

APPLICATION OF THE TDS TECHNIQUE FOR DETERMINING THE AVERAGE RESERVOIR PRESSURE FOR VERTICAL WELLS IN NATURALLY FRACTURED RESERVOIRS

Miguel-D. Molina¹, Freddy-Humberto Escobar^{*2}, Matilde Montealegre M.², and Dora-Patricia Restrepo³

¹Ecopetrol S. A - Instituto Colombiano del Petróleo, A. A. 4185 Bucaramanga, Santander, Colombia ² Universidad Surcolombiana, Programa de Ingeniería de Petróleos, Grupo de Investigación en Pruebas de Pozos ³ Universidad Nacional de Colombia, - Sede Medellín - Facultad de Minas, Medellín, Colombia e-mail: fescobar@usco.edu.co

(Received 3 March 2005; Accepted 28 November 2005)

verage reservoir pressure is used for characterizing a reservoir, computing oil in place, performing reservoir monitoring by material balance, estimating productivity indexes and predicting future reservoir behavior and ultimate recovery. It is truly important to understand much reservoir behavior in any stage of the reservoir life: primary recovery, secondary recovery and pressure maintenance projects. The average reservoir pressure plays a critical role in field appraisal, well sizing, and surface facilities sizing. Almost every well intervention job requires the knowledge of this parameter.

No significant research was conducted during the last three decades on the determination of the average reservoir pressure. The majority of the existing methods for determining average reservoir pressure are based on conventional analysis and some of them use correction plots for specific reservoir shapes which made them of low practicity. A new methodology based on the Tiab Direct Synthesis (*TDS*) technique uses the pressure derivative for determination of the average reservoir. This technique has been extended to naturally fractured formations using information from the second straight line of the semilog plot.

By default, all reservoirs are naturally fractured; estimating the average reservoir pressure for homogeneous reservoirs should be a specific case of naturally fractured reservoirs. Currently, the inverse procedure is performed. Therefore, in this article a new, easy and practical methodology is presented for the first time, estimating average reservoir pressure for naturally fractured reservoirs (heterogeneous systems) during pseudosteady-state flow period for vertical wells located inside closed drainage regions. This technique employs a new analytical equation which uses a single pressure point and the value of the pressure derivative corresponding to the late time pseudosteady state period eliminating the use of correction charts and type-curve matching.

We verified the proposed technique with simulated cases for values of the interporosity flow parameter, λ , of 1 and the storativity coefficient, ω , of 0 (homogeneous reservoir) and successfully compared to traditional techniques and by the application to one field case. This technique (Tiab, 1995) is accurate since it uses an exact analytical solution and matches very well the results from conventional analysis. It is also more practical and much easier to use than conventional analysis.

Keywords: double porosity systems, pseudosteady state regime, bounded reservoir, average reservoir pressure, interporosity flow parameter, strorativity coefficient, and reservoir area.

* To whom correspondence may be addressed

a presión promedia del yacimiento se usa en caracterización de yacimientos, para calcular petróleo original, efectuar monitoreo del yacimeinto mediante balance de materia, estimar índices de productividad, y predecir el comportamiento y recobro final de un yacimiento. Es de vital importancia entender al máximo el comportamiento del yacimiento a cualquier etapa de su vida: recuperación primaria, secundaria y proyectos de mantenimiento de presión. La presión promedia juega un papel crítico en evaluación de campos, tamaño del pozo y de facilidades de superficie. Casi todo trabajo de intervención al pozo requiere de este parámetro.

Durante las últimas tres decadas se ha efectuado muy poca investigación para determinar la presión promedia del yacimiento. La mayoría de los métodos existentes para su determinación se basan en técnicas convencionales, y algunos de ellos emplean gráficos correctivos para formas de yacimiento específicas lo cual los hace poco prácticos. Recientemente se introdujo una nueva metodología basada en la técnica *Tiab Direct Synthesis (TDS)* que usa la derivada de presión para determinar la presión promedia en formaciones homogéneas drenadas por pozos horizontales o verticales. Esta técnica ha sido extendida a yacimiento naturalmente fracturado usando información de la segunda línea recta del gráfico semilog.

