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Lipids are biomolecules of great scientific and biotechnological interest due to their extensive appli-
cations.  Microalgae are potential biological systems used in the synthesis of lipids, particularly 
Chlorella sp., which is characterized by its high lipid content and for having the right profile for the 

obtainment of biofuel. Lipid production in microalgae is influenced by several physical and chemical factors.  
Any modification thereof can cause a stress response represented by changes in synthesized lipid composi-
tion, varying from one species to another. This paper evaluates the effect of different light wavelengths, 
photoperiods and calcium carbonate (CaCO3) supply in lipid synthesis in Chlorella sp. In order to do so, 
the microalgae was grown in Bold's Basal Medium (BBM) at 20ºC with constant aeration and subject to low 
blue (470 nm) and red (700 nm) light wavelengths, 0,5 g.L-1 and 1,5 g.L-1 concentrations of CaCO3 and 
6-hour light, 18-hour darkness (6:18) and 18-hour light, 6-hour darkness (18:6) photoperiods. The results 
indicate a higher growth rate for microalgae under red light, 0,5 g.L-1 of CaCO3 and a photoperiod of 6:18. 
On the other hand, lipid production is higher under blue light, 1,5 g.L-1 of CaCO3 and an18:6 photoperiod. 
Analysis by gas chromatography indicate that the fatty acids in the samples are oleic, linoleic and palmi-
toleic, which are of recognized importance in the biodiesel industry. This suggests that neutral lipid synthesis 
can be optimized in two stages: first, by promoting growth and subsequently, by inducing lipid production.
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O   s lipídios são biomoléculas de grande interesse científico e biotecnológico por suas amplas apli-
cações, as microalgas constituem matéria-prima com potencial para síntese de lipídios. Chlorella 
sp., particularmente, é uma das mais representativas devido ao elevado conteúdo de lipídios e 

perfil idôneo para a obtenção do biocombustível. A produção de lipídios nas microalgas é influenciada por 
vários fatores físicos e químicos, a modificação destes provoca uma resposta de estresse que é manifestada 
por variações na composição de lipídios sintetizados, que varia de uma espécie para outra. Nesta pesquisa 
foi avaliado o efeito de diferentes longitudes de onda de luz, fotoperíodos e fornecimento de carbonato de 
cálcio (CaCO3) na síntese de lipídios na microalga Chlorella sp., para isto foi cultivada a microalga em meio 
basal de Bold (Bold's Basal Medium, BBM) a 20ºC e aeração constante, submetidas sob longitudes de onda 
de luz azul (470 nm) e vermelha (700 nm), concentrações CaCO3 de 0,5 g.L-1 e 1,5 g.L-1 e fotoperíodos com 
fases de 6 horas luz e 18 horas escuridão (6:18) e 18 horas luz e 6 horas escuridão (18:6). Os resultados 
obtidos indicam que microalgas sob luz vermelha, concentração de 0,5 g.L-1 de CaCO3 e fotoperíodo 6:18 
apresentaram maior taxa de crescimento, por outra parte, a produção de lipídios é maior sob luz azul, 
1,5 g.L-1 de CaCO3 e fotoperíodo 18:6. Os resultados dos cromatrogramas mostram ácidos graxos como 
oleico, linoleico e palmitoleico de grande importância na indústria do biodiesel. Estes resultados sugerem 
que é possível aperfeiçoar a síntese de lipídios neutros em duas fases, primeiro promovendo o crescimento 
e posteriormente induzindo a produção de lipídios.

