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ABSTRACT 
An implementation of the Orthogonal Matching Pursuit (OMP) 
algorithm was used and the results obtained therefrom are 
presented for simultaneous interpolation and denoising from 
seismic signals in the framework of sparse signal representation. 
OMP is an algorithm for sparse signal representation based 
on orthogonal projections underlying the signal over an over-
complete dictionary. This over-complete dictionary was designed 
using K-times Singular Values Decomposition (K-SVD). In each 
iteration, OMP calculates a new signal approximation and the 
approximation error is used in the next iteration to determine 
the new element. The new element corresponds to the largest 
magnitude of the inner products between the current residual 
and the original elements in the dictionary. The implemented 
algorithm was applied to VSP seismic data and refraction seismic 
data; results for the application in restored missing traces and 
denoise signals are presented.
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RESUMEN
Se implementó un algoritmo de Búsqueda Voraz Ortogonal (OMP) 
y se muestran los  resultados obtenidos usando esta técnica en el 
proceso de reducción de ruido e interpolación en datos sísmicos, 
bajo el esquema de representación poco densa de señales. El 
algoritmo OMP permite representar la señal poco densa basada 
en proyecciones ortogonales de la señal sobre un diccionario 
sobrecompleto. Los diccionarios sobrecompletos son diseñados 
usando k-veces descomposición en valores singulares (K-SVD). En 
cada iteración OMP  calcula una nueva señal aproximada y el error es 
usado en la nueva iteración para determinar el nuevo elemento. Los 
nuevos elementos corresponden al valor máximo de los productos 
punto del residuo con los elementos iniciales del diccionario. El 
algoritmo implementado es aplicado a datos sísmicos VSP y a datos 
de sísmica de refracción, obteniéndose resultados satisfactorios en 
interpolación de trazas y reducción de ruido de forma simultanea.
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Vertical seismic profile (VSP) data belong to a class of borehole 
seismic measurements that are commonly correlated with surface 
seismic data to improve vertical resolution on imaging processes. 
In particular, VSP refers to measurements with geophones located 
inside a wellbore at different depths and a source of energy located 
at the surface near the well. When the source is near to the well 
surface location, the VSP is called Zero-offset VSP. Numerous 
techniques have been proposed for improving the VSP signal 
quality through interpolation and noise reduction, most of which 
are classified in three main categories: methods based on physical 
wave propagation modelling [1], predictive modelling based on the 
linearity of seismic events [2], and domain-transform methods based 
on the sparsity of seismic data in an auxiliary domain [3]. 

More precisely, domain-transform methods are based on the sparse 
signal representation in dictionaries that is a signal processing 
framework intended to represent the signal of interest as a linear 
combination of a few predefined or learned signals belonging to a 
dictionary [4]. In this sense, several algorithms have been developed 
in recent decades for estimating these sparse coefficients such 
as matching pursuit [5], orthogonal matching pursuit [6], basis 
pursuit [7], among others. Furthermore, in this context, dictionary 

training approaches have also been developed in order to build 
transformation bases that enable describing the signals at hand.

Domain-transform based methods for interpolation and denoising 
of seismic data are generally processed using one of the following 
transform-domains: curvelet [8], pocs [9] and dreamlet [10]. 
Additionally, dictionary learning approaches for noise reduction 
were reported in [11],[12] and [13].  In a previous work, Beckouche 
[14] designed a dictionary learning that only used one dataset. 
However, despite being a learning dictionary, statistical processes 
require more than one dataset for extracting important and accurate 
Signal-based data.

The purpose of this study is to examine a sparse representation 
technique for denoising and interpolation of VSP data and refraction 
seismic data. In this study, sparse representation uses the OMP 
algorithm and a dictionary trained with a 29 VSP datasets for 
denoising seismic signals. We acquire refraction data and apply 
the OMP algorithm to interpolation of traces randomly annulled. 
The results obtained through application of the OMP algorithm for 
interpolation are encouraging as after the signal is being denoised 
using data redundancy, the interpolation process takes place. 
Results obtained with synthetic traces, as well as for real VSP and 
refraction seismic data, validate the proposed application.

