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Figure 2. Batch reactor equipment
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EXPERIMENTAL SET-UP

Experiments were carried out in batch and semicontinuous lab-scale 
experimental set-ups. Batch reactor equipment is shown in Figure 2. 
It consisted of a tubular reactor, a 3 kW insulated electrical clamp-
type oven, and a PID temperature controller. K type thermocuples 
were used to measure the temperature inside the reactor and near 
the walls of the oven as shown in Figure 2. The reactor was made 
of 316SS Swagelok tubing and screw caps. Reactor dimensions 
were 0.5 in OD (1.27 cm), 0.065 in (0.17 cm) wall thickness wall 
thickness, length of 10 cm, and volume of 6.94 cm3. In batch 
experiments, fixed amounts of comminuted biomass and water 
were loaded to the reactor. Volume of added water was calculated 
according to the mass ratio for a specific run and the expected water 
pressure generated at reaction conditions calculated through steam 
tabs. Then the reactor was placed in the electrical insulated oven 
previously heated to the desired reaction temperature. Heating time 
to the desired reaction temperature from room temperature took 
less than 5 min and reaction time was counted from that moment. 
Upon completion of reaction time, reactor was removed from the 
oven and cool down rapidly in a water bath, unscrewed and emptied 
up in a sample collection flask.

The semicontinuous lab-scale unit consisted of a deionized water 
tank, a Williams Milton Roy pneumatic high pressure pump model 
CP250V225, a preheater made of 316SS Swagelok tubing 1/8 in OD 
(3.175 mm), length of 3 m coiled tubing and electrical resistances, 
an insulated tubular reactor made of 316SS Swagelok tubing 0.5 in 
OD (1.27 cm), 0.065 in (0.17 cm) wall thickness with a length of 10 
cm, a concentric tube heat exchanger with water as cooling media, 
a needle depressurization valve and sample collection recipient, 
pressure gauges and thermocouples, as shown in Figure 3. In a 
typical run, the reactor is removed from the system and packed 
with a fixed amount of comminuted agro-industrial waste. Glass 
beads are also added to the reactor to avoid biomass compaction 
and plugging. Once the reactor was put back in place the system is 
pressurized with water at room temperature up to 2000 psi to avoid 
water phase change during the heating up period at subcritical water 
hydrolysis conditions. Hot water does not come into contact with 
biomass in the reactor until the reaction temperature is reached. 
Once the temperature in the preheater is constant, pumping is 
started and pressure is adjusted through the needle valve. Samples 
are collected in sample tubes every 2 minutes. Pneumatic pump 
frequency and piston length were adjusted to have deionized water 
flowrates of up to 12 mL/min.

Figure 3. Subcritical hydrolysis semicontinuous lab-scale unit
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5. RESULTS
PEA POT  BATCH SUBCRITICAL WATER HYDROLYSIS 

Table 2 summarizes experimental reaction conditions, TRS 
concentration obtained for each replicated run, and average TRS 
yield. 
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Table 2. Pea pot batch hydrolysis reaction conditions and TRS concentration

ANALYTICAL METHODS

Total Reducing sugars (TRS) concentration was measured in reactor 
effluent samples by the dinitrosalicylic (DNS) colorimetric method 
using D-glucose as standard [17]. For each ml of hydrolysate sample, 
1 ml DNS reagent previously prepared was added, boiled for 15 min, 
and 1 ml deionized water added afterward to keep for 10 min in cold 
water before reading the absorbance in a Macherey-Nagel Nanocolor 
500 D photometer at 540 nm. The concentration of reducing sugars 
was calculated based on a standard curve obtained with standard 
D-glucose concentrations of up to 1 mg/ml. 

EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS

Experimental study of batch subcritical water hydrolysis of pea 
pot wastes was carried out according to a 24 experimental design 
with the factors Temperature (A), Time (B), pressure (C) and water 
to biomass mass ratio (D). Experimental range for each factor was 
based on previous batch hydrolysis experiments of kikuyu grass 
residues, in which a maximum yield of total reducing sugars of  
8.5 % was measured at 30°C, 30 min reaction time, 30:1 water to 
biomass ratio and 3190 psi [7]. Acccordingly, low and high levels 
for each factor were set as 250-300 °C, 15-30 min, 3190-3650 psi, 
and 6:1-30:1, respectively. Each experimental run was replicated 
and four repetitions were carried out in the central point. The full 
design was comprised of 36 experimental runs made in randomized 
order. For each run, mass of water loaded to the reactor, required to 
generate the desired pressure at reaction conditions, was estimated 
by means of density of water at subcritical conditions in steam tabs 
(Kg/m3) and reactor volume (m3). Required biomass was estimated 
from water to biomass ratio according to the experimental design. 
In each sample concentration was determined and TRS mass was 
estimated with the volume of water loaded. TRS yield was the ratio 
of average TRS mass for a specific run and total pea pot mass loaded 

to the reactor. Statistical analysis of the results was made according 
to the analysis of variance (ANOVA), as well as the graphical analysis 
of the significant main effects and interactions plots, by using the 
statistical software package Minitab 16®.

Semicontinuous subcritical water hydrolysis of corn stover agro-
industrial wastes was carried out according to a 23 experimental 
design with the factors Temperature (A), Pressure (B), and water 
flowrate (mL/min). Low and high levels for each factor were 240-
290 °C, 1500-2000 psi, and 9-12 mL/min, respectively. Experimental 
range for each factor was based on previous semicontinuous 
hydrolysis experiments of kikuyu grass residues, in which a 
maximum yield of accumulated total reducing sugars of  22 % 
was measured at 300 °C, 2000 psi and water flowrate of 9 ml/
min [7]. As was previously indicated, a fixed amount of corn stover 
biomass was packed to the reactor, whereas water flow was kept 
constant. Reactor effluent samples were taken every 2 minutes in 
glass tubes. Total reducing sugars mass produced was determined 
with the volume of collected samples in each tube and measured 
total reducing sugars concentration. Accumulated TRS mass per 
experimental run was estimated by adding up TRS mass obtained in 
each sample. TRS yield was calculated as the ratio of accumulated 
TRS mass per experimental run to total corn stover biomass packed 
to the reactor.
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Figure 4. Temperature-time (AB) and time-mass ratio (BD) interactions for pea-pot batch subcritical water hydrolysis 
experiments
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Table 3. ANOVA for batch subcritical water hydrolysis 
experiments

Experimental data in Table 2 show reproducibility was generally 
good in all of the replicated experimental runs. Highest TRS yield 
was 21.8% and was obtained when working at 300 °C, 15 min 
reaction time, 3650 psi a 6:1 biomass to water ratio. Performed 
ANOVA analysis is summarized in Table 3  and indicates factors time 
(B) and water to biomass mass ratio (D) as well as second order 
interactions temperature-time (AB), and time-mass ratio (BD) had 
a significant effect on the response with a significance level of 95% 
(P-value < 0.05), while pressure (C) had no effect (P-value > 0.05).  
According to [18], the main effects do not have much meaning 
when there are involved significant interactions. Figure 4 shows the 
graphical analysis of temperature-time (AB) and time-mass ratio 
(BD) second order interactions performed in Minitab®.

While the positive effect estimated for B factor in ANOVA analysis 
suggests working at a high level (30 min) of reaction time to increase 
TRS yield, AB interaction indicates the opposite trend. While yield 
increases with reaction time when working at 250 °C, it decreases 
sharply with time when working at 300 °C. The reduced yield 
observed with time when working at 300 °C could be attributed 
to decomposition reactions of produced sugars due to the higher 
temperature and prolonged reaction time. AB interaction suggests 
higher yields can be obtained at 300 °C and 15 min reaction time. 
A similar conclussion can be withdrawn from the Temperature-
time interaction (AB) contour plot for a fixed 30 mass ratio shown 
in Figure 5. Percentaje yields higher than 12 % are obtained at 
temperatures of 300 °C and 15 min reaction time.