Por antonomasia, todos los yacimientos son naturalmente fracturados. La estimación de la presión promedia para yacimientos homogéneos debería ser un caso particular de los yacimientos naturalmente fracturados. Actualmente, se realiza el proceso inverso. En este artículo se presenta por primera vez una metodología nueva, fácil y práctica para yacimientos naturalmente fracturados (sistemas heterogéneos) durante estado pseudoestable para pozos verticales, localizados en regiones de drene cerrados. Esta técnica usa una nueva ecuación analítica la cual a su vez usa un único punto de presión y derivada de presión correspondiente al flujo pseudoestable tardío, evitando el uso de cartas correctivas y curvas tipo.

La técnica propuesta se verificó con casos sintéticos para valores del parámetro de flujo interporoso, λ , de 1 y el coeficiente de almacenaje, ω , de 0 (yacimiento homogéneo) y se comparó satisfactoriamente con las técnicas convencionales y a la aplicación de un caso de campo. Esta técnica (Tiab, 1995) es exacta puesto que utiliza una solución analítica directa y se ajusta muy bien con los resultados obtenidos por el método convencional. La técnica es más práctica y fácil de usar que el método convencional.

Palabras claves: sistemas de doble porosidad, régimen de estado seudo-estable, yacimiento cerrado, presión promedia de yacimiento, parámetro de flujos entre porosidades, coeficiente de almacenaje y área de reservorio.

A	Drainage area, ft ²
В	Oil volumetric factor, rb/STB
c_t	Total compressibility, 1/psi
k	Reservoir permeability, md
h	Pay zone thickness, ft
Р	Pressure, psi
Р	Average pressure, psia
P_i	Initial reservoir pressure, psia
P_{wf}	Well flowing pressure, psi
P_D	Dimensionless pressure
q	Oil flow rate, BPD
r _e	External radius, ft
r _{eD}	Dimensionless external radius
r _w	Wellbore radius, ft
S	Skin factor
t	Time, hrs
$t^*\!\Delta P$ '	Pressure derivative, psi
tpss	Time at pseudosteadystate condition, hrs
tD	Dimensionless time
tDA	Dimensionless time based on area
V	Volume, bbl

GREEK SYMBOLS

- Δ Change, drop
- ø Porosity
- ρ Density
- μ Viscosity, cp
- ω Storativity parameter
- λ Interporosity flow parameter

SUBSCRIPTS

- D Dimensionless
- e External
- *f* Formation
- g Gas
- o Oil
- *pss* Pseudosteady state
- R, r Radial or infinite acting line zone
- w Wellbore, well

SIMETRIC CONVERSION FACTOR						
Bbl x 1.589 873	$E-01 = m^3$					
cp x 1.0*	E-03 = Pa-s					
ft x 3.048*	E-01 = m					
ft ² x 9.290 304*	$E-02 = m^2$					
psi x 6.894757	E+00 = kPa					

INTRODUCTION

Chacon *et al.* (2004) have recently introduced a technique to estimate reservoir average pressure for vertical and horizontal wells using the pressure derivative curve but eliminating type-curve matching. Later, Molina *et al.* (2005) presented a first approach to estimate average reservoir pressure in heterogeneous reservoirs. Both methods are based upon reading unique characteristic points or features found on the pressure and pressure derivative plot which are then used to develop analytical equations (Tiab, 1995).

An extension of the *TDS* technique has been used in this work to determine the average reservoir pressure for a closed and circular double-porosity system which is produced by a vertical oil well. For this purpose, two new analytical solutions involving the interporosity flow parameter, λ and the storativity coefficient (Warren and Root, 1963) ω , under pseudosteady-state conditions are presented. Model one involves the reservoir drainage area including several shape factors, and model two is obtained from a straight forward algebraical manipulation which leads to an easier solution which does not include the drainage area. The proposed technique was successfully tested by solving simulated examples and a field example, and compared to traditional methodologies.

