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From the inverse problem theory aspect, deconvolution can be understood as the linear inversion of 
an ill-posed and ill-conditioned problem. The ill-conditioned property of the deconvolution operator 
make the solution of inverse problem sensitive to errors in the data.  Tikhonov regularization is the 

most commonly used method for stability and uniqueness of the solution. However, results from Tikhonov 
method do not provide sufficient quality when the noise in the data is strong. This work uses the conjugate 
gradient method applied to the Tikhonov deconvolution scheme, including a regularization parameter cal-
culated iteratively and based on the improvement criterion of Morozov discrepancy applied on the objective 
function. Using seismic synthetic data and real stacked seismic data, we carried out a deconvolution process 
with regularization and without regularization based on a conjugated gradient algorithm. A comparison of 
results is also presented. Applying regularized deconvolution on synthetic data shows improved stability on 
the solution. Additionally, real post-stack seismic data shows a direct application for increasing the vertical 
resolution even with noisy data. 
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D   esde o ponto de vista da teoria de problemas inversos, a deconvolução pode ser entendida como 
uma inversão linear de um problema mal posto e mal condicionado. A característica do mal condi-
cionamento do operador de deconvolução faz que a solução do problema inverso seja sensitiva a 

erros nos dados.  A regularização de Tikhonov é o método mais comum utilizado para estabilizar a solução e 
obter sua unicidade.  Porém, os resultados do método de Tikhonov não fornecem qualidade suficiente quando 
o ruído nos dados é alto. Este trabalho faz uso do método do gradiente conjugado, baseado no esquema de 
Tikhonov aplicado à deconvolução, cujo parâmetro de regularização é calculado iterativamente tendo em 
conta o critério de discrepância de Morozov na função objetivo.  Fazendo uso de dados sísmicos sintéticos 
como dados reais empilhados, foi realizado o processo de deconvolução com e sem regularização basea-
do no algoritmo do gradiente conjugado. Realizou-se uma comparação do esquema proposto. Aplicando 
a deconvolução regularizada nos dados sintéticos mostra uma melhoria na estabilidade da solução e os 
dados sísmicos pós-empilhados mostraram um aumento da resolução vertical mesmo com ruído nos dados.

Desde el punto de vista de la teoría de problemas inversos, la deconvolución puede ser entendida 
como una inversión lineal de un problema mal-puesto y mal-condicionado. La característica del 
mal-condicionamiento del operador de deconvolución hace que la solución del problema inverso 

sea sensitiva a errores en los datos.  La regularización de Tikhonov es el método más común empleado  
para estabilizar la solución y obtener su unicidad.  Sin embargo, los resultados del método de Tikhonov 
no proveen calidad suficiente cuando el ruido en los datos es fuerte. Este trabajo hace uso del método del 
gradiente conjugado,  basado en el esquema de Tikhonov aplicado a la deconvolución, cuyo parámetro de 
regularización es calculado iterativamente teniendo en cuenta el criterio de discrepancia de Morozov en la 
función objetivo.  Haciendo uso de datos sísmicos  sintéticos como datos reales apilados, se llevó a cabo el 
proceso de deconvolución con y sin regularización basada en el algoritmo del gradiente conjugado. Se llevó 
a cabo una comparación del esquema planteado. Aplicando la deconvolución regularizada en los datos 
sintéticos muestra una mejora en la estabilidad de la solución y  los datos sísmicos post-apilados mostraron 
un incremento de la resolución vertical aun con ruido en los datos. 

Palabras clave: Regularización de Tikhonov, Gradiente conjugado, Teoría de inversión, Procesamiento sísmico. 

Palavras-chave: Regularização de Tikhonov, Gradiente conjugado, Teoria de inversão, Processamento sísmico. 
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1. INTRODUCTION

