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This is the second of two articles presenting a Genetic Algorithm (GA) to obtain an optimal design, 
from an economical and operational point of view, of a pipeline system for the distribution of liquids, 
based on criteria such as complying with the laws of preservation of mass and energy, volume of flow 

requirements in the points of consumption where pressure is known, restriction in pressure value in those 
points of the system where it is unknown as well as in the velocity which must be under the erosion limit.

In this article the traditional techniques for designing a GA in this type of problems are combined with some 
ideas that have not been applied to this field previously. The proposed GA allows for the sizing of liquid 
distribution systems that include pipelines, nodes for consumption and provision, tanks, pumping equipment, 
nozzles, control valves and accessories.

The first article of this series (Galeano, 2003), presents the different formulations found in literature for the 
design of networks through optimization techniques and formulates mathematically, the optimization problem. 
In this article, the characteristics of the GA are specified and it is applied to solve the Alperovits and Shamir 
(1977) network and for a fireproof network, which allowed testing some of the characteristics of the model 
that are not found in the literature, such as the possibility of including pumping equipment, aspersion nozzles 
and accessories.

In addition, the contribution of the components and sensitivity are analyzed in order to investigate some 
characteristics and parameters of the implemented GA.
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Este es el segundo de dos artículos en los que se presenta un Algoritmo Genético (AG) para obtener 
un diseño óptimo desde el punto de vista económico y de operación, de un sistema de tuberías 
para el transporte de líquidos, con base en criterios tales como el cumplimiento de las leyes de la 

conservación de la masa y la energía, exigencias de caudal en los puntos de consumo en donde se conoce 
la presión, restricciones en el valor de la presión en los puntos del sistema en donde se desconoce y en la 
velocidad, que debe ser inferior a la límite de erosión.

En él se combinan las técnicas tradicionales para el diseño de AG en este tipo de problemas, con algunas 
ideas que no se habían aplicado con anterioridad en este campo. El AG propuesto permite el dimensiona-
miento de sistemas de distribución de líquidos que incluyen tuberías, nodos de consumo y suministro, tanques, 
equipos de bombeo, boquillas, válvulas de control y accesorios.

En el primer artículo de esta serie (Galeano, 2003), se presentan las diferentes formulaciones que se 
encuentran en la literatura para el diseño de redes mediante técnicas de optimización y se hace la formu-
lación matemática del problema de optimización. En éste artículo se especifican las características del AG 
diseñado y se aplica para la solución de la red de Alperovits y Shamir (1977) y de una red contra incendio, 
lo que permitió probar algunas de las características del modelo que no se encuentran en los reportados 
en la literatura, como son la posibilidad de incluir equipos de bombeo, boquillas de aspersión y accesorios. 
Adicionalmente, se realizan los análisis de la contribución de los componentes y de sensibilidad, con el fin 
de investigar algunas características y parámetros del AG implementado.

Palabras claves: optimización, algoritmos genéticos, redes de distribución de fluidos, redes de tuberías.
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INTRODUCTION

The computer programs for the study of liquid 
distribution systems are very popular tools for the de-
sign, analysis and optimization of said systems. These 
programs operate on models that allow, among other 
things, the following:

- Simulation of different diameters and configura-
tions of the system in order to determine the combi-
nation that may deliver the fluid with the pressure 
and flow necessary in the consumer points.

- Simulation of flow and pressure with different 
pumping equipment in operation, in order to make 
a good choice.

- Simulate the conditions to operate the system for 
different levels in the storage tanks, in order to 
determine the maximum and minimum permis-
sible levels.

- Simulate the fluctuations in the tank levels for one 
period, as a response to the consumption variations 
in order to assess the different pumping strategies 
and thereby determine the most favorable condi-
tions of operation.

- To recommend the diameter of the tubing to be 
used, taking into account minimization of costs 
under some given restrictions.

There may be two classification models: those that 
allow simulation of the distribution system and those 
that make use of the optimization theories.

The first ones predict the pressure, flow and may 
even calculate the levels of a tank in terms of timing. 
Users of these model aim to determine the most fa-
vorable dimensions for the tubing, through a trial and 
error process, whereby the engineer tests the different 
component of the network, makes the simulation and 
compares the values calculated with those required. 
In order to make the final decision, a cost estimate 
is made on each viable alternative, from a technical 
point of view.

