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ABSTRACT

A method that allows the creation of the Synthetic Sonic Log (SSL) was developed from the Spontaneous 
Potential (SP) logs, the resistivity logs of the flushed zone (SN), and the resistivity zone of the uninvaded 
zone (ILD), using Artificial Neural Networks (ANN). The SSL was obtained with the created tool called 

Generation of Synthetic Sonic Logs (GSSL). 

The results obtained are presented hereinafter: in the Colorado 70 well, 90% of the generated SSL data 
present errors of less than 10%; in the Colorado 72 well; 53% of the SSL data obtained with the tool are 
below 5% error, in the Colorado 75 well, 80% of the SSL data present errors of less than 10%, and finally, 
the SSL generated for the Colorado 38 well follows the behavior of the original Sonic Logs of the well in an 
accurate manner. From the foregoing we conclude that the quality of the created tool is good and that the 
deviations are minimal in the times of transit of synthetic sonic profile.

Keywords: petrophysical properties, sonic logs, neural networks, spontaneous potential, porosity, permeability, saturation.



22 CT&F - Ciencia, Tecnología y Futuro  -  Vol. 4  Num. 2      Dec. 2010

RESUMEN

Se desarrolló una metodología que permite crear el Registro Sónico Sintético (RSS) a partir del registro 
de potencial espontáneo (SP), del registro de resistividad de la zona lavada (SN) y del registro de 
resistividad de la zona virgen (ILD), utilizando Redes Neuronales Artificiales (RNA). El RSS se obtuvo 

con la herramienta creada llamada Generación del Registro Sónico Sintético (GERSS). 

Los resultados que se obtuvieron se presentan a continuación: en el pozo Colorado 70 el 90% de los datos 
del RSS generado presentan errores menores del 10%; en el pozo Colorado 72 el 53% de los datos del 
RSS obtenidos con la herramienta están por debajo del 5% de error; en el pozo Colorado 75 el 80% de los 
datos del RSSS presentan errores menores del 10% y finalmente, el RSS generado para el pozo Colorado 
38 sigue el comportamiento del Registro Sónico original del pozo de manera acertada. Visto lo anterior 
se concluye que la calidad de la herramienta creada es buena y que las desviaciones son mínimas en los 
tiempo de tránsito del perfil sónico sintético.

Palabras clave: propiedades petrofísicas, registros sónicos, redes neuronales, potencial espontáneo, porosidad, per-
meabilidad, saturación.
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1. INTRODUCTION

The synthetic design of an electric profile using Ar-
tificial Neural Networks, in this case the Sonic profile, 
directly contributes to the characterization of the reservoir. 
Thus, a good development of the Resistivity and Sponta-
neous Potential logs corresponds to a better development 
of the sonic logs, providing as a result the identification 
of high quality zones of the reservoir, that is to say zones 
in which optimal readings of porosity (Ф), permeability 
(k) and low water saturation readings will be obtained. 

There are various previous works of attainment 
of synthetic electric profiles, mainly developed by 
Mohaghegh, Richardson, & Ameri (1998), who first 
implemented artificial intelligence in the field of Elec-
tric Profiles.

The method developed is focused on the correct 
determination of the training patterns of the neural 
network. To this end, an analysis was made of the 
information available of the candidate wells of the 
Colorado field; thus identifying the data necessary for 
the training and verification of the neural network. The 
latter having been achieved, the SSL was generated 
using the GSSL tool, providing transit time readings 
with errors of 10% to 15%; with which we conclude 
that the quality of the created tool is good and that the 
values provided have minimal deviations.

The Sonic logs, together with other porosity profiles 
can be used in evaluating clayey sands, identifying the 
lithology of the formation, and determining the second-
ary porosity (Bendeck, 1992). 

With the correct development of the method, we seek 
to make an estimate of the porosity of the dirt formation 
of the Colorado field, obtaining a synthetic profile of the 
Sonic logs, from the Spontaneous Potential (SP) logs 
and the Resistivity logs of the flushed zone and of the 
Resistivity logs of the uninvaded zone. 

2. THEORETICAL FRAMEWORK

Artificial Neural Networks
An artificial neural network is an information 

processing system that has certain characteristics in Figure 2 Process of a neural network

Figure 1 From the biological neuron to the artificial neuron
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common with a biological neural network (Mohaghegh, 
2000) and pretends to imitate simple biological learning 
processes from computational algorithms. 