L  os lípidos son biomoléculas de gran interés científico y biotecnológico por sus amplias aplicaciones, 
las microalgas constituyen materia prima con potencial para síntesis de lípidos, particularmente Chlo-
rella sp., es una de las más representativas debido al elevado contenido de lípidos y perfil idóneo 

para la obtención del biocombustible. La producción de lípidos en las microalgas se encuentra influenciada 
por varios factores físicos y químicos, la modificación de estos  provoca una respuesta de estrés que se 
manifiesta por variaciones en la composición de lípidos sintetizados, que  varía de una especie a otra. En 
esta investigación se evaluó el efecto de diferentes longitudes de onda de luz, fotoperiodos y suministro de 
carbonato de calcio (CaCO3) en la síntesis de lípidos en la microalga Chlorella sp., para esto se cultivó la 
microalga en medio basal de Bold (Bold's Basal Medium, BBM) a 20ºC y aireación constante, sometidas 
bajo longitudes de onda de luz azul (470 nm) y roja (700 nm), concentraciones CaCO3 de 0,5 g.L-1 y 1,5 
g.L-1y fotoperiodos con fases de 6 horas luz y 18 horas oscuridad (6:18) y 18 horas luz y 6 horas oscuridad 
(18:6). Los resultados obtenidos indican que microalgas bajo luz roja, concentración de 0,5 g.L-1 de CaCO3 
y fotoperiodo 6:18 presentaron mayor tasa de crecimiento, por otra parte, la producción de lípidos es mayor 
bajo luz azul, 1,5 g.L-1 de CaCO3 y fotoperiodo 18:6. Los resultados de los cromatrogramasmuestranácidos 
grasos  como oleico, linoleico y palmitoleicode gran importancia en la industria del biodiesel. Estos resul-
tados sugieren que es posible optimizar la síntesis de lípidos neutros en dos fases, primero promoviendo el 
crecimiento  y posteriormente induciendo la producción de lípidos.

Palabras claves: Ácidos grasos, Microalgas, Lípidos, Fotosíntesis, Fotobiorreactor.

Palavras-chaves: Ácidos graxos, Microalgas, Lipídios, Fotossíntese, Fotobiorretor.
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1. INTRODUCTION

Lipids are a group of biomolecules that biologically 
have two important functions: serving as an energy source 
and as building blocks of the membranes in organisms 
(Segré, Ben-Eli, Deamer, & Lancet, 2001).  However, 
they have now taken on great biotechnological inte-
rest, because they play a major role in products such as 
cosmetics, pharmaceuticals, fuels, among others (Rutz 
& Janssen, 2007). The lipids of a plant origin contain 
fatty acids and triglycerides, which are susceptible to 
esterification for use as a source of energy (Fahy et al., 
2005; Villanueva, 2005; Hernandez & Quintana, 2010). 
Up until now, in order to produce lipids from vascular 
plant species, extensive areas of land are used to grow the 
plants.  In many cases this system of production leads to 
deterioration in soil quality and pollution of ecosystems 
with by-products from the extraction of lipids (Dis-
mukes, Carrieri, Bennette, Ananyev & Posewitz, 2008).  
Similarly, this type of agriculture has contributed to the 
deforestation of natural ecosystems and the substitution 
of crops for human consumption (Escudero, Cid & Es-
cudero, 2009). In order to minimize these disadvantages, 
the utilization of microalgae can be an efficient alternative 
for producing lipids (Xua, Miaoa & Wu, 2006; Trösch 
& Trick, 2008; Barajas et al., 2009; Hirth, 2009; Trösch, 
Mertsching & Hirth, 2009). 

Microalgae synthesize intracellular lipids in the form 
of neutral lipids (NLs), glycolipids (GLs) and phospholi-
pids (PLS).  These substances have a variable composition 
and concentration, reflecting the nature of the organism, 
the influence of culture conditions and the physiological 
state there of (Tokusoglu & Ünal, 2003).  The NLs are 
used as raw material for the production of biodiesel and 
they consist mainly of wax esters (WEs), triacylglycerols 
(TAGs), diacylglycerols and monoacylglycerols, (Boro-
witzka, 1995; Chen, Jiang & Chen, 2007; Wältermann & 
Steinbüchel, 2007).  Due to this characteristic, this type of 
micro-organisms are a potential source of lipid synthesis 
for biofuel (Lee, Whitledge & Kang, 2008; Jacob-Lopes, 
Gimenes-Scoparo, Ferreira-Lacerda & Teixeira-Franco, 
2009; Yoo, Jun, Lee, Ahn & Oh , 2010).