MATHEMATICAL FORMULATION

Using the governing equation or a slightly compressible fluid in a bounded reservoir, the average reservoir pressure can be derived based on the fact that production rate is equal to depletion rate; mathematically:

$$(qB\rho) = -V \frac{\partial(\phi \overline{\rho})}{\partial t} \tag{1}$$

The above equation, at very late times, is transformed to (Djebrouni, 2003):

$$\overline{P}_D(t_{DA}) = 2\pi t_{DA} \tag{2}$$

It can be shown that during pseudosteady state flow (Tiab, 1995) for a close circular reservoir, the pressure behavior is given by:

$$P_{D}(t_{DA}) = \overline{P_{D}}(t_{DA}) + \ln r_{eD} - \frac{3}{4}$$
(3)

The late time pressure solution and its pressure derivative for naturally fractured formations are given by (Djebrouni, 2003):

$$P_D(t_{DA}) = 2\pi t_{DA} + \ln r_{eD} - \frac{3}{4} + \frac{2(1-\omega)^2}{\lambda r_{eD}^2}$$
(4)

$$t_{DA} * P_D' = 2\pi t_{DA} \tag{5}$$

Dividing *Equation 4* by *Equation 5*, it results:

$$\frac{P_D(t_{DA})}{t_{DA} * P_D} = 1 + \frac{1}{2\pi t_{DA}} \left(\ln r_{eD} - \frac{3}{4} + \frac{2(1-\omega)^2}{\lambda r_{eD}^2} \right)$$
(6)

Based up *Equation 2*, the above equation becomes:

$$\frac{P_D(t_{DA})}{t_{DA} * P_D} = 1 + \frac{1}{\overline{P}_D(t_{DA})} \left(\ln r_{eD} - \frac{3}{4} + \frac{2(1-\omega)^2}{\lambda r_{eD}^2} \right)$$
(7)

With the purpose of translating the solution in oil-field unit, the following dimensionless quantities are introduced (Earlougher, 1997):

$$\overline{P}_{D} = \frac{kh}{141.2q\mu B} (\overline{P} - P_{ws})$$
(8.a)

$$t_{DA} = \frac{0.0002637 \, kt}{\phi \,\mu c_t A} \tag{9}$$

$$r_{eD} = \frac{r_e}{r_w} \tag{10}$$

Substituting Equations 8a, 9 and 10 into Equation 7, knowing that any time after closing the well for a buildup test, $P_{ws} = P_{wf} + \Delta P$, and solving explicitly for the average pressure during pseudosteady state (*pss*) gives:

$$\overline{P} = P_{wf} + \Delta P_{pss} + \frac{141.2q\mu B}{kh} \left(\frac{\left(t^* \Delta P'\right)_{pss}}{\Delta P_{pss} - \left(t^* \Delta P'\right)_{pss}} \right) \times \left(\ln \frac{r_e}{r_w} - \frac{3}{4} + \frac{2\pi r_w^2 (1 - \omega)^2}{\lambda A} \right)$$
(11.a)

In Equation 11.a, the values of ΔP_{pss} and $(t^*\Delta P')_{pss}$ are obtained from the pseudosteady state at any arbitrary time t_{pss} . In order to include drainage areas of different shapes, the Dietz shape factor is introduced in the previous equation. Recall that C_A for a circular drainage area is equal to 31.62, then:

$$\overline{P} = P_{wf} + \Delta P_{pss} + \frac{141.2q\mu B}{kh} \left(\frac{\left(t^* \Delta P'\right)_{pss}}{\Delta P_{pss} - \left(t^* \Delta P'\right)_{pss}} \right) \times \left(\ln \frac{r_e}{r_w} - \frac{3}{4} + \frac{0.1987C_A r_w^2 (1 - \omega)^2}{\lambda A} \right)$$
(11.b)

When the initial reservoir pressure is known, the dimensionless pressure can also be expressed as:

$$\overline{P}_{D} = \frac{kh}{141.2q\mu B} (P_{i} - \overline{P})$$
(8.b)

then, Equation 11.b becomes:

$$\overline{P} = P_i - \frac{141.2q\mu B}{kh} \left(\frac{\left(t^* \Delta P'\right)_{pss}}{\Delta P_{pss} - \left(t^* \Delta P'\right)_{pss}} \right) \times \left(\ln \frac{r_e}{r_w} - \frac{3}{4} + \frac{0.1987C_A r_w^2 (1 - \omega)^2}{\lambda A} \right)$$
(11.c)