The models based on optimization theories allow to 
obtain solutions that correspond to the minimum of a 
non-linear, highly structured and restricted optimization 

problem. Due to the complexity of the problem, several 
techniques have been used to simplify the search for 
a solution. The methods used are based on numbering 
techniques, mathematical programming (linear and non-
linear) and stochastic methods (genetic algorithms).

The algorithm shown below allows determination of 
the diameter of the tubing and pumps to be used, taking 
into account minimization of costs, under given restric-
tions. It solves the problem of optimization stated in 
the first part of this article (Galeano, 2003), operating 
based on a mathematical model of stable status and a 
cost equation that allow us to evaluate the system con-
sidering aspects that the models reported in literature 
have discarded.

In order to prove the genetic algorithm, a prototype 
software was designed which is applicable to the opti-
mal design of liquid distribution system for the oil and 
gas industry, such as oil pipelines, gas pipelines, distri-
bution networks of industrial services in the refineries, 
and in general, any chemical transformation plant, fire-
proof networks and home natural gas networks, among 
others. The use of a tool such as the one shown, allows 
reduction of man hours, the hydraulic design of said 
systems, and the exploration of a larger number of 
configuration alternatives, tube diameter combinations 
and pumping equipment assessing the cost per year for 
each one of them. The foregoing allows the designer to 
have a wider search space and, therefore, increases the 
probability of finding the optimal design.

GENETIC ALGORITHM

A GA is a search procedure based on natural se-
lection and on the genetic population mechanisms, 
as well as the biological processes of survival and 
adaptation (Goldberg, 1989). The GA object of this 
article was specifically designed to optimize the hy-
draulic systems, where the operators are applied to 
two parents selected from the population elements, 
through a certain scheme, which in turn generates a 
new individual that replaces an existing one, through 
a replacement strategy. The GA operates on a simu-
lation model of pressured flow lines developed by 
Narváez (1999), which allows for sizing hydraulic 
systems made up of pipelines, consumer and supply 
nodes, tanks, centrifugal and positive displacement 
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in the first part of this article (Galeano, 2003). The 
penalty function is linked to violation of the restrictions 
imposed on the hydraulic system and it is defined by 
the following equation:

pumps, nozzles, control valves, processing equip-
ment and accessories, and on the operational costs 
stated by Narváez and Galeano (2002), which takes 
into consideration, among other aspects, the costs of 
installation, maintenance and operation, including the 
pumping equipment. Following is a description of the 
main GA components.

Representation
Each individual in the populations is a parametric 

representation of a fluid transportation system that uses 
whole numbers. Each individual is codified with two 
chains of whole numbers, where the first part represents 
the diameters of each of the pipes in the network, and 
the second one is equivalent to the pumping equip-
ment. The chains pick up the values of the set of whole 
numbers symbolizing the feasible diameters and pump-
ing equipment. Figure 1 shows the hydraulic system 
representation scheme.

The adjustment of each individual is based on the 
hydraulic system’s evaluation costs and on a penalty 
function. The cost is assessed once the network simula-
tion takes place, applying the cost equation presented 

Figure 1. Representation scheme of the hydraulic system
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1 The equations that mathematically describe these restrictions, as well as energy and material balance, are shown in the first part of this article (Ga-
leano, 2003).

Penalty function
The penalty function is related to violations to the 

restrictions of the hydraulic system numbered in the 
mathematical formulation of the problem (Galeano, 
2003). The simulation algorithm ensures compliance 
with the matter and energy conservation laws for each 
individual generated and the diameters of the pipes are 
chosen from a set of possible values in the codification 
system of each individual.

The restrictions 1 of velocity, flow and pressure, are 
not necessarily satisfied and they make a distinction 
between feasible and non-feasible solutions. Instead of 
ignoring non-feasible solutions and concentrating only 
on feasible solutions, the individuals that don’t adjust 
completely to the restrictions of the system must be 
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considered as part of the population at a certain cost, 
because they are helpful in guiding the search.

In order to achieve this, the adjustment function 
includes a penalty term, which quantifies the system’s 
violations to the speed, flow and/or pressure restric-
tions, in such a way that its adjustment is reduced with 
relation to the other individuals of the population. The 
defined penalty equations are as follows:

1. Velocity Restriction:

Where pv is the velocity penalty coefficient, the term 
in brackets corresponds to maximum violation of the ve-
locity restriction and R is the set of network connectors.

