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The signature of the pressure derivative curve for reservoirs with finite-conductivity faults is investigated 
to understand their behavior and facilitate the interpretation of pressure data. Once a fault is reached 
by the disturbance, the pressure derivative displays a negative unit-slope indicating that the system is 

connected to an aquifer, meaning dominance of steady-state flow regime. Afterwards, a half-slope straight-
line is displayed on the pressure derivative plot when the flow is linear to the fault. Besides, if simultaneously 
a linear flow occurs inside the fault plane, then a bilinear flow regime takes place which is recognized by a 
1/4 slope line on the pressure derivative line. This paper presents the most complete analytical well pressure 
analysis methodology for finite-conductivity faulted systems using some characteristics features and points 
found on the pressure and pressure derivative log-log plot. Therefore, such plot is not only used as diagnosis 
criterion but also as a computational tool. The straight-line conventional analysis is also complemented for 
characterization of finite- and infinite-conductivity faults. Hence, new equations are introduced to estimate the 
distance to fault, the fault conductivity and the fault skin factor for such systems. The proposed expressions 
and methodology were successfully tested with field and synthetic cases.

ABSTRACT

How to cite: Escobar, F. H., Martínez, J. A. & Montealegre-Madero, M. (2013).  Pressure transient analysis for a reservoir 
with a finite-conductivity fault. CT&F - Ciencia, Tecnología y Futuro, 5(2), 5-18.

ANÁLISIS DE PRESIÓN TRANSITORIA PARA UN YACIMIENTO 
CON UNA FALLA DE CONDUCTIVIDAD FINITA 

ISSN 0122-5383
Latinoamerican journal of oil & gas and alternative energy



CT&F - Ciencia, Tecnología y Futuro  -  Vol. 5  Num. 2      Jun. 2013

FREDDY-HUMBERTO ESCOBAR et al.

6

E   studa-se a pegada da derivada de pressão em jazidas com falhas de condutividade finita para 
entender o seu comportamento e facilitar a interpretação de provas de pressão. Uma vez que a 
perturbação de pressão atinge a falha, a derivada de pressão mostra uma reta de pendente de -1 

indicando que a falha conectou-se a um aquífero e domina o estado estável. Depois, observa-se uma linha 
de pendente ½ na derivada quando existe fluxo linear para a falha. Se existir fluxo simultaneamente dentro 
do plano de falha, é o momento do fluxo bilinear reconhecido por uma pendente de 1/4 na derivada. 
Apresenta-se a metodologia analítica de provas de pressão mais completa para isto, usando características 
e pontos encontrados no gráfico logarítmico da derivada. Consequentemente, o gráfico da derivada não 
é usado apenas para diagnóstico, mas também como ferramenta de cálculo. A metodologia convencional 
é complementada para caracterizar fraturas condutivas. São introduzidas novas equações para determinar 
a distância do poço à falha, a condutividade da falha e o fator de dano da falha para os sistemas em 
consideração. As expressões e metodologia propostas foram verificadas satisfatoriamente com exemplos 
de campo e sintéticos.

S  e estudia la huella de la derivada de presión en yacimientos con fallas de conductividad finita para 
entender su comportamiento y facilitar la interpretación de pruebas de presión. Una vez la perturbación 
de presión alcanza la falla, la derivada de presión muestra una recta de pendiente de -1 indicando que 

la falla se conectó a un acuífero y domina el estado estable. Posteriormente, se observa una línea de pendiente 
½ en la derivada cuando existe flujo lineal hacia la falla. Si existe flujo simultáneamente dentro del plano de 
falla, toma lugar el flujo bilineal reconocido por una pendiente de 1/4 en la derivada. El artículo presenta 
la metodología analítica de pruebas de presión más completa para estos casos, usando características y 
puntos hallados en el gráfico logarítmico de la derivada. Por ende, el gráfico de la derivada no solo se usa 
para diagnóstico sino como herramienta de cálculo. La metodología convencional se complementa para 
caracterizar fracturas conductivas. Se introducen nuevas ecuaciones para determinar la distancia del pozo 
a la falla, la conductividad de la falla y el factor de daño de la falla para los sistemas en consideración. Las 
expresiones y metodología propuestas se verificaron satisfactoriamente con ejemplos de campo y sintéticos.

Palabras clave: Flujo radial, Flujo bilineal, Conductividad de falla, Estado estable.

