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ABSTRACT 
In this work we present a formalism that intends to solve the problem of modeling wave propagation in the context of seismic inversion. 
The formalism is based on the linear perturbation theory of Cauchy’s equations. Based on the foregoing, we derived an equivalent 
Helmholtz equation for the propagation of waves in a variable density media. Then, we defined a solution, by using the boundary 
conditions on a half plane. This solution is of an integral nature and resembles expansion in a Neumann series. We implemented 
the solution of the first terms in the series, considering only the incident wavefield and neglecting the reflections. We show how 
this approximation works in different media that include lateral in homogeneities in the velocity. The method presented hereunder 
is intended as a first step in the modelling process for the full wavefield, to be used in seismic inversion methods, Full Waveform 
Inversion, for example. 

Neumann series | Wave propagation | Perturbative 
solutions | Frequency domain.
Series de Neumann | Propagación ondulatoria | 
Soluciones perturbativas | Dominio de la Frecuencia. 

KEYWORDS / PALABRAS CLAVE AFFILIATION

MODELADO INTEGRAL 
DE PROPAGACIÓN DE 
ONDAS INCIDENTES 
EN MEDIOS CON 
GRADIENTES 
LATERALES: UNA 
EXPLORACIÓN EN 
EL DOMINIO DE LA 
FRECUENCIA.

ctyf@ecopetrol.com.co

RESUMEN
En esta investigación presentamos un formalismo que pretende 
contribuir al modelado de la propagación de ondas en el contexto 
de la inversión sísmica. El formalismo está basado en la teoría 
de perturbaciones lineales a las ecuaciones de Cauchy.  Basados 
en este procedimiento derivamos una versión de la ecuación de 
Helmholtz que describe la propagación de ondas en un medio 
con densidad variable. Luego hallamos una solución en la cual 
se emplean condiciones de frontera de un plano semi infinito. Tal 
solución es expresada en forma de integral y recuerda la expansión 

en series de Neumann. Nosotros implementamos la solución del 
primer término de la serie, que considera únicamente el campo de 
onda incidente, sin considerar las reflexiones de onda. Mostramos 
que esta aproximación funciona en diferentes medios que incluyen 
variaciones in-homogeneidades laterales en el perfil de velocidad. 
Este método es presentado como un primer paso en el proceso de 
modelado del campo de onda completo el cual puede ser usado 
en métodos de inversión sísmica tales como "Inversión de onda 
completa", Full Waveform Inversion, (FWI).
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Physical properties of a medium are usually studied through the 
measurement of the medium’s response to physical perturbations. 
In particular, some mechanical properties are often studied through 
the measurement of the response of the medium to the propagation 
of waves, as it is the case for seismic exploration of the subsurface.

In general, procedures to study the structure of the subsurface using 
as input the data collected from perturbations of the field at the 
surface require a way to model the propagation of waves through the 
medium. Together with such modeling, inversion of the modeled data 
is required for accessing the inferred structure of the subsurface. 
One of such methods that in recent years has caught attention 
of the academic community and industry is FWI (Full Waveform 
Inversion) [1]. In FWI, full wave propagation is modeled in the media 
and sophisticated inversion techniques are used to recover as much 
information as possible from the subsurface.

FWI uses forward modeling of the seismic measurement and makes 
a comparison of this with the residual wavefield back propagated, 
in order to iteratively build a final velocity model, which can 
provide better detail than tomographic ray-tracing approaches 
[1]-[2].  However, FWI depends on a good description of the wave 
propagation, which is framed entirely by the modeling. In this 
scenario, forward modeling becomes one of the most important 
ingredients in any implementation of FWI. One then needs a high 
precision tool to model wave propagation; however, usually the 
computational load required for such high precision is too large for 
practical purposes [3]. Inexpensive, high quality solutions of the wave 
propagation problem for FWI are issues that must be addressed if 
the strategy is to become feasible for the requirements of current 
seismic exploration.

Modeling energy propagation in the subsurface can be performed 
by solving Cauchy’s equations [4], if the perturbations are small so 
as to not causing changes in the physical properties of the media 
such as the bulk modulus kB (x⃗) at any position x⃗=(z,x). Solutions 
to this problem, for example through, a perturbative method, can 
lead to alternative ways (different to the classical finite difference 
approach) that can provide the quality and computational efficiency 
that may compete with classical strategies.

In this work we propose perturbative solutions to Cauchy’s equations 
for a media with variable density in the frequency domain.  We will 
refer to these solutions as integral solutions (IS). Such solutions are 
functions that can be evaluated at each point by making integrals 
over the boundary of the volume used to model the subsurface. 
Considering the simplest seismic exploration situation, in this work 
we model the subsurface as a half plane in 2D.

We show numerical solutions of the problem and study its properties. 
Besides their potential advantages from a theoretical point of view, 
one of the advantages of the integral solutions is that handling this 
kind of problems is usually more stable numerically and provides a 
simpler way for using parallelization strategies.

In order to present our work, this paper is organized as follows: 
First, we present in section 2 the formulation of the problem and 
the theoretical foundations. Next, we show in section 3 the solution 
proposed to the problem. In section 4, we show the numerical 
solution to the problem and our implementation strategy. In section 
5, we show the results of our computational experiments and finally, 
in section 6, we present our conclusions.