2. Flow Restriction:

(2)
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Where, pc is the flow penalty coefficient, the term 
in brackets corresponds to the maximum violation of 
the flow restriction and y NEC is the set of known energy 
nodes in the network.

3. Pressure Restriction:

Where pp is the pressure penalty coefficient, the 
term in brackets corresponds to the maximum viola-
tion of pressure restriction and NED is the set of known 
energy nodes in the network.

An important feature of the proposed GA is its ability 
to adjust the magnitude of each of the penalty coeffi-
cients depending on the situation, taking into account 
that it is better to use a modest penalty in the initial 
states in order to ensure the adequate sampling in the 
search space and then, gradually increase the penalty to 
force optimization convergence to a feasible solution. 
(Mohamed, 1998; Savic, 1994).

The coefficient is the function of the generation num-
ber that allows a gradual increase of the penalty term.
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Where initial p and n are constant, so that the pen-
alty coefficient is an increasing monotonous function 
that guarantees that after final execution of the GA, 
the penalty coefficient has a value that prevents the 
best non-feasible solution to be superior to any of the 
population’s feasible solutions.

Initializing strategy
In order to initialize the evolution process of the 

GA, an initial population of solution vector must be 
generated. The method used is that of random initial-
izing, where the initial population contains random 
vectors uniformly distributed in the search space, 
which are formed through designation of numbers 
randomly selected within a set of possible values for 
each of the two chains that constitute the individual 
(Galeano, 2000).

Selection strategy
The selection strategy decides on how to choose 

individuals to convert them into parents of the following 
generation. The prototype allows the selection of any of 
the following strategies: by roulette, tournament with 
roulette, by chance, by expected value, by deterministic 
sampling, stochastic without reposition, stochastic with 
reposition and binary tournament.
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Genetic operators

The genetic operators are used to generate new in-
dividuals in the population, by applying to the selected 
parents any of the selection schemes. These operators 
may be grouped in two: binary crossover operators 
which take two parents and produce new individuals 
based on their chains and individual operators (muta-
tion) which take one individual and produced a per-
turbed version of it.

Crossover operators

The basic operation of a GA is the crossover that 
combines the merits of several individual to produce 
a better one. The possible crossover operations for 
the GA that were implemented in the prototype 
software are: simple one-point, simple two-points, 
interspersed, uniform, whole arithmetical, simple 
arithmetical, based on position, by partial adjustment 
and by orderly partial adjustment.

Mutation operators

This operation introduces new genetic information 
to the population, with the purpose of exploring new 
regions and maintaining the diversity. The mutation 
operators who fit the prototype are: simple uniform, 
simple non-uniform, by interchange and by proximity.

Replacement strategy

The GA allows the overlap between populations in 
a way similar to De Jong’s proposal as stated by Gold-
berg (1989), who proposes the overlap in an amount 
estimated by the user. In each generation the GA creates 
a temporary population of individuals which add them-
selves to the previous population, soon to eliminate the 
worse individuals so that the population will be equal 
size to the original one (Wall, 1996).

Scaling strategies

At the beginning of the evolution it is common to 
have a small number of extraordinary individuals in the 
middle of a population of bad individuals, and if the 
rule of normal selection is used, first they will take the 
population in few generations, causing the premature 
convergence of the algorithm. In addition, in the later 
stages of the evolution, sufficient diversity must be 
ensured, to obtain optimums closer to a global optimal. 
The scaling aims at preventing these situations, through 

the normalization of the adjustment values. The pro-
totype has strategies of linear and exponential scaling.

IMPLEMENTATION OF
THE GENETIC ALGORITHM

The GA previously proposed was implemented as 
part of a software prototype for the sizing and optimiza-
tion of piping networks for the transportation of liquids 
that was programmed as Dynamic Bond Library (DBL) 
in Borlan Delphi Language, which was called UN-
Nethyc. The development process of this prototype was 
guided through the application of the methodological 
process of unified software development, and guided 
by an iterative and incremental methodology (Jacobson, 
1999) based on a tool for software analysis, design and 
modeling, which allows to document the process in all 
the stages of development (Galeano, 2000).