Deconvolution is an inversion process that is co-
mmonly used in many areas of science and engineering 
such as image and signal processing. In reflection seis-
mic applications, deconvolution increases the vertical 
resolution.  A basic model for a seismic trace is that it 
can be described by the convolution of a reflectivity 
series with a wavelet and added noise.  Deconvolution 
results are generally considered as an approximation to 
the reflectivity series in a stratified medium, estimated 
from the reflected wavefield.  There is extensive litera-
ture on the development of new inversion algorithms 
that improve deconvolution quality.  Deconvolution 
quality in seismic data is assessed by its capacity to 
correctly predicting the position, amplitude and phase 
of the reflectivity series (Yilmaz, 1987; Zala, 1992; 
Leinbach, 1995).  Deconvolution problems can have 
deterministic or non-deterministic approaches, depen-
ding on whether the wavelet is known or not (Wang, 
Wang & Perz, 2006).  In this paper, we have assumed 
that the wavelet is known and band-limited, and have 
been estimated, for instance, from well log data or by 
statistical correlation of seismic data.  The deconvolu-
tion process can be achieved by using regularization in 
the inversion (Karsli, Guney & Senkaya, 2012; Chen, 
Wang & Chen, 2012). By imposing an additional 
constraint on the estimated model, regularization can 
be implemented even if the convolution operates with 
insufficient data (Fomel, 2007) or when data contain 
high noise level (Hansen, 2010).  

The solution to inverse problems commonly have 
stability issues and a multiplicity of solutions (Sen, 
2006).  From the mathematical standpoint, all inverse 
problems can be classified as well-posed or ill-posed. 
According to Hadamard (1923), an inverse problem is 
well-posed on the strict sense if:

1. There is a solution.
2. The solution is unique. 
3. The solution is stable with respect to perturbations 

in the data.

Stability is related to the fact that minor changes 
introduced in the data of the problem generate minor 

variations in the solution. If any of the three condi-
tions is not met, the problem is defined as ill-posed.  
Errors produced during measurement, as well as 
those introduced by numerical methods disassociate 
the extracted solution from the estimated information 
(Hansen, 2010; Montenegro, 2010).  Techniques that 
enable recast from an ill-posed problem to a well-posed 
problem are also known as regularization.  Deconvolu-
tion is an inverse problem, known for its sensitivity to 
noise in geophysical data processing (Van der Baan & 
Pham, 2008). 

 In this paper we propose an additional iterative 
calculation to estimate the regularization parameter    
ei within the Tikhonov regularization scheme applied 
to the deconvolution of noisy data.  This iterative 
calculation uses the bi-section and drying methods 
to find roots in the solution and the Morozov (1984) 
discrepancy criteria.  We have also used concepts of 
deblurring theory on the convolution of seismic traces.  
The results of the regularized deconvolution method, 
presented here, show an improvement in the stability 
of the solution in the presence of noise, as well as a 
direct application for increasing the vertical resolution 
of stacked seismic data.

2. TIKHONOV REGULARIZATION

Tikhonov regularization suggests (for the inversion 
problem) adding a stabilizing matrix or function (Ti-
khonov, 1963) such that:

where  is the convolution operator, is the regula-
rized version of the operator,  is the physical model 
or series of reflectivity and  is the approximate solution 
of the model,  is the response to the model  and  
are the data with noise from the seismic data.  A regula-
rized least-square solution l2 of (1) is equivalent to 
minimizing the function  
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where e is a parameter of regularization and  is 
the regularizing matrix (Fomel, 2007).  This can be the 
identity  operator or a first order finite differences 
matrix.  Therefore, for the linear system with noise in 
(1), the best approximate solution can be obtained by 
minimizing the "functional smoothing" in (2) with an 
optimal value of e (Tikhonov & Arsenin, 1977).   
has a smoothing nature to ensure the linear variation 
of   around the proximity of   (Sen & Roy, 2003). 
In our case, the solution approximated by least squares 
of (2) is (Fomel, 2007):

  

This solution is regularized for a given value e accor-
ding to the following expression (Hansen, 2010):

 

Following a convolution model for the seismic 
trace, we have assumed the reflectivity data as  
convoluted with a punctual blurring function called the 
Point Spread Function (PSF), which generates seismic 
data .  This function is equivalent to the seismic 
wavelet and is assumed to be constant and time inva-
riant. PSF in image processing is a blurring function 
that lowers image resolution and, for our purposes, is 
one-dimensional. 

Any pseudo-multidimensional array of traces, can 
be expressed as:

where variable  is the Two Way Time  (TWT ) of 
the trace and variable  represents the horizontal 
coordinate (or offset) of traces.  The above expression 
is analogous to our linear system where L 
is the convolution matrix or function PSF, see Figure 
2. By using elements  of matrix PSF with an odd 
magnitude  , we have a Toepliz matrix of the 

 dimension, for this operator (Hansen, 
2002):

so we can carry out the deconvolution process to find     
 in accordance with expression (3).