Equation 11.a is of more practical use since P_{wf} is always known in any pressure buildup test. Parameter C_A in Equations 11.b and 11.c can be approximated by the analytical solution presented by Chacon *et al.* (2004), as follows:

$$C_{A} = \frac{2.2458 A}{r_{w}^{2}} \left\{ Exp \left[\frac{\pi \ 0.001055 \ kt_{pss}}{\phi \ \mu c_{t} \ A} \left(\frac{(\Delta P_{w})_{pss}}{(t^{*} \Delta P_{w}^{\prime})_{pss}} - 1 \right) \right] \right\}^{-1}$$

In this study, we also present another mathematical approach which may be applied for cases in which the drainage area is unknown. By equating *Equation 3* and *4*, we have:

$$\overline{P}_{D}(t_{DA}) = 2\pi t_{DA} + \frac{2(1-\omega)^{2}}{\lambda r_{eD}^{2}}$$
(12)

Dividing Equation 12 by Equation 5, it yields:

$$\overline{P}_{D} = t_{DA} * P_{D} \cdot \left(1 + \frac{2(1-\omega)^{2}}{2\pi t_{DA} \lambda r_{eD}^{2}} \right)$$
(13)

Substituting *Equation 8, 9* and *10* into *Equation 13* and solving explicitly for the average pressure gives:

$$\overline{P} = P_{ws} + (t^* \Delta P') \left(1 + \frac{3792.2\phi \ \mu c_t r_w^2 (1-\omega)^2}{\lambda k t} \right) \quad (14)$$

As before, any time after closing the well for a buildup test, $P_{ws} = P_{wf} + \Delta P$. For late time, during pseudosteady state (*pss*), we obtain the following solution:

$$P = P_{wf} + \Delta P_{pss} + (t * \Delta P')_{pss}$$

$$\left(1 + \frac{3792.2\phi \,\mu c_t r_w^2 (1 - \omega)^2}{\lambda kt}\right)$$
(15)

Average pressure values obtained from *Equations* 14 and 15 and 11.a and 11.b do not have to coincide since the assumptions are not the same. However, the results should be close to each other.

TDS PROCEDURE

-

A summary of the procedure will be presented next along with the average pressure estimation. Therefore, steps 1 through 5 are presented with greater detail in Earlougher (1997), and Engler and Tiab (1996) which should be reviewed for completeness. An important advantage of the *TDS* technique is that most of the reservoir parameters can be obtained more than once from several sources for verification or comparison purposes as outlined in Tiab (1995), Engler (1995), Engler and Tiab (1996), Tiab (1994), Escobar *et al.* (2004).

Step 1. Construct a log-log plot of pressure and pressure derivative vs. time.

Step 2. Draw a horizontal line through the radial flow horizontal line, read the value of the pressure derivative, $(t^*\Delta P')_r$, and estimate permeability using the following equation (Tiab, 1995; Engler and Tiab, 1996):

$$k = \frac{70.6q\,\mu\,B}{h(t^*\,\Delta P)_r} \tag{16}$$

Step 3. The storativity coefficient, ω , can be obtained using either the coordinates of minimum pressure derivative, minimum point, tmin, $(t^*\Delta P')_{min}$, the end time of the first radial flow regime, t_{e1} , or the starting time of the second radial flow regime, t_{b2} by using the following relationships introduced by Engler and Tiab (1996):

$$\omega = 0.15866 \left\{ \frac{(t * \Delta P')_{\min}}{(t * \Delta P')_r} \right\} + 0.54653 \left\{ \frac{(t * \Delta P')_{\min}}{(t * \Delta P')_r} \right\}^2$$
(17)

$$\frac{50t_{e1}}{\omega(1-)} = \frac{t_{b2}}{5(1-\omega)} = \frac{t_{\min}}{\omega \ln(1/\omega)}$$
(18)

Step 4. The interporosity flow parameter, λ can be easily estimated from the t_{min} using an equation presented by Tiab and Escobar (2003):