Palavras-chave: Fluxo radial, Fluxo bilinear, Condutividade de falha, Estado estável.
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1. INTRODUCTION

Many hydrocarbon-bearing formations are faulted 
and often little information is available about the actual 
physical characteristics of such faults. Some faults are 
known to be sealing and some others are non-sealing 
to the migration of hydrocarbons. While sealing faults 
block fluid and pressure communication with other 
regions of the reservoir, infinite-conductivity faults act 
as pressure support sources and allow fluid transfer 
across and along the faults planes. Finite-conductivity 
faults fall between these two limiting cases of sealing 
and totally non-sealing faults, and are believed to be 
included in the majority of faulted systems.

A sealing fault is often generated when the throw of 
the fault plane is such that a permeable stratum on one 
side of the fault plane is completely juxtaposed against 
an impermeable stratum on the other side. On the con-
trary, a non-sealing fault usually has an insufficient 
throw to cause a complete separation of productive strata 
on opposite sides of the fault plane. Depending on the 
permeability of the fault, fluid flow may occur along the 
fault within the fault plane or just across it laterally from 
one stratum to another. In general, a finite-conductivity 
fault exhibits a combined behavior of flow along and 
across its plane.

While seismic analysis can detect a fault distance 
to a well with a margin of error near two kilometers, 
transient pressure analysis is the best tool to detect the 
distance well-fault with a margin of error of some feet. 
However, conventionally transient pressure analysis 
methods have been only used for detection distance 
fault-well without taking into account such variables as 
conductivity, damage of the fault and fault length. Before 
the present work, it was only possible to estimate the 
fault conductivity using the straight-line conventional 
analysis with an equation proposed by Trocchio (1990). 

Pressure transient analysis offers a possible way 
to determine the fluid transmissibility of faults. Many 
models introduced in the literature help characterize 
faults from pressure transient tests. The simplest of such 
models uses the well-known method of images for sea-
ling faults. This approach results in doubling the slope of 
the straight line on a semilog plot of pressure test data. 

Extensions to intersecting or no intersecting multiple 
sealing faults have also been reported in the literature. 
A finite-conductivity fault displays a one-fourth slope 
on the pressure derivative plot which is equivalent to 
be identified as a straight line in the Cartesian plot of 
pressure versus the one-fourth root of time. This be-
havior was reported by Trocchio (1990) who conducted 
a study on the Fateh Mishrif reservoir and provided a 
conventional methodology for determining fracture 
conductivity and fracture length. 

Cinco-Ley, Samaniego and Domínguez (1976) consi-
dered the infinite-conductivity fault (or fracture) case 
and derived an analytical solution for pressure transient 
behavior using the concept of source functions. They 
also provided a type-curve matching interpretation 
methodology. The first attempt to represent a fault as 
a partial barrier was introduced by Stewart, Gupta and 
Westaway (1984) who numerically modeled the fault 
zone as a vertical-semi-permeable barrier of negligible 
capacity. This model correctly imposed the linear flow 
pattern at the fault plane. On interference tests, they 
found that in cases where the conventional method 
cannot be applied, the inverse problem (non-linear 
regression analysis) was an excellent approach. Yaxely 
(1987) derived analytical solutions for partially commu-
nicating faults by generalizing the approach presented 
by Bixel, Larkin, and van Poolen (1963) for reservoirs 
with a semi-impermeable linear discontinuity. The ge-
nerated type curves by their solutions yielded separate 
estimations of the formation transmissibility and the 
fault transmissibility.  Ambastha, McLeroy and Grader 
(1989) analytically modeled partially communicating 
faults as a thin skin region in the reservoir according to 
the concepts of skin presented by van Everdingen (1953) 
and Hurst (1953). They concluded that for moderate 
skin values, the pressure response departs from the 
line-source solution, follows the double-slope behavior 
for some time, and then reverts back to a semilog linear 
pressure response parallel to the line-source solution at 
late time.

The models considered by Stewart et al. (1984), 
Yaxely (1987), and Ambastha et al. (1989) allow for 
fluid transfer only laterally across the fault planes. These 
models do not account for fluid flow along the fault 
plane which can take place when the permeability of 
the fault plane is larger than the reservoir permeability 
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surrounding it. A recent model proposed by Boussila, 
Tiab and Owayed  (2003) considers dual porosity beha-
vior in a composite system.  All these models neglected 
the fluid conductance inside the fault along its planes. 
However, Abbaszadeh and Cinco-Ley (1995) modeled 
a finite-conductivity fault by specifying the fault para-
meters with the longitudinal fluid conductance (FCD) and 
transverse skin factor (sF). These authors neglected the 
transient nature in the fault zone. They provided some 
type curves for interference pressure test interpretation.