GENETIC ALGORITHM TEST

In order to evaluate the implemented algorithm, a 
comparison was made of the solutions of a classic opti-
mization problem reported in literature, the Alperovits 
and Shamir network, with those obtained ones using 
UN-Nethyc. The results were obtained by different 
investigators in this area, who obtained solutions by 
applying different solution methods such as, linear 
programming, non-linear programming, algorithms 
and simulated tempering. Additionally it was proved 
with a fire protective network with automatic sprayers 
and pumping system.

Alperovits and Shamir network
In this problem, presented by Alperovits and 

Shamir (1977), and solved, among others, by Goulter 
et al.; Kessler et al. (1989); Eiger et al. (1994); Savic 
and Walters (1997); Montesinos and García-Guzmán 
(1996) and Cunha and Sousa (1999); the work fluid 
is water at 20°C. All the network piping is 1000 m 
long and a material roughness of 1,5e-4 m , and the 
minimum pressure requirement in nodes 2 to 7 is 30 m 
on the reference level. The topology and the network 
data studied are shown in Figure 2 and Table 1. For 
the optimization, a group of 14 available diameters is 
selected and Table 1 shows the cost by unit of length 
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for each one of them. The foregoing requirements were 
introduced on the UN-Nethyc prototype, specifying as 
available diameters for the optimization those shown 
in Table 1.

In order to compare the results obtained with those 
reported in literature, the cost function was limited to 
determining the cost of the tubing without including 
any other factor.

Table 2 lists the less costly solutions reported since 
1977, the values of diameters and the lengths shown just 
as they are found in literature. This shows the solutions 
obtained by different optimization methods, such as:

- Linear Programming: Alperovits and Shamir 
(1977); Goulter et al., Kessler and Shamir (1989); 
Eiger et al. (1994), whose solution is made up of 
tubing segmented in various sections.

- Genetic Algorithms: Savic and Walters (1997), 
Montesinos and García-Guzmán (1996), show 
the best solutions reported for a GA with a con-
figuration similar to the one used in this work. The 
results obtained by Montesinos were converted 
to the units presented in order to make them 
comparable.

- Simulated Tempering: Cunha and Sousa (1999).

- UN-Nethyc, the last two columns show the results 
obtained by the proponed GA using a configu-
ration similar to the one used by the aforemen-
tioned authors.

It is important to take into account that UN-Nethyc 
uses a method of hydraulic simulation different from 
the one used by the other systems reported in literature, 
therefore the hydraulic results obtained defer somewhat 
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Figure 2. Topology of the Alperovits and Shamir network

Table 1. Data of the nodes and diameters available for the Alperovits and Shamir problem

Node
Demand
(m3/h)

Height
(m)

Diameter 
(inches)

Cost
(units)

Diameter
(inches)

Cost
(units)

1 (Tank) 210 1 2 12 50

2 100 150 2 5 14 60

3 100 160 3 8 16 90

4 120 155 4 11 18 130

5 270 150 6 16 20 170

6 330 165 8 23 22 300

7 200 160 10 32 24 550
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Table 2. Solutions for the Alperovits and Shamir problem

Note: L = Length (m), D = Diameter (inches)

Tubing
Alperovits and Shamir Goulter et al. Kessler and Shamir Eiger et al.

L D L D L D L D

1 256,00 20 383,00 20 1,000,00 18 1,000,00 18

744,00 18 617,00 18

2 996,38 8 1,000,00 10 66,00 12 238,02 12

3,62 6 934,00 10 761,98 10

3 1,000,00 18 1,000,00 16 1,000,00 16 1,000,00 16

4 319,38 8 687,00 6 713,00 3 1,000,00 1

680,62 6 313,00 4 287,00 2

5 1,000,00 16 1,000,00 16 836,00 16 628,86 16

164,00 14 317,14 14

6 784,94 12 98,00 12 109,00 12 989,05 10

215,06 10 902,00 10 891,00 10 10,95 8

7 1,000,00 6 492,00 10 819,00 10 921,86 10

508,00 8 181,00 8 78,14 8

8 990,93 6 20,00 2 920,00 3 1,000,00 1

9,07 4 980,00 1 80,00 2

Cost (units) 497,525 435,015 417,500 402,352

Tubing
Savic and Walters Montesinos Cunha UN-NETHYC

D D D D D (S1) D (S2)

1 18 20 20 18 18 18

2 10 10 10 10 14 10

3 16 16 16 16 14 16

4 4 1 4 4 3 12

5 16 14 16 16 14 14

6 10 10 10 10 1 2

7 10 10 8 10 14 6

8 1 1 3 1 10 10

Cost (units) 419,000 420,000 456,000 419,000 412,000 415,000
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from those reported, although the orders of magnitude 
are always preserved.