-0

$$\lambda = \frac{3792(\phi c_t)_t \mu r_w^2}{k \,\Delta t_{\rm inf}} \left[\omega \ln \left(\frac{1}{\omega} \right) \right]$$
(19)

Step 5. Read the pressure value, ΔP_r , at any convenient time, t_{r1} , during the first radial flow regime or t_{r2} , during the second radial flow regime and compute skin factor (Tiab, 1995; Engler and Tiab, 1996).

$$s = 0.5 \left[\left(\frac{\Delta P_r}{(t^* \Delta P')} \right)_{r_1} - \ln \left(\frac{k_{fb} t_{r_1}}{\phi \, \mu c_r r_w^2 \, \omega} \right) + 7.43 \right]$$
(20.a)

$$s = 0.5 \left[\left(\frac{\Delta P_r}{(t^* \Delta P')} \right)_{r2} - \ln \left(\frac{k_{fb} t_{r2}}{\phi \, \mu c_t r_w^2} \right) + 7.43 \right]$$
(20.b)

Step 6. The well drainage area is estimated by drawing a unit-slope line through the late time pseudosteady-state points and read the intersection time between this and the radial flow line (drawn in step 2), t_{rpi} , and estimate the drainage area using the following expression (Tiab, 2003):

$$A = \frac{kt_{rpi}}{301.77\phi \ \mu c_t} \tag{21}$$

Step 7. Take any point convenient on the late pseudosteady-state flow regime and read the time, pressure and pressure derivative: t_{pss} , ΔP_{pss} and $(t^*\Delta P)_{pss}$ and calculate the average reservoir pressure using Equation 11.a, 11.b or 11.c.

EXAMPLES

Field example

A pressure buildup test was run in a naturally fractured reservoir located on the superior basin of the Magdalena River in the center of Colombia (South America). Relevant information concerning this well, reservoir and fluid is given Table 1 and the pressure data is provided in Table 3. Estimate the average reservoir pressure using the methods MBH, MDH, Dietz, and Azari and the TDS technique.

Solution

Step 1. A log-log plot of pressure and pressure derivative *vs.* time is given in Figure 1.

Step 2. From Figure 1, the value of the pressure derivative during radial flow, $(t^*\Delta P')_r$, is equal to 5,9822 psi. Using *Equation 16* a permeability of 9,7928 md is obtained.

Table 1. Reservoir, fluid and well data for examples

	Field Example	Simulated Example 1	Simulated Example 2
Parameter		VALUE	
B, rb/STB	1,07	1,372	1,372
h, ft	242	100	100
μ, ср	0,971	1,104	1,104
t _p , hrs	120	100	100
k, md	Not given	90	90
P _{wf} , psi	14,29	3869	Variable
P _i , psi	Not given	4000	4000
c _t , psi-1	3,57x10-6	1,37x10 ⁻⁵	1,37x10 ⁻⁵
r _w , ft	0,3	0,3	0,3
ø, %	6	10	10
q, BPD	193	250	250
A , ft2	Not given	6250000	6250000
ω	Not given	0	Variable
λ	Not given	1	Variable

Figure 1. Log-log plot of pressure and pressure derivative for field example

Step 3. From Figure 1, $t_{min} = 14,5041$ hr and $(t^*\Delta P')_{min} = 4,5253$ psi were read. A storativity coefficient, ω , of 0,4327 is obtained from. *Equation 17*.

Step 4. Using *Equation 9*, the interporosity flow parameter, λ , is 2,996x10⁻⁷.

Step 5. For estimation of skin factor the following values were read from Figure 2. $\Delta P_r = 33,9603$ psi at $t_{rl} = 6,7142$ hr. from *Equation 20.a*, s = -4,85.

Step 6. A value of t_{rpi} of 73,8645 hrs is obtained. Then, A = 264,4642 acres is found from *Equation 21*.