INTRODUCTION1

2. TheOReTICal fRame
Let us consider energy propagation inside a medium with variable 
density. The energy is released with intensity (I) from a set of point 
sources. Such intensity is low enough to leave unaltered physical 
properties as bulk modulus kb, but large enough to produce waves 
that propagate through the medium. Such energy propagation 
must be described by Cauchy’s equations plus an equation of state 
[5]. We focused on situations for which the displacement of the 
particles constituting the medium move around its equilibrium 
position and, therefore, the deviatoric term in Cauchy’s equations 
can be neglected. 

In this work, the pressure field is approached through a perturbative 
expansion, following the ideas of [6] and [7]. In the perturbative 
approach, the injection of energy from the perturbation induces a 
displacement in the positions of the particles, which in turn induces 
changes in other media variables, such as density, pressure, etc. 
Then, in the regime of small perturbations (linear theory), quantities 
like the displacement vector between particles, particle velocity, 
density, body forces and pressure field are decomposed as the 
sum of functions up to first and second order. The pressure field, 
for instance, is expressed as

(1)P(x⃗ , t) = P0(x⃗ , t) + ϵ P1(x⃗ , t), 

where ϵ<1 represents a perturbative parameter. P1 (x⃗,t) is understood 
as a small deviation from the background pressure P0(x⃗,t). The 
density function ρ(x⃗) can be written with a perturbation expansion 
as the Equation 1,  ρ(x⃗,t)=ρ0 (x⃗,t)+ϵ ρ1 (x⃗,t), where ρ0 (x⃗) is the density 
function describing the medium up to zeroth order.

With all these ideas in mind, a formal deduction is possible from 
the Helmholtz equation (see [6] or [7]) the Cauchy’s equations 
following three steps: (a) Writing the perturbative expansion 
(analogous to Equation 1) of the pressure, density, particle velocities 
in the medium, and wave sources. Then inserting such expansions 
in the Cauchy equations. These equations are taken with sources 
symbolized by an impulsive function f. (b) Changing the pressure 
field to an auxiliary variable qi (x⃗,t)=Pi (x⃗,t)/√(ρ0(x⃗), for i=1,0. (c) 
Making a Fourier transform from t  to ω. This procedure demands 
much algebra, but the final result are two Helmholtz equations, 
for the transformed fields qi (x⃗,ω), for i=0,1, describing the energy 
propagation in a medium with variable density and in the frequency 
domain, 

The vector  ki (x⃗,ω)=ω2/c2 (x⃗)+αi(x⃗), for i=0,1, plays the role of a square 
magnitude of a modified wave-vector. c2(x⃗) is the wave velocity field 

(2)[∇2+ ki(x⃗ ,ω)]qi(x⃗ ,ω)=Fqi (x⃗ ,ω),   for i =0,1.  
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propagating at frequency ω. The factor αi (x⃗), having units of squared 
wave vector |k⃗|2, can be understood as a dispersive term [7].

In Equation 2, we have that

Fq0 and Fq1 are the source functions corresponding to the impulsive 
function f of the Cauchy equations. Fq0 and Fq1 result after the 
expansion of f=f I0+ ϵ f I1. 

f I
0 and f I

1 accounts for the impulse intensity of the sources that 
ignites the wave propagation. The function g(ω) is the Fourier 
transformation of a source function.  In this work, for simplicity 
purposes, we use a Ricker’s function

to simulate seismic sources. ωd is the reference frequency of the 
sources and for this work we chose ωd=30Hz. At all times we refer 
herein to ω as the angular frequency ω=2π f, which is measured 
in ω[=]rad/s. For simplification, we will express ω in Hz only. For 
example, ω=40Hz means  ω=40radHz.

THE DENSITY FUNCTION  Ρ0 (  ⃗X)

As this research is based on the description of waves propagating in 
a medium with variable density, the Equations 3 - 6 enable forward 
modelling by using an arbitrary density function. On the other hand, 
in different contexts, it is more common to work with velocity 
instead of a density field. A relationship between the density and 
velocity profiles may be established and, therefore, every equation 
presented herein could be expressed as a function of a velocity 
parameter. For example, for some purposes, in geology the density 
can be expressed as a polynomial of degree 5 in velocity parameter, 
see [8] : ρ0 (z,x)=∑5

l=1 ml c(z,x)l, where ml are constants.

The formulation presented allows for modelling wave propagation 
in an arbitrary velocity profile, if a relation between density and 
velocity is established, by following the recipe: With the velocity 
profile, it is possible to build a density. Then, by finding the Laplacian 
and the gradient numerically (of the density map), the maps of α0 
(x⃗) and α1(x⃗) from the Equation 3 - 4 can be computed. From this 
point on, all Equations 3 - 6 would be expressed in terms of velocity. 
Thus, our formulation allows to express every result in terms of 
velocity, if so wished. 