Anisur-Rahman, Miller and Mattar (2003) pre-
sented an analytical solution in the Laplace space to the 
transient flow problem of a well located near a finite-
conductivity fault in a two-zone, composite reservoir. 
Contrary to previous studies, this solution also consi-
dered flow within the fault. They verified their solution 
by comparing a number of its special cases with those 
reported in the literature.

The analytical solution reported by Anisur-Rahman 
et al. (2003) allows us to understand the behavior of a 
conductive fault. When the pressure disturbance reaches 
an undamaged conductivity fault, the pressure derivative 
goes down forming a negative unit-slope line. Since the 
fault acts as a bridge with an underlying aquifer, steady-
state flow regime takes place. However, if the fault is 
damaged and the test runs under radial flow, the pressure 
derivative rises up more than a log cycle (depending 
on the damage degree) and once the damaged zone is 
passed, the pressure derivative goes down, forming the 
negative unit-slope line. Afterwards, either a half slope 
or a quarter slope is seen if the conductivity in the fault 
is either infinite or finite, respectively.

Nowadays, the well test analytical tools are more 
powerful than many people believe. For instance, 
conservative well test data interpreters only use the 
pressure derivative as a diagnosis tool. It means they 
only use the pressure derivative for distinguishing 
the several flow regimes for selecting the simulation 
model to be used, and most of them are unaware that 
non-linear regression analysis are subjected to none-
uniqueness of the solution, which means that there are 
high possibilities of obtaining inaccurate interpretation 
results. Precisely, the TDS technique introduced by Tiab 
(1995) uses characteristic points and lines found on 

the pressure and pressure derivative curves to estimate 
reservoir parameters with direct and practical analytical 
expressions. This technique is used - although without 
using the appropriate name- in all the most popular 
commercial software.

This paper uses the solution presented by Anisur- 
Rahman et al. (2003) to find the characteristic signature 
observed on the pressure and pressure derivative plot 
with the purpose  of developing appropriate expre-
ssions to characterize the typical parameters involved 
in finite-conductivity faults following the philosophy 
of TDS technique, Tiab (1995). In this technique, fault 
damage, fault conductivity and fault length can be easily 
estimated using data read from the pressure and pressure 
derivative plot. Furthermore, the well-known straight-
line conventional methodology was complemented 
so the above named parameters (fault damage, fault 
conductivity and fault length) could be easily estimated 
using the slope and intercept of a cartesian plot. Both 
provided solutions (TDS and conventional analysis) 
were successfully verified by its application to actual 
field and synthetic data.

2. PRESSURE BEHAVIOR OF 
    FINITE-CONDUCTIVITY FAULTS

In the finite-conductivity fault model used by Anisur- 
Rahman et al. (2003), the fault permeability is larger 
than the reservoir permeability. Fluid flow is allowed 
to occur both across and along the fault plane, and the 
fault enhances the drainage capacity of the reservoir. 
In their original solution, Abbaszadeh and Cinco-Ley 
(1995) allowed a change of mobility and storativity in 
the two reservoir regions.  In this study, it is assumed 
that the reservoir properties are the same in both sides 
of the fault.

The typical influence of a semi-permeable fault is 
shown in Figure 1 in which we can observe that the res-
ponse starts following the usual infinite-acting regime 
at an early time. Once the finite-conductivity fault is 
felt by the pressure disturbance, the pressure derivative 
drops along a straight line of slope -1. The fault provides 
a pressure support similar to a constant-pressure linear 
boundary. Later, as the pressure drops in the fault, a flow 
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is established in the thickness of the fault plane which 
results into a bilinear-flow regime, as depicted in Figure 
2. One linear flow takes place in the reservoir when the 
fluid enters and exits the fault; the second linear flow 
describes the flux inside the fault thickness. As seen in 
Figure 1, once the negative unit-slope line disappears as 
the time progresses, the ¼-slope line develops. Finally, 
the pressure derivative response becomes again flat des-
cribing the infinite-acting radial regime when the fault 
no longer has effects on the pressure response.
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Figure 1. Dimensionless pressure derivative for a well near 
finite-conductivity fault. sF = 0 and 20.
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Figure 2. Schematic of a typical fault system and flow lines, after 
Abbaszadeh and Cinco-Ley (1995).