In Figure 1 we can see that there is an analogy be-
tween the artificial system process and the biological 
process. Thus, for a processing element, or neuron, the 
input signals X1, X2, Xi,…, Xn are continuous variables 
which are the electrical impulses for the biological neu-
ron. Each input signal is considered with a weight of Wi 
which plays the role of synapsis in a biological neuron. 
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In the summary node, each input signal is multiplied 
by its respective weight to later carry out the sum of the 
results. The amount obtained passes through the thresh-
old function or transference and generates an output. 

Figure 2 shows a clear idea of the process described, 
where you can see the run of a set of signals that enter 
a processing unit or neuron.

Mathematically expressed for a neuron:

  (1)
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Where:

a = network output 

Wi, bj = connection weights 

f = activation function 

Topology of an Artificial Neuron
Generally, a neuron has more than one input and 

in turn, a neural network has more than one neuron. 
These neurons are grouped in layers; a layer is a set of 
neurons (Acosta, Zuluaga, & Salazar, 2000). In Figure 
3 we see a neural network with 3 hidden layers and an 
input layer.

Considerations
• In the Colorado Field logs we see that better devel-

opment of the resistivity logs corresponds to bet-
ter development of the spontaneous potential log; 
therefore it is possible to presume that with greater 
resistivity and better spontaneous potential, better 
reservoir quality conditions will be obtained.

• According to the latter, from the spontaneous po-
tential logs and the short and deep resistivity logs, 
one can draft a petro-physical model that will allow 
estimating the porosity (Ф) and other petro-physical 
variables of great interest to the analyst.

• The Neural Networks are a mathematical application 
that allows the identification of the patterns estab-
lished as of the well log data; in this case Resistivity, 
Spontaneous Potential, and Sonic logs. According 
to the latter, the development of a model applied to 
Neural Networks in order to produce Sonic logs is 
viable and functional.

4. METHOD FOR THE DESIGN OF THE 
SYNTHETIC SONIC LOGS 

According to the previously mentioned consider-
ations, it is possible to solve the physical problem using 
Neural Networks, allowing the estimation of porosity of 
the dirt formation of the Colorado field, and obtaining 
a synthetic profile of the sonic logs. Below we describe 
the stages developed:

Stage 1. Collection and organization of available well 
log information of the wells within a determined forma-
tion. We made a well by well analysis and determined 
the inventory of logs of the Colorado field with which 
we could count on for the development of the project. 

Stage 2. Correction of the Spontaneous Potential SP 
logs on the lutite base line (SP = 0) of the selected wells. 
This in order to decrease the associated noise of this 
input variable and thereby facilitate the identification 
of patterns during the Neural Network training process.

Stage 3. Creation of the training patterns with 30% of 
Colorado well data 75 while the remaining 70% is used 
for verification purposes (Mohaghegh, 1998). Training 
patterns and verification were normalized between 0 and 1.

     Input          Layer 1                   Layer 2                  Layer 3

Figure 3 Three-layer Network

Each layer receives different names depending on 
its location (Acosta et al., 2000).

• Input Layer: Receives the network’s input signals. 

• Hidden Layers: Where most of the learning process 
occurs.

• Output Layer: Receives the information of the hid-
den layer and is where the final output signal of the 
model is generated.

3. MODEL DESCRIPTION

Below we present the considerations taken for the 
correct development of the model and in this way 
properly solve the physical problem.
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Stage 4. Creation of several neural networks with 
differing topographies and different transference func-
tions in each layer with Membrain Software. Training 
with the Backpropagation algorithm. 

The output generated by each of the trained neural 
networks were evaluated in terms of the quadratic cor-
relation (R2) coefficient, finding that the topography of 
the neural network that generated the best results was 
composed by three layers; an input layer, a hidden layer, 
and an output layer.

Stage 5. Generation of the SSL for wells that lack 
sonic logs, but that count on the SP logs and the two 
Resistivity logs (short and long).

5. RESULTS AND ANALYSIS

Quadratic Correlation Coefficient
The method used to generate the Synthetic 

Sonic Logs was based on the relationship existing 
amongst the spontaneous potential, resistivity, and 
sonic logs (DT), through the quadratic R2 correla-
tion coefficient. 

This analysis is important for the development of 
the well’s SSL since it provides an estimate of the ease 
with which the Neural Network will find a relationship 
between the spontaneous potential logs and the resistiv-
ity logs, to later generate the well’s synthetic sonic logs. 
Below we present the figures for each well:

Colorado 38

In comparing Figures 4 and 5, the greatest correla-
tion is between the Spontaneous Potential logs and the 
Sonic logs data, obtaining a correlation coefficient of 
R2 = 0,2685. This reading is very small, indicating a 
very low correlation of data from the Colorado 38 well. 