Step 7. The following information was read from Figure 2. $t_{pss} = 104,2605$ hr, $\Delta P_{pss} = 50,17$ psi, and $(t^*\Delta P)_{pss} = 9,0924$ psi. Use these data in *Equation 11.a*, assuming circular geometry, the average reservoir pressure is:

$$\overline{P} = 14.29 + 50.17 + \frac{141.2(193)(0.971)(1.07)}{(9.7928)(242)} \left(\frac{9.0924}{50.17 - 9.0924}\right) \times \left(\ln\frac{1914.2}{0.3} - \frac{3}{4} + \frac{2\pi(0.3^2)(1 - 0.4327)^2}{(2.996 \times 10^{-7})(11511183)}\right) = 85.78 \ psi$$

Figure 2. Log-log plot of pressure and pressure derivative for simulated example

Average reservoir pressures estimated from the other methods are not shown here. Table 2 lists the results obtained using conventional and *TDS* techniques.

Simulated example 1

Estimate the average reservoir pressure using the conventional techniques, such as MBH, MDH, Dietz, and Azari and the TDS technique as discussed in this study for a simulated test run in a circular homogeneous reservoir ($\omega = 0, \lambda = 1$), using the information provided in Tables 1 and 4.

Solution

Since all the parameters are known but average reservoir pressure, we skip steps 2 through 6.

Step 1. The log-log plot is provided in Figure 2.

Step 7. From the derivative plot the following information is obtained:

Table 2. Average reservoir pressures obtained from different methods for simulated example 1 and the field example

	Simulated	Example 1	Field Example		
METHOD	P, psi	% error	P, psi	% error	
MBH	3913	-0,082	71,1	12,03	
Dietz	3914	-0,056	50,24	-20,84	
MDH	3915	-0,030	55,77	-12,12	
Azari	3920	0,0970	54,43	-14,23	
This study	3919	0,0715	85,78	35,163	
Average	3916.2		63,46		

t, hr	ΔP, psi	t*∆P, psi	t, hr	ΔP, psi	t*∆P, psi	t, hr	ΔP, psi	t*∆P, psi
0,4492	6,71	6,461	13,4158	37,46	4,583	45,7108	44,32	6,217
0,9083	12,73	9,526	14,1742	37,81	4,565	48,7608	44,69	6,254
1,3783	16,39	12,731	14,95	38,01	4,632	50,3442	44,88	6,332
1,8592	21,15	14,721	15,7433	38,29	4,603	51,9608	45,17	6,394
2,3508	25,15	13,628	16,555	38,62	4,784	55,3108	45,49	6,264
2,8542	28,63	11,379	17,3858	38,77	4,891	57,0442	45,69	6,565
3,3683	29,92	9,525	18,2358	39,08	5,000	58,8108	45,84	6,516
3,895	30,51	8,338	19,105	39,18	5,131	60,6275	46,03	6,565
4,4333	30,97	7,173	19,9942	39,52	5,311	62,4775	46,25	6,691
4,9842	31,56	6,296	20,9042	39,69	5,273	64,3775	46,41	6,655
5,5475	32,16	5,999	21,835	39,81	5,567	70,3275	46,95	7,010
6,1242	33,15	6,014	22,7875	40,06	5,586	76,7275	47,59	7,457
6,7142	33,98	6,094	24,7581	40,53	5,775	81,2445	47,99	7,738
7,3175	34,67	6,070	26,8219	40,93	5,595	85,9605	48,47	7,811
7,935	35,18	6,007	28,9831	41,48	5,717	90,8945	48,76	8,185
8,5667	35,56	6,001	30,1025	41,76	5,712	96,0605	49,3	8,535
9,2133	35,95	5,865	32,4164	42,24	5,858	104,2605	50,09	9,091
9,8742	36,22	5,590	34,8386	42,57	6,004	116,1275	50,99	10,007
10,5508	36,53	5,236	36,0914	43,02	6,088	125,7445	51,84	10,689
11,2425	36,83	5,015	38,6858	43,42	6,203	136,0445	52,74	11,452
11,9508	37	4,818	40,0275	43,67	6,148	147,0945	53,43	12,397
12,675	37,29	4,713	42,8053	43,97	6,273			