Figure 3 shows the pressure and pressure derivative 
behavior when the skin factor across the fault plane is 
equal to zero and the reservoir properties on both sides 
of the fault are the same. Wellbore storage and wellbore 
skin effects are not included. Several pressure derivative 

curves as a function of conductivity of the fault plane, 
ranging from 0.1 to 107, are shown on this figure. At early 
times, the pressure derivative is flat representing infinite-
acting radial flow in the left-side of the reservoir. At a 
dimensionless time, tDF, of 0.25, the pressure derivative 
curves deviate from the radial flow when the pressure 
transient reaches the fault plane. The deviation degree 
depends upon the conductivity of the fault plane. For 
fault conductivities less than 0.1, the pressure derivative 
essentially remains on radial flow regime indicating that 
there is no flow along the fault plane and that fluid transfer 
occurs only across the fault. This is due to the fact that 
very low fault conductivities create a large flow resistance 
along the fault plane, while a zero skin factor creates no 
resistance to flow across the fault. Therefore, fluid flow 
comes from the right-side to the left-side of the reservoir 
across the fault, as if the fault plane would not exist.

For high-conductivity cases, the fault plane initially 
acts as a linear constant-pressure boundary and the pre-
ssure derivative becomes a straight line with a slope of 
minus unity. As time progresses, pressure in the fault 
plane decreases, fluid enters the fault linearly from the 
reservoir, moves linearly along it, and exits from the fault 
plane toward the producing well. This flow characteristic 
is seen as a quarter-slope straight-line bilinear flow regime 
on the pressure derivative curves. At later times, when the 
disturbance practically has passed the fault system, the be-
havior reflects the entire reservoir response and the deriva-
tive curves asymptotically reach the radial flow regime 
again. It is interesting to note that the pressure-transient 
behavior for intermediate values of fault conductivity 
is similar to that of naturally fractured reservoirs. Thus, 
in a pressure test, a single conductive fault can give the 
appearance of a naturally fractured reservoir.

Figure 4 shows pressure derivative behaviors for 
finite-conductivity faulty systems under fault skin fac-
tor conditions. The reservoir properties are the same 
everywhere. As expected, the skin creates additional 
resistance to flow within the fault plane for some period 
of time, resembling a situation similar to a sealing fault 
for all conductivity values. Pressure derivatives after the 
onset of the fault effects tend to approach the well-known 
behavior of  doubling of the semilog straight- line slope 
(dimensionless pressure derivative equals 1) for sF > 
100. At larger times, when pressure on the left side of the 
fault becomes low enough to allow for appreciable flow 
to cross the fault plane, the pressure waves propagate 
through the right-side of the reservoir and the behavior 
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becomes similar to the undamaged fault case, sF = 0. The 
negative unit -slope line of the constant-pressure linear 
boundary and the quarter-slope line of the bilinear-flow 
regime characteristics are developed for high conducti-
vity values, and eventually the dimensionless pressure 
derivative curves approach the value of 0.5 (combined 
reservoir behavior).

Figure 3. Effect of fault conductivity on pressure derivative 
dimensionless. sF = 0.

Figure 4. Effect of fault skin factor on pressure derivative 
dimensionless, hD = 1.

Figure 5 shows dimensionless pressure derivative 
curves at several dimensionless pay thickness. At low 
hD, the negative-unit slope line is more visible than at 
higher values.

Figure 5. Effect of hD on pressure derivative dimensionless, sF = 20.
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3. MATHEMATICAL FORMULATION

The dimensionless quantities used in this work are 
defined as:

 

The formulation of the equations follows the phi-
losophy of the TDS technique, Tiab (1995). It means, 
several specific regions and “fingerprints” found on the 
pressure and pressure derivative behavior are dealt with:

1) Permeability and skin factors are found by using 
the following equations, Tiab (1995):

     2) The early radial flow end at:

Plugging Equation 3 into the above expression and 
solving for the distance from the well to the fault:

3) The governing dimensionless pressure derivative 
for the steady-state flow caused by the fault is:
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Replacing the dimensionless quantities given by 
Equations 2, 3 and 4 into Equation 10 and solving for 
the fault skin factor will result:

4) The pressure and pressure derivative dimension-
less expressions for the bilinear-flow regime are:

Replacing the dimensionless quantities given by 
Equations 2, 3 and 5 into Equation 13 will result in 
an expression to estimate fault conductivity using any 
arbitrary point on the pressure derivative during the 
bilinear-flow regime;

5) Using the minimum pressure derivative coordi-
nate, we obtain another expression for the fault con-
ductivity:

Where the constants are a = 11198700, b = -1235. 
2895, c = 256626000, d = 71204.381, e= -491990000, 
f = 64974400, g = -154650000 and h = 116739000.