Figure 1. Stationary convolution model in the time domain.  Each co-
lumn of the matrix represents the blurring function or PSF, whose Ricker-
type wavelet is zero phase with a central frequency of 50Hz operating on 
the reflectivity series to generate the seismic trace. 

3. REGULARIZATION AND CONJUGATE  
GRADIENT

The effect of parameter e in the solution of  Equation 
14 is described as follows:  When e > 1, the regularization 
solution  is stable. However, as tradeoff, the error of   
increases with respect to solution . When e < 1, the  
error of   decreases, but regularization becomes unstable 
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and sensitive to noise, leading to unwanted  solutions 
(Tikhonov & Arsenin, 1977; Hansen, 2010),  see Figure 
2.  Taking into account the error in the data, we can go 
further than Equation 1:

 where and . Ta-
king into account the error in the approximation of the 
model and the error in the data, the error in the calcula-
tion of the model is:

 

The error in the data is expressed as the vector 
, that we call “tolerance”.  The magnitude 

of vector  is related iteratively with  through the 
configurate gradient algorithm.

From this last expression, it can be proposed that 
there is a set of  that optimize in a comprehensive 
manner the trade-off between error in the data and the 
error in approximation of the model (Figure 3).

Figure 3. Error curves for the solution of the model in the inversion 
process.  Error in data, error in approximation and total error, modified 
Tikhonov and Arsenin, 1977. 

The technique chosen to minimize Equation 4 is the 
conjugate gradient technique, which consists of qua-
dratically expressing linear relationship  as:

 

Figure 2. This figure illustrates the advantages of regularization (modified from Hansen, 2010).  Due to the ill-conditioning of operator 
L, the least squares solution in the space model, may be quite far from the exact solution  even with minor noise 
or perturbations in the data, that is, when .  Besides, the regularized operator solution        
tends to get closer to the exact solution  under noise conditions.
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where A is a direct modeling operator with a 
defined positive square (Hestenes & Stiefel, 1952), 

, and symmetrical 
matrix , here  represents the internal product. 
This quadratic vector equation is in terms of  whose 
gradient is equal to: 

where the direction of maximum decrease is 
. The conjugate gradient method is a 

method of descent that begins to iterate in an initial 
model  and continues in the direction of maximum 
descent of the paraboloid represented by quadratic func-
tion (10), resulting in a succession of models  that 
converge at a solution   close to .

Algorithm 1. Conjugate gradient with a matrix-vector operation, two point 
products, two scalar-vector multiplications, one sum operation and one 
combined scalar multiplication and vector addition operation per iteration. 

By using the conjugate gradient method, we calculate 
a value of    for any given , such that the residual   

 is minimized. As we have outlined in 
Figure 4, for a given value of e between  and   

an initial model (i.e. initial residual is ), 
 decreases until it reaches a critical value. Further 

iterations  of conjugate gradient, increase the residual 
 (see Figure 4).

In Figure 4, notice that , is the solution of pro-
blem , whose solution is unstable and sensitive 
to perturbations in data. Again, this is due to the ill-
conditioned operator L (Shewchuk, 1994). In Figure 4, 
the curve with value , has a lower condition number 
for operator , but the solution is not 
as close to the solution of the system. In the third curve 
in Figure 4 with optimal value , the solution is 
stable and close to , with a lower calculated re-
sidual value r. This behavior raises the question of how 
to choose this optimal parameter value.

To choose the optimal value  we have used the 
post-election strategy based on the discrepancy criteria 
(Morozov, 1984).  This criteria establish that the norm 
of the difference between the observed data and the data 
generated by the regularized solution cannot be lower 
than the noise level :

where  (Bonesky, 2009). For our decon-
volution problem we have taken  . That means 
that the norm for the data generated by the regularized 
solution cannot be more accurate than the norm of the 
observed data (Engl, Hanke & Neubauer, 1996). In other 
words, the noise level  should be proportional to , 

Figure 4. Curves of residuals  vs model approximation 
, for different values of e using the conjugate gradient method.
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where , and  proportional to . To 
estimate the relative noise level  in synthetic data, we 
have used normalization according to the following 
expression 

Now, to estimate the relative noise level in seismic 
data, we have applied the following expression

Now, we can assume that in order to obtain a proper   
, we have to find the values of the roots of equation     

 (Montenegro, 2010).  That is to say:

If the residual is larger than  and Equation 
15 is positive, while for , the residual is smaller 
than  and Equation 15 becomes negative. That suggest 
the iterative search , illus-
trated in Figure 5.