The output of neutral lipid synthesis in microalgae 
is based on the variation of farming conditions, such as 
nutrient type and concentration (Yingying  & Changhai, 
2009; Yeesang & Cheirsilp, 2011), CO2 availability 

(Mendes, Nobre, Cardoso, Pereira & Palavra, 2003) tem-
perature (Zepka, Jacob-Lopes & Queiroz, 2007; Converti, 
Casazza, Ortiz, Perego & Del Borghi, 2009), light type 
and intensity, photoperiod (Lee et al., 2008; Rosenberg, 
Oyler, Wilkinson & Betenbaugh, 2008; Jacob-Lopes et 
al., 2009), among others. Light and carbon dioxide are 
essential factors that affect the physiological response in 
microalgae, because as phototrophic organisms, they use 
light photons as a source of energy and absorb carbon 
dioxide to synthesize organic compounds (Moheimani, 
2005; Schulze, Beck & Müller-Hohenstein, 2005; Lee 
et al., 2008).  Therefore, variations in light intensity and 
carbon dioxide supply cause variations in the synthesis of 
neutral lipids (De Castro-Araújo & Tavano-García, 2005; 
Rodríguez, Canales & Borrás-Hidalgo, 2005; Sharkey, 
2005; Bertoldi, Sant-Anna, Da-Costa & Barcelos, 2006; 
Sharma, Kumar-Singh, Panda, Mallick, 2006; Chen et 
al., 2007)

It has been established that when the microalgae are 
grown with low light intensity, they assimilate carbon 
preferentially in the direction of the synthesis of amino 
acids and other essential cell components. However, un-
der conditions of saturated light, they form sugars, lipids 
and starch through the pentose pathway, which involves 
phosphate reduction (Hoff & Snell, 2004; Jacob-Lopes et 
al., 2009; Zak, et al., 2001). Furthermore, carbon is also 
a factor that determines lipid accumulation.  Continuous 
carbon assimilation at a high concentration promotes 
the synthesis of fatty acids under this condition, and at a 
high light intensity, the lipids become a protective factor 
of the body against photo-oxidative stress (Grossman & 
Takahashi, 2001; Hu et al., 2008; Rosenberg et al., 2008; 
Meng et al., 2009; Rodolfi et al., 2009).

Knowledge of the micro-organism's metabolism and 
control of environmental variables helps establish systems 
focused on obtaining micro-algae biomass with a high 
lipid content (Derner, Ohse, Villela, Matos-de Carvalho 
& Fett, 2006; Chisti, 2007; Eriksen, 2008; Marinho, et 
al., 2009; Yingying & Changai, 2009; Rogenski, 2010; 
Souza, 2010). However, the effect of each of the factors 
varies from one species to another.  Therefore, in order to 
develop a technological strategy for biomass production 
and lipid synthesis, the effect of environmental factors 
in the micro-organism under study has to be assessed. 
Therefore, the effect of light and the CO2 supply in the 
growth and synthesis of the wild microalga Chlorella sp. 
was evaluated. IBUN 0016.  
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2. EXPERIMENTAL DEVELOPMENT                                                                                           

Strain and Culture
For this study, the wild microalgae Chlorella sp. 

was used. The microorganism LAUN0016 was grown 
in Bold's Basal Medium (BBM) (Derner et al., 2006), 
supplemented with 1200000 UI penicillin G sodium. 
The sample was incubated in a photobioreactor with 
cool white light at a temperature of 20ºC and a photo-
period of 12 hours light and 12 hours darkness, until 
growth was observed.

Effect of Light and CO2 On the Synthesis 
of  Neutral Lipids

The pilot phase was conducted in a serpentine pho-
tobioreactor with closed fermentation driven by motor 
pumps with a range of 1m, in order to provide the system 
with constant agitation, with different colored lamps of 
cold light, red or blue, installed in each of the fermenters.

 The photoperiod was controlled by a timer.  Calcium 
carbonate (CaCO3) was used as a carbon source and 
system temperature was 20°C.  A 23 factorial design 
with 3 repetitions was applied.  The factors of light 
wavelength, CaCO3 concentration and photoperiod, with 
their respective levels of variation, are shown in Table 1. 