6) The dimensionless pressure derivative lines ob-
tained from the radial flow and the steady-state flow 
regimes intercepts at:

Replacing the dimensionless time into Equation 17 
and solving for the well distance to the fault will result in:

7) The line corresponding to the steady state and the 
bilinear flow line of the dimensionless pressure deriva-
tive intersect at:

Replacing the dimensionless time defined by Equa-
tion 3 into Equation 20 and solving for the conductivity 
fault will result in:

8) If the dimensionless fault conductivity is bigger 
than 2.5x108, the bilinear flow disappears and the li-
near flow appears exhibiting a ½-slope straight line on 
the pressure derivative curve. In this case we have an 
infinite-conductivity fault. The dimensionless pressure 
derivative expression for the above mentioned linear 
flow regime is:

Replacing the dimensionless quantities given by 
Equations 2 and 3 into Equation 22 will result in another 
expression useful to estimate the distance from the well 
to the fault;

New expressions for the straight-line conventional 
analysis developed in this work are reported in appendix 
A along with some expressions reported in the literature.
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4. EXAMPLES

Example 1
A synthetic pressure test pressure of a well inside 

an infinite reservoir was generated with the data given 
in Table 1. Pressure and pressure derivative data are 
reported in Figure 6. It is required to estimate permea-
bility, skin factor formation, distance to fault and fault 
conductivity. 

Solution
The log-log plot of pressure and pressure derivative 

against production time is given in Figure 6 from which 
the following information was read:

First, the formation permeability is evaluated with 
Equation 6 and the skin factor with Equation 7:

The remaining calculations are reported in Table 
2. Furthermore, this example was also solved by the 
straight-line conventional analysis. For this purpose, 
only the points falling on the bilinear flow regime (as 
indicated by the oval in Figure 6) were plotted in Figu-
re 7, from which a slope value of 0.0719 psi/hr0.25 was 
estimated. Then, Equation A.3 was used to estimate a 
finite-conductivity value of 1.128x109 md-ft. This value 
is also reported in Table 2.
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Table 1. Reservoir and fluid data for examples.

Figure 6.  Pressure and pressure derivative for example 1.

Table 2. Summary of results for example 1.

(*) Conventional analysis
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Example 2
Abbaszadeh and Cinco-Ley (1995) presented well 

test data from a heavily-faulted carbonate reservoir. 
Reservoir, fluids and well data are given in Table 1. 
Pressure and pressure derivative data are reported in 
Figure 8. It is required to estimate permeability, skin 
factor formation, distance to fault, fault conductivity 
and fault skin factor

Solution 
The log-log plot of pressure and pressure derivative 

against production time is given in Figure 7. From that 
plot the following information was read:

First, the formation permeability is evaluated with 
Equation 6 and the skin factor with Equation 7 giving 
value of 7.99 md and - 0.00127, respectively.

A value of 47.54 ft is found with Equation 9 for the 
distance from the wellbore to the fault. A fault skin factor 
of 1.91 is estimated with Equation 11. Another value of 
distance from the wellbore to the fault calculated with 
Equation 18 results to be 45.92 ft.

P
(p

s
i)

�

125
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127

128

0 10 20 30 40 50

40.0719 psi/BLm t�

125.98 psiBLb �

4 t 4 hr( (

732

733

734

735

0 5 10 15 20 25

40.1063 psi/BLm t�

732.3 psiBLb �

P,
 (p

s
i)

�

4 t 4 hr( (

Figure 7. Cartesian plot of pressure drop vs. the fourth-root 
of time for example 1.

rt �0.0108 hr

sst �61.87 hr

ert �0.04 hr

ssBLit �1650 hr

�393.36 psi

r
�43.823 psi

ss �4.65 psi

�6.5 hrrssit

BL
�0.472 psi

min �0.3 psi

BLt �101714 hr

The fault conductivity is evaluated with Equation 
14 and re-estimated with Equations 15 and 21. The 
respective values are 3.92x109, 3.8x109 and 3.65x109 
md-ft. The dimensionless fault conductivity, Equation 
5, resulted to be 1.032x107.