Figure 3 shows a typical graph of the cost of the 
network in the optimization evolution process. The GA 
uses the mechanism of selection by roulette, applies 
the simple one-point crossover with simple uniform 
mutation, without replacement strategy, with crossover 
probabilities equal to 1,0 and mutation probabilities 
equal to 0,3333. The tests were performed for popula-
tions with 50 individuals allowing 500 generations. 
With this configuration 10 runs were carried out, of 
which the best two are shown in Table 2. Each run took 
approximately 50 seconds of calculation time in a 450 
Mhz Pentium III unit.

Emphasis must be made in that, having a system 
with eight pipes and a set of fourteen possible diameters, 
the solution space contains a total of 148 = 1,48x109 dif-
ferent designs, of which samples of 250 000 individuals 
were evaluated (50 chromosomes x 500 generations) 
which represents 0,0169% of the solution space.
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Figure 3. Evolution of the GA for the Alperovits and Shamir problem

Table 3. Node pressures for the Alperovits and Shamir problems

Node
Alperovits 

and 
Shamir

Goulter 
et al.

Kessler 
and 

Shamir

Eiger 
et al. Savic and Walters Cunha

UN-Nethyc
(S1)

UN-Nethyc
(S2)

2 53,96 54,30 53,26 53,26 53,26 55,97 53,27 53,55 53,55

3 32,32 33,19 30,08 30,30 30,45 30,77 30,51 38,62 39,07

4 44,97 44,19 43,64 43,87 43,48 46,60 43,48 43,52 42,64

5 32,31 32,32 30,10 30,62 33,77 32,29 33,85 45,43 43,91

6 31,19 31,19 30,08 29,85 30,49 30,86 30,49 31,19 30,17

7 31,57 31,57 30,09 29,85 30,62 30,99 30,60 31,38 30,34

In order to evaluate the quality of the solutions ob-
tained and to compare it with those reported in literature, 
Table 3 shows the pressures associated with each node 
for the lower cost reported networks.

As it can be observed, the results obtained with UN-
Nethyc, are comparable to those reported in literature, 
and even obtained better solutions than those reached 
by other GAs used. The values achieved by Eiger et 
al. (1994), are smaller than those achieved in this work 
that obtained in this work, which is explained by the 
fact that said solution divides the 2, 5, 6 and 7 pipes in 
sections of different diameter, which in some cases can 
be inconvenient from the technical or economic point 
of view, particularly with pipes of diameter greater 
than 6 inches.

Fireproof network
With the purpose of evaluating the GA in a complex 

system where, in addition to pipe sections, accessories, 
pumping equipment and aspersion nozzles are included, 
consider the optimization of a fireproof network of a 
building, that is currently installed and operating, and 
which was designed by a civil engineer with over 20 
years experience in design and installation of hydraulic 
and gas networks in buildings, using a simulation tool 
to evaluate pressure and flow for a set of diameters that 
he defined based on his experience.

The network consists of 41 sections of tubing, 
with 41 nodes of interest, of which 16 belong to the 
aspersion nozzles. For this problem the tubing mate-
rial used is caliber 40 carbon steel. Of the diameters 
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commercially available for the specified material and 
schedule, the set of possible diameters used is in the 
range between 1⁄2 and 4 inches. On the other hand, the 
pumping equipment available is selected depending on 
the volume of flow to be handled, which according to 
the area to be protected, will be in the 15 to 25 l/s range. 
A set of 23 pumping equipment of those available in 
the UN-Nethyc data table, were used for the tests. It is 
expected that each of the nozzles in operation will have 
a minimum flow volume of 0,9 l/s in each sprinkler, 
with a minimum water column pressure of 50 m in 
the cabinet of the analyzed section. Solutions per each 
algorithm run were analyzed. The cost obtained with 
the developed prototype is $7 631 820,47 per year. The 
annual cost of the installed network, calculated with 
the UN-Nethyc simulation module, introducing the 
diameters of tubing and the pumping equipment, is in 
the order of $17 000 000 per year.