Colorado 70
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Figure 4 Spontaneous Potential vs. Sonic Log

Figure 5 Resistivity vs. Sonic Logs

Figure 6 Spontaneous Potential vs. Sonic Logs

Figure 7 Resistivity vs. Sonic Logs
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In the Colorado 70 well the best correlation is in the 
Resistivity data (ILD), as can be seen in Figures 6 and 
7. By using an exponential tendency we obtain a cor-
relation coefficient of R2 = 0,3227. The correlation coef-
ficient of the Spontaneous Potential data is R2 = 0,0039.

Colorado 72

reason the Colorado 75 well was taken as reference 
for the training of the Neural Network. The correla-
tion coefficient of the Spontaneous potential data is  
R2 = 0,0039 (Figure 6). Below we present Table 1 with 
the R2 readings of the Colorado 38, Colorado 70, Colo-
rado 72, and Colorado 75 wells.
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Figure 8 Spontaneous Potential vs. Sonic Logs

Figure 9 Resistivity vs. Sonic Logs
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In the Colorado 72 well the behavior of the Sponta-
neous Potential and Resistivity data in comparison to 
the Sonic logs are similar as can be seen in Figures 8 
and 9. We obtained quadratic correlation coefficients 
of R2 = 0,122, and R2 = 0,189 respectively. 

Colorado 75
The Colorado 75 well presents a greater correlation 

between Resistivity and Sonic (See Figures 10 and 
11), compared to the Colorado 38, Colorado 70, and 
Colorado 72 wells. Its quadratic correlation coefficient is  
R2 = 0,5184 using potential approximation. For this 

Figure 11 Resistivity vs. Sonic Logs
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Figure 10 Spontaneous Potential vs. Sonic Logs
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Table 1 Quadratic Correlation Coefficients

Well
Quadratic Correlation 

Coefficients R2

SP vs. DT ILD vs. DT

Colorado 38 0,2685 0,1738

Colorado 70 0,0039 0,3227

Colorado 72 0,122 0,189

Colorado 75 0,0009 0,5184
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Topology of the Neural Network
The selection of the topology with which the best 

Synthetic Sonic Logs results were obtained was based 
in the readings obtained from the quadratic R2 cor-
relation coefficient. This coefficient was obtained by 
graphing the readings of the true sonic logs vs. readings 
of the synthetic sonic logs provided by the tool, choos-
ing in this manner the topology presenting the greatest 
coefficient. The topology found is the following:

• Input Layer. Composed of four neurons that cor-
respond to the Depth, Spontaneous Potential (SP), 
Resistivity of the flushed zone (SN), and Resistivity 
of the uninvaded zone (ILD) readings. The transfer-
ence function of the input neurons is the identity 
function.

• Hidden Layer. The hidden layer is composed of 28 
neurons. The sigmoidal transference function is 
present in each of them.

• Output Layer. The output layer is the Synthetic 
Sonic Log (DT) and is composed of one neuron. Its 
transference function is the identity function.

Obtained Synthetic Sonic Logs
Once the Neural Network topology was found, we 

proceeded to generate the Synthetic Sonic Logs using 
GSSL with the verification data (70%), for the Colorado 
70, Colorado 72, and Colorado 75 wells. The results 
obtained for each well are shown below:

Colorado 70
Figure 12 is the SSL generated for the verification 

data (70%) of the Colorado 70 well, where you can 
see that for this interval of the well, the generated data 
are of good quality, following closely the behavior of 
the well’s Sonic logs in some zones; mainly in zones 
of high porosity.

In the Colorado 70 well, 90% of the data of the 
Synthetic Sonic Logs generated using the tool present 
errors of less than 10%, indicating a good quadratic 
correlation coefficient of 0,69. 10% of the remaining 
data present error readings of between 10% and 25%, 
as can be analyzed in Figure 13.

In this well the maximum error presented in the 
transit time (SSL) is of 25%, and the number of data 

Figure 12 Colorado 70 SSL

Figure 13 Number of successes of the SSL
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the management of the explained data are helping to 
optimize the Synthetic Sonic Logs generation process 
in terms of calculated error.

Colorado 72
In this well the Synthetic Sonic Logs are of good 

quality; the deviations in respect to the original Sonic 
are not too big. This is due to the fact that the quadratic 
R2 correlation coefficient obtained with the tool is of 
approximately 0,7. Although there are still zones where 
the transit time is high and the tool does not generate 
said readings; as can be seen in Figure 14.