The response variables to be measured are: microal-
gae growth and lipid production. Growth was measured 
in units of absorbance at 750 nm every 24 hours using 
a Jenway Genoa spectrophotometer. 

Neutral lipids were extracted according to a method 
described by Yellore and Desai (1998) and Braunnegg 
et al. (2007) with certain modifications described by 
Fernández, Ortiz, Guerrero, Burbano & España (2006).   
Neutral lipids are extracted by adding 1,5 mL of hy-

pochlorite at 5%. After that, they are placed in a water 
bath at 60°C for 2 hours, and washed with distilled 
water followed by the addition of cold methanol.  After 
that, they are centrifuged at 33  000 g for 20 min, to obtain 
the pellets, which represent neutral lipids.

3. CHARACTERIZATION OF NEUTRAL LIPIDS

The neutral lipids were characterized by gas chroma-
tography using a method of pre-column derivatization 
of samples with MeOH/HCl 5%. After that, in a sepa-
rating funnel, the fatty acid methanol esters (FAMEs)
are extracted with hexane and 1 mL of the sample is 
injected into the chromatograph (Christie 2003). The 
run conditions were 150°C for 4 minutes @ 250°C for 
5 min, 4°C/minute. The detector, FID, 280°C, the DB-5 
column (30 m, 0,25 µm, 0,25 mm) on a Shimadzu GC 
17A computer (Chen et al., 2007)

The fatty acids were quantified based on Equation 1. 

(1)=FA (%) ×  100 %  
Ai
�A

Where Ai is the area of the peak corresponding to com-
ponent i, and xA is the sum of the areas of all the peaks.

4. RESULTS

The effects of the variables light wavelength, CaCO3 

supply and photoperiod on growth, chlorophyll produc-
tion and lipid synthesis in the microalgae Chlorella sp. 
were evaluated through factorial design 23.  Results are 
shown in Table 2. 

Table 1. Description of the levels of each of the factors used in factorial design 23.

Photoperiod
(Hourslight: HoursDarkness)

Concentration of CaCO3
-1.(g L )

Light WavelengthLevel

1

-1

700 nm

500 nm

1,5

0,5

18:6

6:18
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Table 2. Results factorial design 23.

Experiment

500 nm

700 nm

500 nm

700 nm

500 nm

700 nm

500 nm

700 nm

0,5

0,5

1,5

1,5

0,5

0,5

1,5

1,5

6:18

6:18

6:18

6:18

18:6

18:6

18:6

18:6

0,0105 +/- 0,0003

0,1090 +/- 0,0014

0,0112 +/- 0,0003

0,0119 +/- 0,0001

0,0100 +/- 0,0004

0,0102 +/- 0,0001

0,0112 +/- 0,0003

0,0135 +/- 0,0001

Light
Wavelength

Concentration
of CaCO3

-1.(g L )

Photoperiod
(Hourslight:

HoursDarkness) 

0,0057 +/- 0,0006

0,0317 +/- 0,0009

0,0129 +/- 0,0010

0,0115 +/- 0,0015

0,0024 +/- 0,0001

0,0103 +/- 0,0005

0,0066 +/- 0,0008

0,0443 +/- 0,0027

0,2481 +/- 0,0799

0,2261 +/- 0,0700

0,5631 +/- 0,0438

0,4334 +/- 0,0106

0,1714 +/- 0,0092

0,1540 +/- 0,0042

0,7783 +/- 0,0219

0,6539 +/- 0,0170

Growth
(µ)

Total Chlorophyll
-1.(g L )

Lipids 
-1.(g L )

Growth of the microalgae Chlorella sp.
For the growth response variable, the analysis of the 

results of the experimental design indicates that all inte-
ractions of the first order are significant (p-value<0,05), 
with a reliability of 95%. CaCO3 - photoperiod (p-value 
= 0,0085 ) showed positive interaction.  On the other 
hand, light - photoperiod (p-value = 0,0107) and Light 
- CaCO3 (p-value = 0,0113) interactions are negative. 