COMPONENT CONTRIBUTION ANALYSIS

This section shows the performance of some of the 
components of the GA implemented in a UN-Nethyc. 
It shows how some have a notorious influence in the 
optimization behavior, making it very important to carry 
out a thorough study in order to be able to conclude 
precisely the effect it has on this type of problems.

Usefulness of the replacement scheme
In order to be able to show the effect of the replace-

ment strategy on optimization, all the other components 
and its default values were kept constant, so that only 

the replacement strategy used was modified. This is 
how runs were performed allowing the replacement of 
a very small part of the population among generations 
(two individual) maintaining the rest of the individuals 
in the population. On the other hand, the replacement 
of approximately half of the population among genera-
tions was allowed.

Figure 4 shows the effect of the replacement strategy 
in the Alperovits and Shamir problem, where one can 
clearly observe who the behavior of the GA degrades 
when using this component, although replacement in 
half the population allows a faster convergence.

Effect of the selection scheme per expected valued
In order to explore the effect of the selection 

scheme for the optimization mechanism, the selection 
per expected value was used, which is characterized by 
reducing the influence of the stochastic errors of the 
processes based on the roulette selections used in the 
standard GA. Figure 5 shows the test results obtained 
with the Alperovits and Shamir network, where the 
negative effect of the studied selection scheme can 
be clearly observed, showing a clear degradation in 
optimization evolution.

For the fireproof network problem, this selection 
mechanism did not find the region of feasible solutions 
preventing its comparison with the selection scheme 
by default. The fact that feasible solutions were not 
reached during the tests performed does not imply that 
the algorithm does not work, bit rather that other set of 
parameters must be proven or more repetitions on the 
same test should be performed.

Figure 4. Replacement strategy effect (Alperovits and Shamir problem).
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Use of the dynamic penalty function
In order to show the effect of the proposed penalty 

function, tests were done to see how the GA behaved 
in the three problems without applying this component, 
that is to say, a fixed value for the penalty constant was 
used tests avoiding that would depend on the number 
of evolutions made by the GA. The results obtained 
for Alperovits and Shamir network (Figure 6) show 
how the evolution behavior is favored when using the 
dynamic penalty function in this problem.

For the fireproof network problem, the use of the 
penalty function allowed the finding of favorable re-
sults. However, by not using the dynamic penalty func-
tion, the region of feasibly solutions was not reached 
and, therefore, it is impossible to verify its effect.

Usefulness of the non-uniform simple
mutation scheme

In order to show the effect of the application of this 
factor to the optimization of the analyzed problems, the 
evolutionary processes of the standard GA (maintain-
ing the parameters and components by default) were 
compared with another GA using the aforementioned 
mutation scheme which tries to influence the individu-
als of the population in a controlled manner that is 
greater at the beginning of the evolution, so that later 
on its effect is reduced to a continuous value mutation 
whether by excess or defect.

For Alperovits and Shamir network problem (Fig-
ure 7) it is evident that there is a remarkable increase 
in optimization because it increases the convergence 
speed while at the same time achieving a local optimum 
of lesser value.

Figure 5. Effect of the selection strategy
(Alperovits and Shamir problem)
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Figure 6. Effect of the use of the dynamic penalty funciton
(Alperovits and Shamir problem)
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Figure 7. Effect of the mutation scheme
(Alperovits and Shamir problem)
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In the case of the fireproof network problem, this 
scheme allowed finding a region of feasible solutions 
with higher speed. However, the general behavior of 
the optimization is not favored when reaching a local 
optimum of higher value than the one found with the 
standard GA.

SENSITIVITY ANALYSIS

The purpose of this section is to investigate the ef-
fect of the variation of some of the parameters of the 
GA implemented in UN-Nethyc. This type of study is 
important to assess the limitations of the UN-Nethyc 
in the optimization of hydraulic systems, while at the 
same time analyzing its degree of stability.
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Size of the population
The average optimization behavior was compared 

with the two problems analyzed, using three different 
types of population:

- Using the default value2 (10 times the size of the 
solution space).

- Using a large population (20 times the size of the 
solution space).

- Using a small population (5 times the size of the 
solution space).

The results for the Alperovits and Shamir problem 
(Figure 8) show that the GA with a large population 
behaves better for this problem. On the other hand, none 
of the tests performed reached the region of feasible so-
lutions for the fireproof network problem and therefore 
the effect of this factor can not be verified.