To demonstrate the accuracy of the solution, we also 
worked this example using conventional analysis and 
the points indicated by the oval in Figure 9, where the 
bilinear flow regime takes place. The Cartesian plot of 
pressure drop versus the fourth-root of time provided 
a slope of 0.1063 psi/hr0.25, allowing the estimation of 
a fault’s conductivity value of 3.882x109 md-ft which 
matches very well with the values reported by the TDS 
technique. This further demonstrates the accuracy of 
the solution.

Abbaszadeh and Cinco-Ley (1995) reported values of 
6.5 md and 50 ft for reservoir permeability and distance 
from the well to fault.

Figure 8.  Pressure and pressure derivative for example 2.

Figure 9. Cartesian plot of pressure drop vs. 
the fourth-root of time for example 2.
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5. RESULTS ANALYSIS

For the first example the results agree quite well with 
the input values for simulation and the fault’s conduc-
tivity estimated by conventional analysis. The second 
example provides reasonable results with the work of 
Abbaszadeh and Cinco-Ley (1995). Also, the conduc-
tivity of the fault obtained from conventional analysis 
matches well with the results of the proposed technique 
which is considerably enough for accuracy demonstra-
tion. Only two examples are reported for space-saving 
reasons. Although not shown here, the results from con-
ventional analysis, developed in Appendix A, provided 
reasonable results for fault conductivity, fault skin factor 
and fracture length.

6. CONCLUSIONS

● Pressure derivative behavior for a well located near 
finite-conductivity fault was studied and  expressions 
to estimate the distance from the well to  the fault, fault 
conductivity and fault skin factor were introduced and 
successfully tested with synthetic and field examples. 
These were also compared to the straight-line con-
ventional technique which complemented this work. 
It was found that for fault conductivities greater than 
2.5x108, the pressure derivative exhibit a half-slope 
line, since linear flow occurs from the fault to the 
reservoir. A new expression for this flow regime was 
introduced, including one to estimate the fault length.
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NOTATION

B

ct

FCD

h 

hD

k

k wf f

LF

m

q     

r

s

sF

sBL

sL

t

t*  P'

Oil formation factor, rb/STB

Total system compressibility, 1/psi

Dimensionless fault conductivity

Formation thickness, ft

Dimensionless pay thickness

Permeability, md

Fault conductivity, md-ft

Distance from the well to the fault, ft

Slope

Flow rate, STB/D

Radius, ft

Skin factor

Fault skin factor

Bilinear flow skin factor

Linear flow skin factor

Time, hr

Pressure derivative, psi

GREEK LETTERS

� 

� 

�    

 

Change, drop

Porosity, fraction

Viscosity, cp
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SUFFIXES

BL

D

eBL

eBLD

er

F

i

min

r

rssi

ss

ssBLi

w

Bilinear flow

Dimensionless

End of bilinear flow

End of bilinear flow, dimensionless

End of radial flow

Fault

Intersection

Minimum

Radial

Radial and steady state intersection

Steady state

Steady state and bilinear intersection

Wellbore
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APPENDIX A. CONVENTIONAL
METHODOLOGY

1) Replacing the dimensionless quantities given by 
Equations 1, 3 and 5 into Equation 12 will result:

 
As indicated before, notice that Equation A.1 suggests 

that a Cartesian plot of DPwf vs. t0.25 gives a linear trend 
which slope allow the estimation of fault conductivity, 
such as:

The above equation was also found by Trocchio 
(1990).

2) The dimensionless pressure for the linear flow is:

Replacing the dimensionless quantities given by 
Equations 1 and 3 into Equation A.4 will result:

As indicated before, notice that Equation A.5 su-
ggests that a Cartesian plot of DPwf vs. t0.5 gives a linear 
trend which slope allow the estimation for the distance 
from the well to the fault:
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3) The governing dimensionless pressure for the 
steady state caused by the fault is:

Replacing the dimensionless quantities given by 
Equations 1 and 3 into Equation A.8 will result:

As indicated before, notice that Equation A.9 su-
ggests that a Cartesian plot of DPwf vs. t. 1/t gives a 
linear trend which slope allow the estimation of fault 
skin factor.

Trocchio (1990) presented the following expression 
to find the dimensionless end time of the bilinear flow 
regime and the minimum fracture length:

Solving for the minimum fault length:
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