One of the goals of this research is to explore, in the simplest 
possible way,  the effect of the pseudo-wave vector ki in the wave 
propagation with variable density. For such purpose, we will use the  
density and velocity ratio that is mathematically consistent with 
the fact that α0 and α1 are constants. Hence, we also simplify the 

(3) α1(x⃗  ) = −∇2√ρ0(x )
√ρ0(x )

(4) α0(x⃗ ) = −α1(x⃗ ) − 1
2 (∇ρ0

ρ0 )2
   

(5) Fq0 (x⃗ ,ω)=  fI
0 g(ω)
√ρ0 (δ2(x⃗ − x⃗s)− ∇ρ0

4πρ0 ⋅
x⃗−x⃗s

|x⃗−x⃗s |3)
(6)Fq1 (x⃗ ,ω) = fI

1 g(ω)
√ρ0

δ(x − xs)δ(z − zs )

g(ω) = ω2

√8π3ωd
3 exp ( −ω2

4π2ωd
2 ) (7)

computational analysis, as in this work we make a first approximation 
to the incident wave by using a perturbative integral modelling.
 
Then, in order to simplify our modeling, the density profile ρ0 (x⃗) will 
be fixed by setting up α0 (x⃗) and α1 (x⃗) as constants in the Equations 
3 - 4. Let’s say α0 (x⃗)=const0 and α1 (x⃗)=const1.  

We are interested in exploring deviations of the classical wave 
vector k(x⃗,ω)=ω2/c2(x⃗). We will model such minor deviations by 
adding constant terms, through alpha factors, thus: ki (x⃗,ω)=ω2/c2 
(x⃗)+αi, for i=0,1. Following [7], we choose α0=-b2/c0

2 and α1=+b2/c0
2. 

The constant c0 will be explained shortly. With such a choice of the 
Equations 3 - 4, after some algebra, these are written as:

A density function that satisfies simultaneously the e
Equations 3a and 4a and that varies only with depth, is given by

where ρcons is a quantity showing density units;, however, in the 
simulations shown here under, this quantity is irrelevant in all 
equations for the pressure field, as it is algebraically canceled in the 
expressions.  Equation 8 is the relation that we use in this work for 
modeling of the wave propagation.  A general form of the density 
profile that satisfies simultaneously the Equations 3a - 4a, for 
arbitrary constants α0 (x⃗)=const0, α1 (x⃗)=const1, can be expressed as 

where γ⃗ is any constant vector with the only restriction that  
γ2=|α0|=|α1|. For simplicity, we choose ρ0(z) in Equation 8, as this 
work is intended to do a first approximation to the modelling in order 
to explore integral solutions. 

Note that in this approach b is merely a constant that is restricted 
to obey α0=const0,  α1=const1, and, therefore, b can be expressed in 
several ways in order to explore the perturbative method proposed. 
For example, parameter b can be expanded as a sum of powers 
of velocity c0: b= ∑L

l=0 al  c0
l , where l, L, and al must be calibrated 

to have the correct units in the expression for the pseudo-vector 
ki (x⃗,ω)=(ω2/(c2 (x⃗))+αi, for i=0,1.

In this work, we consider b a constant and it is compared with the 
frequency, i.e., L=0, and a0=ω.  

On the other hand, parameter b can be complex, and can be related 
to the quality factor Q [9], linked to the attenuation or dispersion 
effects; for example, the expression (4a) opens the door for 
consideration of such cases. 

CONTRAST VELOCITY C( X⃗ ), THE VELOCITY C0  , AND THE
SOLUTION OF THE WAVE EQUATION

The quantity c0 appearing in Equation 8 is the wave velocity in the 
medium from where the wave is coming. c(x⃗) represents the wave 

(3a)α1 = ∇2ρ0(z,x)
2 ρ0(z,x) −

1
4

 (∇  ρ0(z,x)
ρ0(z,x) )2

=  + b2

c0
2   

(4a)α0 = ∇2ρ0(z,x)
2 ρ0(z,x) −

3
4

 ( ∇  ρ0(z,x)
ρ0(z,x) )2

=  −  b2

c0
2   

(8)ρ0(z) = ρconst  Exp [4 b
c0

(1 + z)]

(9)ρ0(x⃗) = ρcons  Exp[± γ⃗  ⋅  (z  ,   x)]
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Figure 1. The zones, boundaries Zi , and the wave velocity c0 concepts are 
illustrated.

velocity of the medium to which the wave is entering, thus the 
difference between c(x⃗) and c0 will be that the former is the velocity 
of the “refracting zone”, while the latter is the wave velocity in the 
medium of incidence. It should be stressed that c0 does not represent 
the background velocity of the whole subsurface.

We used a classical solution strategy of the Helmholtz equation 
with constant wave-vector ki, for i=0,1, in order to approach a 
numerical solution for (2), see [10]-[11]. As we are interested in 
wave propagation in media with variable density, it is essential to 
describe the sense in which such classical solution of Equation 2 is 
used.  We define and illustrate the concept of the zone with the aim 
of   explaining how we used the solution of  the Helmholtz equation 
with constant wave vector.

Figure 1 shows the concept of the zones Zi, in the medium. This 
figure is included for illustrative purposes only, and it is used just 
to clarify the concepts of zone and the boundary of a zone. In the 
particular situation of Figure 1, the sources are disposed near the 
surface; however, their position can vary for other experiments. 
Energy sources are symbolized as red triangles close to the surface. 
The medium of Figure 1 is made up of a first layer: z∈(0,0.75)km 
with wave velocity of 2000m/s, the second layer: z∈(0.75,1)km 
with wave velocity of 2500m/s, and a circular diffractor with wave 
velocity of 1800m/s.