Variation in the probability of mutation
In order to show the effect of various in this param-

eter, tests were carried out with three different values, 
keeping the rest of the GA options constant:

- Probability of normal mutation (Pm= 0,01).

- Probability of low mutation (Pm= 0).

- Probability of high mutation (Pm= 0,5).

Figure 8. Effect of the size of the population(Alperovits and Shamir problem)
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The results for the Alperovits and Shamir problem 
are shown in Figure 9, where it can be clearly seen that 
the behavior of the GA degrades when using a prob-
ability of mutation that is too high or too low. The same 
results were obtained for a problem in the fireproof 
network problem, proving the importance of this com-
ponent and its value in the evolution of the GA. From 
the results obtained, it is clear that a high probability 
of mutation converts optimization in a random search. 
On the other hand, the absence of mutation prevents 
the exploration of the solution space, allowing the GA 
to be trapped in a local optimum.

Effect of the value of penalty constants.
These tests compared the average behavior of the 

UN-Nethyc in the problems studied, with three different 
values of the initial contacts of the penalty functions:

- With a normal value equal to one time the default 
value for each penalty function used in each 
problem3.

- With a large penalty value equal to 10 000 times 
the default value for each penalty function used.

- With a small penalty value equal to 0,0001 times 
the default value for each penalty function used.

The results obtained for the Alperovits and Shamir 
problem (Figure 10) show as the optimization result is 

2 For the Alperovits and Shamir problem, the size of the default population is 90 individuals and for the fireproof network problem the default value is 
630 individuals.

3 For the Alperovits and Shamir problem, the default value of 1x108 is used for the pressure penalty function constant. For the fireproof network problem 
the constant penalty value used for pressure is 1x108 and for volume of flow is 1x1012.
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affected when a region of feasible solutions is not found 
in any of the problems analyzed using the penalty func-
tion values proponed. This fact shows how important 
it is to use this factor because it guides the GA search 
process, preventing the finding of at least one feasible 
solution in the search space. This same phenomenon 
was observed in the fireproof network tests.

Figure 10. Effect of the value of the penalty constants
(Alperovits and Shamir problem)4
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Figure 9. Effect of variation in the probability of mutation
(Alperovits and Shamir problem)
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4 The figure doesn’t show the evolution curve for the test with big penalty value for the Alperovits and Shamir problem, because its values are outside 
the range shown.

CONCLUSIONS

• A flexible GA was designed and implemented, 
that includes great variety of operators and allows 
finding an optimal one for liquid transportation 
piping systems such as aqueducts, pipe lines, in-
dustrial service distribution networks in refineries 

and other chemical transformation plants, fireproof 
networks, and that can be extended to networks and 
gas transportation lines. The algorithm operates on a 
hydraulic model that allows the optimization of com-
plex systems which include pumps, nozzles, control 
valves, processing equipment and accessories, and 
based on a cost equation that includes the costs of 
pump installation, maintenance and operation and 
with fluids in a liquid phase different from water, 
including petroleum and its derivatives.

• Once the results obtained in a classic problem and 
the fireproof network problems were analyzed, the 
main characteristics and kindness of the proposed 
GA were verified. The results obtained in the net-
work Alperovits and Shamir, network are very close 
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to those reported in literature, applying the different 
optimization methods, a fact that that shows that the 
GA are an excellent tool to be applied in this domain. 
The problem of the fireproof network allowed an 
evaluation of the performance of the GA in complex 
systems, and a 45% decrease of the cost raised by 
an expert.

• The analyses of the contribution and sensitivity 
components motivate the accomplishment of future 
exploration work of the characteristics of the pro-
posed GA, because of the variation of components 
and the parameters used considerably affect the re-
sults obtained in the optimization process, making it 
necessary to perform a thorough study. In addition, 
it is necessary to explore the applicability of UN-
Nethyc in the optimization of hydraulic systems 
different from those analyzed in this work, with the 
purpose of expanding its field of use.

• In addition, the calculation times used are smaller 
than those reported even for different optimization 
methods, which ratifies the advantages of UN-Neth-
yc when obtaining excellent results in acceptable 
calculation times, making this technique an excellent 
tool capable of locating solutions at very low cost.