Growth in the microalgae Chlorella sp., under labo-
ratory conditions is influenced by the interaction of all 
the variables. Figure 1a illustrates that the interaction of 
the factors  CaCO3 - Photoperiod favors the growth of 

the microalgae when CaCO3 concentration is 0,5 g.L-1 
and a 6:18 photoperiod.  On the other hand, growth 
decreases significantly when calcium carbonate is 
found at a concentration of 1,5 g.L-1, regardless of the 
photoperiod. The interaction of the variables light and 
photoperiod favors the growth of micro-algae when the 
light presents a wavelength of 700 nm and a 6:18.  On 
the other hand, when light is at a wavelength of 500 
nm under any photoperiod, it reduces the growthof the 
microalga Chlorella sp., Figure 1b, while with a wave-
length of 700 nm and a CaCO3  concentration of 0,5 
g.L-1 , Figure 1c, the growth of Chlorella sp.increases.

Figure 1. Interaction charts of the variables that affect growth.  

(a) CaCO3 - Photoperiod; (b) Light - Photoperiod and (c) Light - CaCO3.
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Synthesis of Neutral Lipids
The Pareto Chart (Figure 2) shows that all the main 

effects and CaCO3- Photoperiod interaction were sig-
nifi cant. However, light has a negative effect on lipid 
synthesis when grown at a length of 700 nm. On the 
other hand, carbonate-photoperiod interaction promotes 
the lipid synthesis when the carbonate concentration is 
1,5 g.L-1 and when the photoperiod is 18:6 (Figure 3).

Standarized efect

C: PHOTOPERIOD

B: CaO3

BC

A: LIGHT

AB

AC

 Figure 2. Standardized paretochart for lipids.

Photoperiod-1,0

Photoperiod-1,0

Photoperiod-1,0

Photoperiod-1,0

0,8

0,6

0,4

0,2

0

Li
p
id

s

CaCO3

-1,0 1,0

Figure 3. Chart Showing CaCO3 - Photoperiod interaction forlipids. 

Characterization of the fatty acids synthesized by 
Chlorella sp., by gas chromatography.

The analysis of the lipid profi le of the sample of 
Chlorella sp. by gas chromatography, under the best 
conditions of lipid synthesis with blue light; CaCO3 
concentration of 1,5 g.L-1 and an 18:6, reported 10 
compounds, three of which were identifi ed: linoleic fatty 
acid, with a percen-tage of 6,45%, palmitoleic fatty acid 
with a percentage of 4,01% and oleic fatty acid with a 
percentage of 2,75% (Figure 4). 

For the sample of Chlorella sp., under the best condi-
tions of lipid synthesis with red light, a CaCO3 concentra-

tion of 1,5 g.L-1 and an 18:6 photoperiod, 18 compounds 
were reported, one of which was identifi ed, corresponding 
to linoleic fatty acid (Figure 5).
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5. DISCUSSION                                                                                                    

All the factors and their interactions have significant 
effects on lipid synthesis as well as on microbial growth. 
In order to promote the growth,the most appropriate con-
ditions are a wavelength of 700 nm, a calcium carbonate 
concentration of 0,5 g.L-1 and a 6:18 photoperiod. Red 
light provides a higher level of excitement in the chlo-
rophyll electrons, which causes a significant increase 
in the effectiveness of these pigments.  The electrons 
produce water hydrolysis, which leads to the synthesis 
of ATP that is used for the synthesis of biomolecules 
that promote the growth of micro-algae (Rosemond, 
Mulholland & Brawley, 2000; Piippo et al., 2006). With 
the excited chlorophylls and exposure to light, after 6 
hours, there is enough energy and reduction power to 
sequester carbon and synthesize compound organisms 
through the Calvin cycle performed during the dark 
phase of photosynthesis, which in this case is 18 hours, 
so there is more time for the synthesis of organic com-
pounds other than lipids.  This behavior is probably due 
to the activation of the phytochrome by the red light 
that regulates the expression of some nuclear genes that 
produce chloroplastic proteins related to photosynthesis 
(Hill, 1996; Neff, Fankhauser & Chory, 2000; Rose-
mond, et al., 2000; Piippo, et al., 2006). On the other 
hand, growingthe microalga Chlorella sp., LAUN0016, 
under the blue light, probably affects the expression of 
genes in the cell nucleus associated with lipid synthesis. 