When a source is ignited, the wave propagates from Z1 to Z3. Z1 is 
the medium from which the wave will strike the contrast medium 
Z3; therefore, the wave velocity (The velocity values can be changed 
for use in other applications such as medical imaging), is taken as 
c0=2000m/s;  for this layer ki (x⃗,ω)=ω2/20002+αi. In this case, the  
contrast medium has a wave velocity of c(x⃗)=1800m/s.

Likewise, when the wave crosses the boundary ∂Z3 (red line), going 
from Z3 to Z1, Z3 is the medium from where the wave will strike 
the contrast zone Z1. In this case, with the wave going from Z3 to 
Z1,  the wave velocity c0 is equal to 1800m/s; c(x⃗)=2000m/s, and ki 
(x⃗,ω)=ω2/18002+αi. 
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Finally, when the wave crosses ∂Z2  (yellow 
line), going through from Z1 to Z2, the 
corresponding c0  wave velocity is 2000m/s 
and c(x⃗)=2500m/s. Therefore, for each 
boundary inside the medium an incident 
wave, with velocity c0, must be calculated.
The following considerations are to be borne 
in mind to solve Equation 2 presented herein:

• Boundary conditions. The partial 
differential Equation 2 has a family 
of infinite solutions, and a particular 
s o l u t i o n  m u s t  b e  c h o s e n  f o r 
implementing numerical solutions. 
The difference between each solution is 
given by the boundary conditions of the 
surface in which the specific problem 
is to be solved. Different solutions, 
or different boundary conditions, are 
shown and explained in [10]–[11]. We 
have chosen the half plane as surface 
to solve Equation 2, as it is natural in 
the seismic problem. 

• The Boundary conditions used are those for the half plane 
defined by {(x,z)|x∈R,z∈R+}, with the depth denoted by z, and 
horizontal extension along the x-axis by x. This means that the 
solution to Equation 2, implemented herein, is for a half plane 
only and, therefore, a reflection, on the surface z=0km, will 
appear in all simulations of this work. Another consequence 
of this solution in a half plane is that the incident wave, over 
the boundaries of all zones inside the medium, will contain the 
natural reflection in the boundary at the surface z=0km. The 
reflection at the surface z=0km is considered a reflection in 
the background; therefore, all the incident waves will contain 
the reflection of the background, coming from the boundary 
at z=0km, and imposed by the solution of the half plane.

• The half plane is considered a wall, consisting of different non-
regular zones. Those zones represent the different materials 
conforming that wall. For example, in geophysics those zones 
are all types of rocks, basalts, sands, clays, etc.

• Those irregular zones will be denoted by Zi and its boundaries 
by ∂Zi. The boundaries ∂Zi play the role of the boundary 
between one material, for example a rock, and other material, 
for example basalt.

• Inside one zone Zj, juxtaposed to a zone Zi' any function is 
supposed to be differentiable and smooth. It must be noted 
that the wave vector, ki (x⃗(zj ),ω), is taken as a constant inside 
a fixed zone Zj. Just at the boundaries ∂Zi all the functions are 
not required to be differentiable. 

The solution of the Helmholtz equation used here (see [10], 
[11]) with constant wave-vector is valid inside every Zi.  Although 
boundary conditions must be imposed on each ∂Zi to match solutions 
between every pair of zones Zi-Zi', we will ignore this matching in 
order to find an approximation to the incident field for each zone Zj 
of a medium. Approximations for the reflected or transmitted fields 
are left for future work.
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The approximation of constant zone or Born approximation can be 
seen as a method to calculate the incident wave in the Neumann’s 
series solution of the Helmholtz equation [12]; i.e., the Equation 2 
can be expressed, after a bit of algebra, as:

where the source term Fqj (x⃗,ω) accounts for the incident wave 
(Incident wave is incident to each boundary) and the term in the 
square parenthesis is called the contrast term,

where c0 is the wave velocity of the medium from which the wave 
will strike, as it was illustrated in the discussion of Figure 1. 

The contrast term has been introduced by [13] and [14] in the 
context of the Contrast Source Inversion (CSI) method. χ(x⃗,ω) has 
been recently used in medical applications [15]-[16]. The χ(x⃗,ω) term 
can be a good choice for wavefield inversion in seismic exploration, 
since iterative inversion methods, like FWI [17]-[18], use schemes 
that start with a guess of the velocity profile, which is updated at 
each step of the method. The pressure field is calculated from such 
assumed velocity profiles, and thus the velocity profile is known for 
every iteration of the whole inversion process.

Equation 10 constitutes a nonlinear problem, since χ(x⃗,ω) is an 
unknown, and its solution can be expressed, by using x⃗=(z,x),  as a 
Fredholm [19] integral equation like

where qj 
inc (x,z,ω) is the incident wave that satisfies,

and qj 
set (x,z,ω) is the scattered contribution to pressure field given by

The propagator G(x,x',z,z',ω), is the solution of the wave equation 
for a point source

where k0
j (ω)  =ω2/c0

2+α0
j .