Table 3. Pressure and pressure derivative data for field example

 $t_{pss} = 18.95$ hr, $\Delta P_{pss} = 45.82$ psi, and $(t^* \Delta P)_{pss} = 8.333$ psi. Using these data in *Equation 11.a* gives:

$$\overline{P} = 3869 + 45.28 + \frac{141.2(250)(1.104)(1.372)}{(90)(100)} \left(\frac{8.333}{45.82 - 8.333}\right) \times \left(\ln\frac{1410.5}{0.3} - \frac{3}{4} + \frac{2\pi(0.3^2)(1 - 0)^2}{(1)(6250000)}\right) = 3918.7 \text{ psi}$$

The step-by-step procedure for estimating of the average pressure using the techniques named in Table 2 and 6 will not be shown here. A detailed discussion of these procedures can be found in Tiab (1995), and Engler (1995). Results are shown in Table 2.

Simulated example 2

For a sensitivity analysis on the determination of the average reservoir pressure using the methods of MBH, MDH, Dietz, and Azari and *TDS* technique, five simulated tests for a circular reservoir with different values of ω and λ were run as reported in Table 5. For these simulations, we used testing times of 100 and 1000 hrs and flowing well pressures of 3889 and 3883 psi, respectively. Reservoir and fluid data are given in the third column of Table 1.

Solution

This example was worked similarly as simulated example 1. In this example, neither pressure data nor plots are provided for space saving and the results are shown in Tables 6 and 7. Notice that, for these simulated cases, the average reservoir pressure estimated using *TDS* technique matches closely the results from the other methods, and, of course, with the mean value.

t, hr	∆P, psi	t*∆P, psi	t, hr	ΔP, psi	t*∆P, psi	t, hr	∆P, psi	t*∆P, psi
0,0129	25,14	17,33	0,27804	34,27	17,23	5,99257	42,94	14,48
0,01666	25,9	17,33	0,35911	35,03	17,19	7,73997	43,56	13,63
0,02152	26,66	17,33	0,46382	35,78	17,14	9,9969	44,13	12,53
0,02779	27,43	17,34	0,59907	36,53	17,08	12,91194	44,65	11,12
0,0359	28,19	17,33	0,77376	37,28	16,99	16,67699	45,09	9,34
0,04637	28,95	17,33	0,99938	38,03	16,89	18,95312	45,28	8,33
0,05989	29,71	17,33	1,29079	38,76	16,74	24,47974	45,59	6,17
0,07735	30,47	17,32	1,66718	39,5	16,57	27,82081	45,71	5,09
0,09991	31,23	17,31	2,15332	40,22	16,33	31,61788	45,81	4,05
0,12904	31,99	17,3	2,78122	40,93	16,03	35,93319	45,89	3,09
0,16667	32,75	17,28	3,59221	41,62	15,64	40,83747	45,94	2,25
0,21527	33,51	17,26	4,63967	42,3	15,13	46,4111	45,98	1,55

Table 4. Pressure and pressure derivative data for simulated example

RESULTS

It is shown from the given examples that the new technique provides results which fall in the range of the other conventional methods. As seen in Table 2, the value of the average reservoir pressure predicted by the proposed Equation for calculating the average reservoir pressure for naturally fractured reservoirs yields similar results as the conventional techniques.

Several simulations were run for different values of the storativity coefficient and interporosity flow parameter. We found a small influence of these parameters

Table 5. Cases of naturally fractured reservoirs, NFR, studied with different values of ω and λ

Case	ω	λ
NFR 1	0	1 (homogeneous case)
NFR 2	0,05	1x10-7
NFR 3	0,25	1x10-5
NFR 4	0,05	1x10-5
NFR 5	0,25	1x10-7

on the estimation of the average reservoir pressure. Results of these simulations are reported in Tables 5 through 7.

CONCLUSIONS

- The *TDS* is an effective and practical method for calculating the average reservoir pressure from well test data for a vertical well in closed naturally fractured reservoirs for smoothed and noisy data conditions when the late pseudosteady state regime is observed.
- Since traditional models for average pressure estimation considered only the homogeneous case, a new equation, including parameters ω and λ characteristics of naturally fractured reservoirs, to estimate the average reservoir pressure in naturally fractured formations from transient pressure data is presented and tested with different simulated and field examples and compared to conventional techniques. We found, for simulated cases, the parameters λ and ω have no influence on the estimation of the average reservoir pressure in naturally fractured reservoirs.