This study established that microalgae growth is 
favored at a calcium concentration of 0,5 g.L-1 because 
under these conditions, the carbonate is solubilized and 
is available to meet the carbon demand required for cell 
growth (Medadro & Flexas, 2003; Massol-Deyá, Muñiz, 
Colón, Graulau & Tang, 2005). But when the carbonate 
concentration is high, the solubility constant is exceeded 
and tends to precipitate; therefore there is not enough 
carbon available for microbial growth. 

This study showed that for lipid synthesis, the best 
conditions are a wavelength of  500 nm corresponding to 
blue light, a calcium carbonate concentration of 1,5 g.L-1 
and an 18:6 photoperiod.

The high lipid content seems to be an initial response 
to the exposure of microalgae in blue light, which has high 
energy content (Sánchez-Saavedra & Voltolina, 2002; 

Gupta & Agrawal, 2006). Other studies have shown that 
the energy from blue light is captured by the pterin and 
transferred to the flavin, which probably intercedes in 
cryptochrome phosphorylation. This can cause a chain 
of signal transduction, which can affect the regulation of 
genes in the cell nucleus (Neff et al., 2000).

In this paper, the largest concentration of lipids with 
Chlorella sp. was obtained when using an 18:6 photo-
period. This condition can be considered a stress factor 
because, in the tropics, the organisms have photoperiods 
of 12:12.  It can be assumed that microalgae exposed to 
18 hours of light have an imbalance in oxide-reduction 
potential with accumulation of reduction power, which 
has to transfer the hydrogen ions to the reserve organic 
compounds such as the lipids to restore balance. This con-
dition of stress is accentuated when the calcium carbonate 
concentration is 1,5 g.L-1 because at high concentrations, 
the carbonate is not available since it exceeds the solubi-
lity constant (Medadro & Flexas, 2003; Massol-Deyá et 
al., 2005).  However, there are some molecules available 
that can be assimilated pre-ferentially for lipid synthesis.

Altogether, these conditions can be considered a stress 
factor for Chlorella sp., which favors lipid synthesis. This 
state is characterized by the modification of the basic 
physiological functions causing the activation of defen-
sive or response mechanisms that lead to the adjustment 
of cell metabolism to the new conditions (Piippo, et al., 
2006; Tadeo, 2003). The microalgae grown photoauto-
trophically under conditions of severe stress assimilate 
carbon preferentially in the direction of the synthesis of 
amino acids and other special cell components, such as 
neutral lipids (Zak et al., 2001), since they require the 
increase in lipid composition, which is a determining 
factor in the restoration of photosynthetic machinery 
(Mendes & Wagener; 2001; Medadro & Flexas, 2003).  
It is important to point out that variation in Chlorella sp. 
growth conditions also affected lipid composition and 
concentration, but this type of response varies from one 
species to another (Sanchez, Martinez & Espinola, 2006).

6. CONCLUSIONS
	

● These findings underscore the importance of contro-
lling light wavelength, carbonate concentration and 
photoperiod because these factors affect both growth 
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and the synthesis of neutral lipids in the microalgae 
Chlorella sp. 

● The levels of light wavelength, carbonate concentra-
tions and photoperiod that favor growth inhibit lipid 
synthesis; in the same sense, the conditions that favor 
the synthesis of neutral lipids produce an inverse 
response in the growth of Chlorella sp.

● The lipid profile obtained under a light wavelength 
of 500 nm is different from that obtained whenthe 
microalgae Chlorella sp., is grown at 700 nm.  This 
suggests that the type and concentration of lipids 
synthesized by manipulating light wavelength can 
be controlled.
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