A solution of such Fredholm integral Equation 13, can be 
approximated through the Born approximation [19], for which

Such Born approximation can be considered a member of an iterative 
solution often called Neumann series, for which (14) is taken as 
the first term (i.e., qj (x,z,ω)=qj (1)) (x,z,ω) ) and the second term is 
calculated as

(10)(∇2+ω2

c0
2 +αj)qj(x⃗ ,ω)=Fqj (x⃗ ,ω)−[ ω2

c2(x⃗)
−ω2

c0
2 ]qj(x⃗,ω)   

  χ(x⃗ ,ω) = ω2

c2(x⃗)
−ω2

c0
2  

(11)  qj(x, z,ω) = qinc
j (x, z,ω) + qsct

j (x, z,ω)   

qinc
j (x, z,ω)=−∫ ∫ G∞0

∞
−∞ (x,x′,z,z′,ω)Fqj (x′, z′)dx′dz′  (12)

 (13)qsct
j (x, z,ω)=∫ ∫ G∞0

∞
−∞ (x,x′,z,z′,ω)χj(x′,z′,ω)

qj(x′,z′,ω)dx′dz′

  (∇2+k0
j (ω) )G(x, x′,z, z′,ω)=δ(x−x′) δ(z−z′)

 

(14)qj(x,z,ω)=qinc
j +∫ ∫ G∞0

∞
−∞ (x,x′, z,z′,ω)χj(x′,z′,ω)

qinc
j (x′,z′,ω)dx′dz′

(15)qj  (2)(x,z,ω)=qinc
j +∫ ∫ G∞0

∞
−∞ (x,x′,z,z′,ω)χj(x′,z′,ω)

qj  (1)(x′,z′,ω)dx′dz′

The set of the resulting values{qj (1)) ,qj (2)) ,qj (3)),…} conforms the 
Neumann series ([12], page 578, equation 9.336). For arbitrary 
contrasts and arbitrary density profiles, this series does not 
converge. The number of terms that must be included in the series 
depends on the particular problem but all the process rests on the 
possibility to compute the incident term, qj

inc.  Since this research 
is devoted to compute incident waves, from this point on, carrying 
the subscript "inc” might become redundant. From now on, we are 
focused in computing Pj

inc=√ρ0 qj
inc,j=0,1 . To simplify it, we will remove 

the subscript "inc”.

Thus, the Equation 2 can be solved [10], by using the relation 
qi=Pi/√(ρ0), in two dimensions and for the boundary condition of the 
half plane explained above, as

where S' is the boundary of the entire half plane and the Green’s 
function depends on whether ki is complex or real. The functions 
Fqi (x,z,ω),i=0,1, are the Fourier transforms in time of the sources, 
given in the Equations 5 and 6.

(16)Pi(x,z,ω)=√ρ0(z)∫ FqiS′ (x,z,ω)G(x,x′,z′,z,ω)dS′  

3. eXPeRImeNTal 
DeVelOPmeNT

Our main solution is written in equation (16); however, there are two 
cases to be considered: (1) A case for complex wave vector ki, which 
means a regime of high dispersion, i.e., ω<b. (2) A case for real wave 
vector ki associated with low dispersion, i.e., ω>b. The case b =ω is 
not related to deviations of the wave vector and, therefore, it is left 
out. Next, we study each case individually.

COMPLEX WAVE VECTOR ki : ω<b

In order to facilitate the reading of equations let us remember 
the notation introduced so far: the position vector is x⃗=(x,z), the 
positions of the sources are x⃗s=(x_s,z_s), the differential elements 
in the integral symbols is dx⃗=dx dz, the intensity of impulse force 
up to zeroth and first order are fI

i, i=0,1, and the variable density up 
to zeroth order is ρ0 (x⃗).

Let us define auxiliary variables

On this basis, according to [10], the pressure field is written in 
terms of modified Bessel functions of the second kind and zeroth 
order, denoted by K0. The argument of K0 involves the wave vector 
ki and c0, through Ω±, a1or a2. K0 is complex and, therefore, the final 
expressions for Pi are real, and given by:

Ω+= ω2−b2

c0
2 ,Ω−=−Ω+, a1=√Ω−  r1, a2=√Ω−  r2,

,

.

 

r1= √(x−x′)2+(z−z′)2, r2=√(x−x′)2+(z+z′)2

b1= √Ω+  r1, b2=√Ω+  r2  
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(17)

P0 (x⃗,ω)=
ρ0(x⃗)
ρ0(x⃗s)  

fI
0 g(ω)

2π
 [ K0 (  √Ω− | x⃗− x⃗s| )

−K0(  √Ω− √(x−xs)2+(z+zs)2 )]−
fI
0 g(ω)  √ρ0(x)

8π2

∫ ∫ x⃗′   −x⃗s
| x⃗′  −x⃗s|3

∞
−∞

∞
0 ∙ ∇ρ

0(x⃗′)
ρ03/2(x⃗′)

 [  K0 (a1)−  K0 (a2)]dx⃗′  

(18)

 

P1 (x⃗,ω)=−
ρ0(x⃗)
ρ0(x⃗s) 

fI
1 g(ω)

2π
 [ K0 (  √Ω−  | x⃗ −x⃗s|  )   

−K0 ( √Ω− √(x − xs)2 + (z + zs)2  )]          
    

Note that P1 has not an integral part because Fq1 in (5) contains only 
one term, while Fq0 has two terms.