Figure 5. Curve of ( )with respect to . The optimal value   
 corresponds to the root  

The following algorithm was developed to carry out 
the deconvolution process by regularization:

Algorithm 2. Regularized inversion combined with Conjugate Gradient 
for the iterative calculation of  based on the search for the roots of 
equation ( ) with regard to  (line 11).

4. SYNTHETIC DATA

Tests with synthetic data enabled us to evaluate the 
response of the deconvolution process under the effects 
of noise in a controlled manner, as well as the results of 
the inversion strategy.  We started with a simple case 
of deconvolution  without noise. For the 
direct problem we use a zero phase Ricker wavelet with 
a central frequency of 50Hz (see Figure1) convoluted 
with a known reflectivity (see Figure 1 and 6a). The 
inversion result is presented in Figure 6b, which shows 
edge effects due to the sudden end of data at border 
(Gibbs oscillation). Changing the criteria of the residual 
value in the inversion process from 1x10-5 to 1x10-3, this 
edge effect is mitigated; however, the solution is not 
recovered (see Figure 6c). Then, using the regularization 
method suggested in Section 3 (Algorithm 2) and taking 
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1x10-4 as the residual value, = 0.01 and an epsilon , 
of  0.0010715, we get the results displayed in Figure 6d.  
This illustrates in data the effect of trade-off between 
error in the data and error in approximation of the model. 
In a second numeric experiment, we added Gaussian 
noise to the data and the inversion was carried out in 
the same way as the previous experiment, i.e. taking a  
residual value of 1x10-4, with and without regularization.  
The value of the Gaussian noise applied was lower than 
the residual of 1x10-4.  The effects of the noise on the 
inversion data are illustrated in Figures 7a and b.

When noise is included in the data, the solution be-
comes unstable (Figure 7b) due to the ill-conditioning 
of operator L. Additionally, the CG method in the 
iterative process takes a larger number of steps for 
convergence (more than 300 iterative steps), sacrificing 
accuracy for stability.  The difference in the results is 
due to the fact that the noise acts as a perturbation that 
is amplified in the iterative process due to the instabi-
lity of the inversion. These results show the advantages 
of regularization when looking for stable solutions for 
an inversion problem in the presence of noise, as the 
deconvolution of real seismic data.

Figure 6. Results of the reflectivity inversion without noise, (a) original reflectivity used to generate the data (exact solution), (b) inversion by CG with 
residual , (c) inversion by CG with residual , (d) inversion regularized by CG with residual , delta of 0.01 
and e = 0.0107147.
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Figure 7. Result of deconvolution with Gaussian noise in data. (a) Inversion by regularization using values of =0.01 relative were used with a 
tolerance in residual of 1.0 x10-4 for the conjugate gradient and the estimated value was  e = 0.12882. (b) non-regularized inversion.  

5. STACKED SEISMIC DATA

The method was applied on real seismic data ex-
tracted from a section of an area of interest.  For the 
inversion-deconvolution process, a wavelet was statisti-
cally extracted in the target zone, where a preprocessing 
phase zero correction in seismic data was applied.  The 
extraction of the wavelet is a common routine process
in the oil industry for seismic characterization and seis-
mic well calibration.  The section analyzed was CMP 
25160 to 25378 (218 meters) from 0 to 4 seconds in 

TWT.  The target zone is between 1 and 2 seconds (see 
Figure 8a).  The wavelet that was calculated is a Ricker 
(Figure 8b) estimated by statistical correlation.

The deconvolution of this seismic section was 
carried out only with regularization (Figure 9) It is 
important to remember that the success of any inver-
sion process with regularization is subject to the level 
of noise in data. If we have a seismic with poor image 
quality and high noise in the traces we cannot expect 
good results.