On the other hand, BD interaction indicates higher TRS yields are 
obtained with a 1:30 biomass water mass ratio and 15 min reaction 
time. While the maximum yield measured in experiments was 
obtained with a 6:1 mass ratio and 3650 psi, analysis of interactions 
suggests working at shorter residence times (15 min), a 30:1 water 
to biomass ratio and lower pressure (3190 psi) leads to higher TRS 
yields. Similar results were reported by Maravic et al., [19] in the 
batch subcritical water hydrolysis of sugar beet pulp. Yields in the 
range 7.18% to 15.84% were obtained, with the maximum yield at 
the lowest temperature of 150 °C and 35 min. Temperature showed 
the strongest impact in hydrolysis yield with a negative effect as a 
result of excessive degradation at higher temperatures.

CORN STOVER SEMICONTINUOS SUBCRITICAL WATER 
HYDROLYSIS

Aspect of effluent samples collected varied widely with time, as 
shown in Figure 6 for experimental run carried out at 290 °C, 1500 
psi and 9 mL/min. This observation is consistent with the transient 
nature of subcritical water hydrolysis. When water flow through 
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the reactor is initiated, biomass is being heated up to the desired 
reaction temperature, and collected effluent samples are mostly 
clear. At temperatures around 200 °C, biomass hydrolysis reaction 
speeds up, collected samples are darker in aspect and abundant 
foam is formed. Later, effluent samples became clear again, which 
indicated biomass hydrolysis slowed because biomass has been 
depleted in the reactor, indicating the end of the experimental run. A 
darker brown color in reactor effluent samples could be associated 
to a higher concentration of reducing sugars as measured by means 
of DNS colorimetric method

Figure 6. Aspect of effluent samples for experimental run 
carried out at 290 °C, 1500 psi and 9 mL/min

Figure 7 shows accumulated TRS yield (TRS g/100 g packed 
biomass) for experimental runs carried out with a water flow rate of 
9 mL/min. At 240 °C, accumulated TRS yield was 3 g/100g, whereas 
at 290 °C a TRS yield of 19 g/100 g biomass was estimated.

Table 4 summarizes semicontinuous subcritical water hydrolysis 
reaction conditions and accumulated TRS produced. Highest TRS 
yield was 19.1 g/100g biomass and was obtained when working at 
290 °C, 9 mL/min and 1500 psi. 
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Figure 7. Accumulated TRS for experimental runs with water flowrate of 9 mL/min
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Table 4. Semicontinuous hydrolysis reaction conditions and 
accumulated TRS produced

Performed ANOVA  is shown in Table 5 and indicates Temperature 
(A) and its interactions with pressure (AB) and water flow rate (AC) 
had a relevant effect on the TRS yields (P-value< 0.05). The analysis 
of significant interactions is shown in Figure 8.
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Figure 9. Temperature-pressure (AB) and Temperature-Flowrate (AC) accumulated TRS contour plots 

Figure 8. Temperature-pressure (AB) and Temperature-Flowrate (AC) interaction effects on TRS yield

Table 5. ANOVA for semicontinuos hydrolysis experiments
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Temperature-pressure interaction indicates higher TRS yields were 
obtained when working at a high level of temperature (290 °C) and 
pressure (2000 psi) whereas temperature-flowrate interaction 
indicates higher yields at a high level of temperature (290 °C) and low 
level of flowrate (9 mL/min). Both interactions agree in the positive 
effect of temperature on yield. These results suggest a higher 
temperature speeds up the hydrolysis reaction even when working 
with longer residence times, and that produced TRS sugars were not 
prone to decomposition as a result of the increased temperature and 
the longer residence time in the reactor. Temperature-pressure and 
temperature-flowrate contour plots are shown in Figure 9. Higher 
yields are expected following the direction of temperature above 
290 °C and pressures around 2000 psi, while a reduced flowrate at 
high temperature also leads to a high TRS yields.
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