Analyzing Figure 15, we can conclude that approxi-
mately 53% of the Sonic logs data obtained with the 
tool (5419 readings), are below 5% error. On the other 
hand, 3137 data that correspond to 30% of the sample, 
present errors of between 5% and 10%. The number of 

data with moderate errors (10% - 20%) is 1079; equal 
to 10% of the sample. 

Figure 14 Colorado 72 SSL

Figure 15 Number of successes of the SSL
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Finally, just 7% of the data (737 data) present errors 
above 15%. 

Colorado 75
The Colorado 75 well presents the greatest quadratic 

correlation coefficient with a reading of R2 = 0,7305. 
According to the latter, the SSL profile presents a behav-
ior similar to the original well sonic logs, being able to 
generate high and low transit time readings (Figure 16).

Figure 17 shows Successes of the Colorado 75 well.

errors above 15% are minimal, showing 255 data that 
are equal to 6% of the sample. These characteristics 
can be seen in Figure 17.

Table 2 shows the quadratic correlation coefficients 
for each well, using both tools (Membrain and GSSL).

As can be analyzed in Table 2, the quadratic correla-
tion coefficient (R2) obtained with Membrain software, 
are very close to the readings provided with the tool 
created (GSSL). Due to this, one can conclude that the 
quality of the created tool is good and that the synthetic 
readings of the transit time obtained present minimal 
errors, if compared to the readings of the original Sonic 
logs for each well considered.

Once the quality of the tool was analyzed and know-
ing the topology of the neural network, we proposed the 
design of the Synthetic Sonic Logs for the Colorado 38 
well, since the sonic profile of this well is of very bad 
quality due to the high transit time presented. The SSL 
is presented below.

Colorado 38
Figure 18 shows the Synthetic Sonic Logs generated 

with the tool (left track) for an interval of the formation 
of the Colorado 38 well and the original Sonic Logs 
(right track) for the same interval of the formation. 

In this Figure we can see that the original sonic log 
of the well is bad quality due to the transit time readings 
present; these readings oscillate between 160 and 240 
(µs/ft); while the synthetic sonic log readings oscillate 
between 60 and 120 (µs/ft); this is due to the fact that 
in the network training the transit time readings above 
120 (µs/ft) were excluded since they are anomalous.

Figure 17 Number of successes of the SSL
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The same as in the Colorado 70 well, the maximum 
calculated error reading in the data provided by the tool 
is of 25%. In the Colorado 75 well, 80% (3496 readings) 
of the data of the Synthetic Sonic Logs generated using 
the tool (GSSL), present errors below 10%, indicating a 
good correlation between the data of the original Sonic 
and the Synthetic Sonic. Transit times generated with 

Table 2 Quadratic Correlation Coefficients
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Colorado 70
Verification (70%) 0,7224 0,6863

Complete Well 0,72 0,6869

Colorado 72
Verification (70%) 0,7129 0,6902

Complete Well 0,7241 0,6945

Colorado 75
Verification (70%) 0,7367 0,7305

Complete Well 0,7348 0,7327
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We can also see that the synthetic logs generated 
follow the behavior of the original Sonic logs of the 
well accurately and this is, in short, the object of the 
project: reproduce the Sonic Logs from common logs 
such as SP and resistivity.

The SSL reaches the tendency of the current Sonic 
logs but with inferior readings. What has been previ-
ously stated is a good indication that the network trained 
as of the method is generating acceptable transit time 
readings for the Colorado 38 well.

6. CONCLUSIONS

• The development of a method that allows the cre-
ation of the Synthetic Sonic logs from existing logs 
directly contributes to a better characterization of 
the reservoir.

Figure 18 True Sonic Logs and Synthetic Sonic Logs of the Colorado 38 well

• It is extremely important to count on the Sonic logs 
in the wells of a field, since by using this profile one 
can determine formation features such as clayey 
sand evaluation, identification of lithology, and 
porosity.

• Based on the analysis of the logs we conclude that 
the Colorado field is composed by a series of thin 
sand layers separated by large clay layers. 

• With the proper development of the method the 
costs associated to the sonic logs in an oil field are 
reduced, optimizing the available resources.

• Artificial neural network is an alternate tool to solve 
problems that cannot be resolved with conventional 
mathematical methods in oil engineering.
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• The generation of synthetic sonic logs with certain 
degree of precision is possible from the use of arti-
ficial neural networks.

• The GSSL tool created is a significant contribu-
tion to the hydrocarbon industry since it allows the 
creation of synthetic sonic logs of a well from the 
resistivity and spontaneous potential logs.
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