REAL WAVE VECTOR ki: ω>b

In this case, the pressure is complex and is given by [10]

where H0
2=J0-iY0 is the Hankel function of the second kind and 

zeroth order. These (x,z) are the coordinates denoting the position 
in which we are evaluating the pressures Pi in a specific zone, and 
(x',z') denote the points for all half planes.

The solutions (17), (18), (19), and (20) implicitly depend on c0 
through ρ0 and Ω±.  As discussed above, c0 represents a constant 
wave velocity iin a specific zone Zi and thus c0 is a constant for the 
integrals in equations (17) and (19). The equation (8) is needed in 
the integrals (17) and (19). Note that the integral parts differ from 
zero for variable density profiles only.

We have nicknamed Integral Solutions (IS) to the set of equations 
(17)- (20) plus a representation of density, for example as (8). The 
equations (17) and (19) will be named integral part of the IS and we 
cite it as IP. The part of the IS not containing integral expression, (18) 
and (20), will be named as functional part and symbolized by FP.

(19)

P0 (x⃗ ,ω)=i
ρ0(x⃗)
ρ2(x⃗s) 

fI
0 g(ω)

4
 [  H0

2 ( √Ω+ | x⃗− x⃗s| )  

−H0
2 ( √Ω+ √(x−xs)2 +(z + zs)2 )]

−i f I
0  g(ω)  ρ0(x⃗)

16π ∫ ∫
(x⃗′  −x⃗s )
 |x⃗′  −x⃗s|3

∞
−∞

∞
0 ∙ ∇ρ

0(x⃗′)
ρ03/2(x⃗′)

 [H0
2(b1)−  H0

2(b2)]dx⃗′

(20)
−

−

 H0
2  ( √Ω+ √(x−xs)2 +(z + zs)2  )]  

P1 (x⃗ ,ω)= i
ρ0(x⃗)
ρ2(x⃗s) 

fI
1 g(ω)

2
 [  H0

2 ( √Ω+ | x⃗− x⃗s| )  

Computational implementation of IS was made by using a 
rectangular grid of horizontal extension Lx=1000m, vertical 
extension Lz=1000m. The mesh was discretized with Nx =1000,  
points along x-axis, Nz=1000 points along z-axis, and, therefore, 
distance between points are ∆x=∆z=1m. In most cases, the source 
was disposed at (xs,zs)=(500,500)m. The reference frequency of 
Ricker’s function, g(ω), was ωd=30Hz.

The set of frequencies ω=5Hz,10Hz,20Hz,30Hz,...,140Hz was used 
to run the modeling. The scalar intensities fI

i of equations (17)- (20) 
were fixed to the unit. The perturbative parameter of expansion 
was chosen as ϵ=0.1.

The computational implementation and its analysis of the case ω>b 
is presented hereunder. Results of implementation for the case 
ω<b were similar to the former and added no new elements to the 
discussion. Therefore, they are not included herein.

The integrals have been implemented by using free routines (GSL-
GNU Scientific libraries), specially the Monte-Carlo integration 
technique. A parallelized implementation with MPI was employed 
to calculate the integral over the full grid. Since the integrals (17) 
and (19) have oscillatory terms, a VEGAS algorithm was used to 
avoid the problems introduced by the oscillatory behavior of the 
integrand. VEGAS approximates the distribution by following a 
number of steps over the integration region while histogramming 
the function integrand. Each histogram is used to build the sampling 
distribution for the next step. Three computational experiments are 
presented in the field of exploration seismic. 

4. ReSUlTS aNalYSIS
Three computational experiments are presented, which can be 
fitted in the context of exploration seismic. These experiments 
consist on the propagation of waves in three different media: the 
first experiment consists of a medium with constant velocity, the 
second one consists in 3 layers with velocities c1<c2<c3, and the last 
one containing complex velocity profiles and having sharp peaks.

FIRST EXPERIMENT: CONSTANT VELOCITY, VERIFICATION
OF CORRESPONDENCE PRINCIPLE

We first analyzed a medium with one layer of constant velocity 
to explore how our implementation reproduces simple wave 
propagation. Often this procedure is called verification of the 
correspondence principle. The functional part (FP) of the integral 
solution (IS) was modeled inside a medium with an uniform velocity 
of c=3000m/s. 

Pressure field of propagating waves in a medium with velocity 
c0=3000m/s and with frequencies of 5Hz and 100Hz are displayed 
in Figure 2. The color map represents the intensity of the real part 
of the pressure, measured in Pa. For this experiment, the source 
is placed at the center (xs,zs)=(500,500)m; note that this position 
differs from the sources shown in Figure 1.