	NFR 1	NFR 2	NFR 3	NFR 4	NFR 5
METHOD		Average	Reservoir Press	sure, psi	
MBH	3913	3913	3913	3913	3913
MDH	3915	3915	3915	3915	3915
DIETZ	3914	3914	3914	3914	3914
THIS STUDY	3932	3934	3933	3933	3933
AVERAGE	3918,5	3919	3918,8	3918,8	3918,8

Table 6. Case 1: Average pressure estimation for testing time of 100 hrs and $P_{
m wf}$ of 3883 psi and different values of ω and λ

Table 7. Case 2: Average pressure estimation for testing time of 1000 hrs and P_{wf} of 3889 psi and different values of ω and λ

	NFR 1	NFR 2	NFR 3	NFR 4	NFR 5			
METHOD	Average Reservoir Pressure, psi							
MBH	3980	3979	3979	3979	3979			
MDH	3982	3982	3982	3982	3982			
DIETZ	3978	3978	3978	3978	3978			
THIS STUDY	3939	3940	3939	3939	3939			
AVERAGE	3969,8	3969,8	3969,5	3969,5	3969,5			

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the Instituto Colombiano de Petróleo (ICP), for financing this study.

REFERENCES

- Chacón, A., Djebrouni, A. and Tiab, D., 2004. "Determining the Average Reservoir Pressure from Vertical and Horizontal Well Test Analysis Using the Tiab's Direct Synthesis Technique". SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, SPE 88619.
- Djebrouni, A., 2003. "Average Reservoir Pressure Determination Using Tiab's Direct Synthesis Technique". M. S. Thesis. The University of Oklahoma, Norman, OK.
- Earlougher, R.C., Jr., 1997. "Advances in Well Test Analysis", Monograph Series, Vol. 5, SPE, Dallas, TX.

- Engler, T., 1995. "Interpretation of Pressure In Tests in Naturally Fractured Reservoirs by the Direct Synthesis Technique". *Ph.D. Dissertation*. The University of Oklahoma, Norman, OK.
- Engler, T. and Tiab, D., 1996. "Analysis of Pressure and Pressure Derivative without Type Curve Matching, 4. Naturally Fractured Reservoirs". J. of Petroleum Scien. and Engineer, 15: 127-138.
- Escobar, F. H., Saavedra, N. F., Hernández, C. M., Hernández, Y. A., Pilataxi, J. F., and Pinto, D. A., 2004. "Pressure and Pressure Derivative Analysis for Linear Homogeneous Reservoirs without Using Type-Curve Matching". 28th Annual SPE International Technical Conference and Exhibition, Abuja, Nigeria. SPE 88874
- Molina, M. D., Escobar, F. H., Montealegra-M, M., Restrepo, D. P. and Hernandez, Y. A., 2005. "Determination of Average reservoir Pressure for Vertical Wells in Naturally Fractured Reservoirs from Pressure and Pressure Derivative Plots without Type-Curve Matching". XI Congreso Colombiano del Petróleo. Bogotá, 2005.

- Tiab, D., 1994. "Analysis of Pressure Derivative without Type-Curve Matching: Vertically Fractured Wells in Closed System", J. of Petroleum Scien. and Engineer, 11: 323-333. Paper originally presented at the 1993 SPE Western Regional Mtg., Anchorage, Alaska, SPE 26138.
- Tiab, D., 1995. "Analysis of Pressure and Pressure Derivative without Type-Curve Matching – Skin and Wellbore Storage". J. of Petroleum Scien. and Engineer, 12: 171. Also, paper presented at the 1993 SPE Production Operations Symposium, Oklahoma City, OK. 21-23, SPE 25423.
- Tiab, D., y Escobar, F. H., 2003. "Determinación del Parámetro de Flujo Interporoso de un Gráfico Semilogarítmico". *X Congreso Colombiano del Petróleo*. Bogotá, 2005.
- Warren, J. E. and Root, P. J., 1963. "The Behavior of Naturally Fractured Reservoirs". *J. of Soc. Petroleum and Engineer*, 245-255.