Figure 8. (a) Seismic section of interest in TWT.  (b) Wavelet extracted from the seismic section by statistical correlation.
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 Different relative  values were used between 0.1 
and 0.01 for this regularized inversion in accordance 
with the discrepancy criteria and tolerance in the re-
sidual 1x10-6. We have assumed that the rounding errors 
in calculations are less than the noise in the data.  The 
inversion process applied is based on post-inversion as 
follows:

1. Estimating δrela with the CG method without regula-
rization: The objective is to test the behavior of the 
error or residual  with 100 or more ite-
rations on the non-regularized solution, that is .  If 
the residual does not vary or the deconvolution process 
declines in successive iterations for a given value of 
relative noise, it is taken as the limit to make the de-
convolution invertible.  Based on the Morozov criteria, 

nothing can be more accurate than the noise level. An 
exploration can be carried out with relative values 
of  between 0.1 and 0.01 based on expression 14.  
If you know the uncertainty or standard deviation 
of the data you are working with, calculation rela is 
direct and you would use Equation 13. 

2.	 Defining	 tolerance	 and	 the	 initial	 value	 of	 : 
Considering the number of significant figures for 
precision and the adjustment of the minimum re-
sidual in the conjugate gradient algorithm (see Al-
gorithm 2), the tolerance value should be consistent 
with the estimate of rela in the previous step. To 
choose the (initial)  e, it is important to consider the 
appropriate weighting between what you want to get 
and tolerance in the accuracy in the inversion. If we 

Figure 9. (a) Seismic section of interest (b) Section after regularized deconvolution based on the method described in section 3. (c) spectral amplitude 
before deconvolution (d) spectral amplitude after regularized deconvolution.  δrela =0.07263, e =0.4791 and Tol=1x10-6.
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start with an , we are at the noise limit allowed 
and we get a poor quality image deconvolution. If 
we take a value of  e > 1, we are smoothing the result 
and moving away from the real solution. For practi-
cal proposals, it is a good idea to explore with initial 
values of   .  This gives Expression 15 a root and 
leads to an optimal .

3.	 Assessing	 the	 result	 of	 the	 inversion	 process:	
Despite the application of the inversion theory and 
numerical implementation, the effectiveness of the 
regularized inversion process should be assessed 
with respect to the qualitative and quantitative 
analyses. A quantitative criterion independent from 
the vertical resolution that may be a comparison of 
the spectral amplitude is illustrated in Figures 9a and 
9d. These spectra show that no abnormal frequen-
cies were added and there was an improvement in 
the spectral amplitude to recover high frequencies.  
The above parameters change depending on these 
results.  Therefore, it is post-inversion to preserve the 
balance between what you want and the tolerance in 
precision.

6. CONCLUSIONS

●  This paper has shown how the inverse solution of 
an ill-conditioned operator (deconvolution) can be 
solved with a regularization model based on a con-
jugate gradient algorithm and stabilizing the solution 
to noise in data.  We have illustrated the trade-off 
between error in the data and error in approximation 
of the model, that is, the balance between what you 
want and the tolerance allowed in the precision of 
solution.  

●  The optimal  was found based on the Morozov 
discrepancy criteria, as a root of residual.  The advan-
tage of using the inversion model presented here was 
to find a satisfactory response for the deconvolution 
operator under the effect of Gaussian noise in data.  
An exact solution is not assumed in the inversion 
process obtained due to the level of noise in the data; 
the ill-conditioning of the deconvolution operator, the 
problems with errors in the floating point representa-
tion and the propagation of perturbations in the data.  

Numerical results have shown us how the solution 
can be stable under the influence of noise based on 
the Morozov discrepancy criteria, whose meaning 
suggests that nothing can be more accurate than the 
noise level.  A successful application of the proposed 
regularization model was performed in real data.
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NOTATION

Regularization parameter

Right-hand side, noise data

Regularization matrix

Regularized solution

Coefficient matrix

Point Spread Function

Identity matrix

Finite difference matrix

Seismic reflectivity

Deconvolution operator

General p-norm

Seismic data

Point spread coefficients

Search direction on Conjugated Gradient algorithm

Misfit function

Residual solution

Error 

Iterative index

Noise level, and vector noise 

Euclidean norm 

Inner product

Condition number

Nabla operator, gradient

PSF

lp

S

E

Cond(.)
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