Note the symmetry with respect to line x=500m, which is expected. 
The solution include the boundary conditions of a half plane for 
z=0m and the wave that moves upwards from the center (xs,zs) is 
reflected at the line z=0m. Due to the boundary condition at z=0m 
it is possible to observe an asymmetry with respect to z=500m, 
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Figure 2. Demonstration of waves propagating inside a medium with uniform velocity c0=3000m/s. The pressure is given in Pa and 
coordinates are measured in m. The left column (Figure 2a and 2c) displays waves with 5Hz, this is why the wave length λ=600m, 
and the right column (Figure 2b and 2d) corresponds to 100Hz. Figures (a) and (b) show patterns of interference because of the 
reflection at z=0km.

as it is shown in Figures 2c – 2d for the real part.  For ω=5Hz the 
wave length is λ=600m; therefore, in the second half of the plane, 
z>500m, only 5λ/6 is observed. An analogous behavior is observed 
for the imaginary part and, therefore, it is not shown. 

In Figures 3a and 3b we show the IP of the field and it is possible 
to observe the low magnitudes of IP with respect to FP. IP∼10-12 Pa 
for 5Hz and IP∼10-14 Pa for 100Hz, compared with its corresponding 
FP∼10-3Pa and FP∼10-6 Pa, respectively. This shows clearly that 
with respect to a uniform medium, the contribution of the IP can 
be ignored safely in a first approximation, as the IP values have 
magnitudes comparable with the numerical noise.

SECOND EXPERIMENT: THREE LAYERS 

In this experiment we used a velocity profile with three layers M1, 
M2 and M3, consisting of c1=2000m/s, c2=3000m/s and c3=4000m/s 

at depths M1=(0,200)m, M2=(200,800)m and M3=(800,1000)m 
respectively.

The purpose of this configuration is to explore how the IS models the 
changes from one layer to another; those interfaces are traditionally 
referred to, in the inverse theory, as reflectors. Figure 4 shows the 
results for the parameters frequency and dispersion: (ω,b)=(5,0)Hz.

It must be noted that changes in speed, for each layer, introduce 
changes in wavelength λ. Thus, inside M1, λ1=400m and thereupon 
the wave reaches half an oscillation in the first layer. The same 
occurs in medium M2, in which the wave has a wavelength λ2=600m 
and, since the spherical pulse starts at (xs,zs)=(500,500)m, the 
perturbation only completes half oscillation. In the last piece of travel 
M3, the wave performs only a quarter of one oscillation inasmuch 
as its wavelength is λ3=800m.

The interfaces, at 200m and 800m, can be clearly observed in 
the modelling results, as it is illustrated in Figures 4. It is visible in  
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Figure 4b, for z=200m;  the pressure therein changes sign, when the 
energy goes from M2 to M1. However, for z=800m, it can be observed 
that there is not a flip of sign in the transmitted wave to the zone 
of 4000ms-1. In Figure 4c, we show the imaginary part, P_im, of 
the pressure field for the shot displayed in Figure 4a, in order to 
provide a verification that irregular behavior does not happen in the 
imaginary component of IS; for Pim, only changes in amplitude are 
observed, just in the interfaces at 200m and 800m. 

Figure 4b also suggests that IP does not add anything to the 
magnitude of P. To see this, it was drawn in Figure 4d where the IP 
is drawn as a function of depth z. The largest amplitude of the IP is 
around 4x10-12 Pa, nearly109 times smaller than its FP.

THIRD EXPERIMENT:  STRONG CONTRASTS

To examine the behavior of the IS in a complex medium, with many 
sharp edges and strong lateral changes of density (velocity), like 
Marmousi, we first generate propagations in a simple and unrealistic 
velocity model, as that shown in Figure 5a. 

The yellow zone corresponds to 2000m/s, the orange zone to 
5000m/s, the red zone to 8000m/s, the brown zone to 11000m/s. 
The shot has a frequency of ω=100Hz and the source was located 
at the center of the medium. The wavelengths in each zones 
are λyellow=20m, λorange=50m, λred=60m, and λbrown=110m. It can be 
observed in Figure 5b that there are changes of wavelength between 
different velocities in the medium. The changes of direction of 
the wave-vector at the interfaces are well defined. The reflectors 
(interfaces) are clearly modeled. Furthermore, the ability of IS to 
define sharp zones is clearly demonstrated.

FOURTH EXPERIMENT: THE MARMOUSI MODEL

The Marmousi velocity profile is an important profile widely used in 
the field of seismic inversion to verify how faithful the final image 

Figure 5. (a) A simple and unrealistic velocity profile with sharp edges allows examining the behavior of the IS for strong lateral 
changes in density. (b) Propagation of pressure waves from the center through the velocity profile of (a). Note how the interfaces 
are delineated by the IS, especially the sharp zones.
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is, produced by the algorithms applied to a distorted Marmousi. 
The structural model of Marmousi is based on a profile through the 
North Quenguela Trough in Angola [20]. It has a complex structure 
that allows many reflections and transmissions of propagating 
waves. With this simulation, we demonstrate the behavior of the 
IS in a complex profile, where the IP remains almost five orders of 
magnitude below the FP, as it is displayed in the last two plots of 
Figures 6.

Figure 6a shows the real part and complex modulus of the wavefield.  
The black, pink, red and blue arrows refer to wedges, domes, faults 
and places with higher velocities, respectively. In Figure 6b, the shot 
is located at the center of the profile.  In Figure 6c and 6d, it can 
be observed that the IP of pressure is always smaller than its FP.

Figure 7 displays the real part and the complex modulus of the 
pressure field generated by three shots from the surface at positions 
zs=15m, xs=2000m, 4250m, 9000m.  It can be observed that the 
wavefield, for different source locations, outlines different parts 
of the model.

We performed a detailed convergence analysis showing that 
the results presented herein are independent of the number of 
evaluations of the Montecarlo function; however, we do not present 
such analysis here, see [21]. This exercise also includes an analysis 
of parameter b whereby it is concluded that the impact of b on the 
simulations is negligible and is related to the intensity of amplitude 
therefore, the conclusions of simulations apply.

More simulations, as function of frequency ω, were carried out to 
analyze the IP of IS, and the same conclusions were obtained. For 
instance, in Figure 8, the results of the imaginary part of the IP, for 
frequencies 5Hz, 30Hz, 40Hz, and 50Hz; for b = 20Hz, are exhibited. 
The IP is 105 orders of magnitude smaller than its functional part FP. 
This fact could be an important factor, because this allows saving 
much  calculating P, i.e. this fact might make it viable to use this kind 
of solution IS to do modeling without long times of computation. Up 
to this point we can conclude that the contribution to the pressure 
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Figure 6. Propagation of a wave with ω=100Hz and b=20Hz, from the center through Marmousi. It is used to show how IS delineates 
the interfaces in the model. (a) The Re[IS] is plotted and the level of definition of equation (20) is pointed out by using colored 
arrows. (b) The complex modulus of (IS) is shown.  (c) and (d) show the difference (~105) between the IP and FP. 

of the integral terms IP is sufficiently small to assure that a good 
approximation of pressure may be made without the IP term. This 
is the most important result arising from these simulations. This 
allows modeling pressure by using a simple formula for P=P0+ϵP1

where

(21)
P(x, z,ω)=I(x,z,ω)γ [ [ Y0(k̃ |r −r s|)−Y0(k̃ |r −r s |+)]  

  +i[J0(k̃|r −r s|)− J0(k̃ |r −r s |+)] ]

I(x, z,ω)= ρ0(x,z)
ρ0(xs ,zs )

g(ω)
2

, γ=(0.5I0 +ϵI1 ), k̃ =

√ω2−b2

c0
, |r−rs|=√(x − xs)2 + (z − zs)2

  and | r − r s |+=√(x − xs)2 + (z + zs)2  

On analogy with Hankel functions, equation (21) can be written as 

by defining ̄H0=Ȳ0+iJ̄0, where  ̄J0=J0 (k̃|r⃗- ⃗rs |)-J0 (k̃|r⃗-r⃗s |+) and similar 
for Ȳ0. Equation (22) is an approximated analytic formula to obtain 
pressure waves propagating inside a variable density medium; it can 
be used especially for modelling waves inside the earth.

(22)P(x, z,ω) = I(x, z,ω)γH0(x, z;ω)   
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CONClUSIONS
In this paper we present the basics of a formalism intended to 
provide an alternative solution to the forward problem in the 
scenario of seismic inversion. Cauchy’s equations for pressure 
waves propagating inside a medium with a variable density profile 
were deduced and analyzed. Solutions to Cauchy’s equation were 
presented through a perturbative approach up to first order from 
which we were able to define an equivalent Helmholtz equation for 
the propagation of waves in such medium, with variable density.

The Helmholtz equation for the medium with variable density 
was expressed as a Fredholm integral equation, by using the Born 
approximation, which consisted in two parts: the incident part and 
the contrast part. The possible solution in a Neumann series was 
outlined.

The incident wave, qj
inc, belonging to the solution to the Fredholm 

integral equation turned out to be a convolution of the Green’s 
function with a modified source Fq

i. Such convolution involved the 
existence of real and complex wave vectors ki, and involved the 
problem to compute integrals with integrands containing gradients 
of variable density and combination of Hankel’s functions. Anyhow, 
the analytic expressions for the incident pressure waves may be 
written as a functional part FP, and an integral part IP. Although 
similar approximations can be found in the literature (see [16]), we 
provided an approximated analytic solution for the incident wave and 
applied it to the problem of propagation of seismic waves.
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Computational implementations were developed in order to compute, 
for different velocity profiles, the functional and the integral parts, 
which constitute the incident wave, qj

inc. The computational analysis 
shows that the integral part is several orders of magnitude (∼105 

times) smaller than its functional part and, therefore, the IP can be 
neglected, up to such precision degree.

The computational analysis allowed us to generate a simple formula 
to calculate the incident wave, which is involved in every term of 
the Neumann series expressing the solution of the pressure field 
of propagating waves in the medium with variable density. We 
claim that every application, in 2D, involving propagating waves, 
in a medium with variable density, can use this simple formula as 
long as such application allows for a solution in a Neumann series.
The results presented herein motivate further exploration of the 
method to include higher-order terms in the expansion series such 
that we can include reflections and scattering of the wavefield, 
providing then a full description of wave phenomena in the medium. 
This issue is, nonetheless, out of the scope of this work and will be 
the object of future work.

The exploration of the modeling of waves to be implemented in a 
FWI process helped us understand the physical phenomena involved 
in the propagation of energy in a real medium. Such understanding 
leads us to conclude that a complete analytic solution of modeling 
is not possible in general and, consequently, iterative methods are 
required.
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