INTRODUCTION1

2. TheOReTICal fRame

3. STaTe Of The TeChNIQUe

Sparse signal representation in overcomplete dictionaries is an 
analytic tool that has been satisfactorily implemented in multiple 
signal and image processing applications such as image compression 
[15], audio denoising [16], and seismic signal pre-processing [17]. Its 
principle basically consists in representing the signal of interest as 
a linear combination of a few columns from a previously specified 
redundant matrix called dictionary, where each column of this matrix 
is called an atom of the dictionary. To be precise, let us consider the 
discrete-time signal of interest denoted by the vector x ∈ 𝕽m; this 
signal can be represented as

where D ∈ 𝕽m×n with m<n is the dictionary matrix and a ∈ 𝕽m is 
the coefficient vector that generally contains just a few nonzero 
entries. Equation 1 leads to an underdetermined set of linear 
equations whose solution is known to be a combinatorial NP-hard 
problem. In general, a sparse signal representation can be obtained 

ORTHOGONAL MATCHING PURSUIT (OMP)

OMP algorithm belongs to the class of greedy algorithms that 
iteratively estimates the signal coefficient vector [6]. More precisely, 
this algorithm selects the dictionary atom that best correlates with 
a predefined residual, where the selected atoms are continually 
updated such that the signal is expanded in an orthogonal subspace. 
Furthermore, at each iteration, the residual is projected onto the 
orthogonal complement subspace expanded by the selected 
atoms. In sum, this method finds an approximate estimate of 
the true support set, which contains the indices of the columns 

 (1)=

by implementing diverse estimation techniques such as matching 
pursuit (MP) [5], orthogonal matching pursuit (OMP) [6], basis 
pursuit (BP) [7], and many others. On the other hand, the dictionary 
training has involved a set of techniques enabling the design of 
dictionary atoms that better describe the signals at hand, where the 
KSVD algorithm [18] is the most representative method. In this work, 
we develop the interpolation and denoising of refraction and VSP 
seismic signals based on OMP and KSVD algorithms. Furthermore, 
when the sparse signal representation is used for denoising, it 
is assumed that the relevant energy of the noiseless signal can 
be obtained as a linear expansion of a small number of atoms of 
the dictionary. Therefore, after determining a sparse coefficient 
vector by implementing a reconstruction algorithm such as OMP, 
a noiseless version of the desired signal can be restored by using 
the linear operator of the Equation 1.  Additionally, the denoising 
process can be performed using OMP because sparse representation 
implicitly implements a thresholding operation.

contributing to the original sparse vector. The OMP algorithm gives 
an approximate solution to Equation 1 providing a solution to one of 
the following problems: 

a. Sparsity-constrained coding problem, given by:are taken   
 before and after this point.

b. The error-constrained sparse coding problem, given by:

 (2)= || − ||2
2 Subject to || ||0≤ ,  

(3)= || ||0  Subject to || − ||2
2≤ ,
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where k is the number of  representation coefficients, and ε is the 
approximation error.

The OMP algorithm can be stated as follows: Firstly, initialize the 
residual r=x then select in each step, the atom Di  with the highest 
correlation with to the current residual signal r, this step can be 
thought of as a comparison between each atom Di to and the current 
residual. Once the atom Di  is selected, the signal is orthogonally 
projected to the span of the previously selected atoms including Di 
; the residual is recomputed, and the process is repeated from the 
beginning (see algorithm 1 in Table 1). The reader is encouraged 
to note that line 5 presents the greedy selection step, and line 6 
shows the orthogonalization step. [17]. 

1 : Input Dictionary D, Signal x, Sparsity k o error ε
2 : Output Sparse coding a subject to x ≈Da
3 : r ← x
4 : While stop criterion do
5 :         i= argmax |DTr|
6 :         ai=(Di)+x                ⊳ (Di)+pseudoinverse
7 :         r=x-Diai
8 : end while

Table 1. OMP Algorithm 1

Table 2. OMP Algorithm 2

K-TIMES SINGULAR VALUE DECOMPOSITION

Sparse representation intrinsically implies that the signal can 
be reconstructed by using only a few numbers of atoms from a 
dictionary. This sparse coding can be easily obtained by designing a 
dictionary from a training data set. The learning dictionary shows a 
local structure from seismic data and a sparse representation within 
a fixed dictionary. A fundamental question in the above formulation 
is the choice of an appropriate dictionary. For this purpose, a K- SVD 
algorithm is executed in order to design such a dictionary.   The 
K-SVD algorithm requests for an initial dictionary D0, iterations k, 
and a data set arranged in an X array. This algorithm searches for 
a good dictionary that best reproduces the signals X. This problem 
is formulated as follows: 

The K-SVD algorithm initially calculates the coefficients for sparse 
representation in a matrix A followed by an update of the atoms 
in the dictionary; see algorithm 2 in Table 2. K-SVD uses OMP for 
sparse coding and the dictionary update is performed one atom at a 
time, thus optimizing the target function for each atom individually 
while keeping the rest fixed [18].

Letting i denote the indices of the signals in X, which use the j-th 
atom, the update is obtained by optimizing the target function.

over both the atom and its related coefficients in row Ai. The resulting 
problem is a simple rank-1 approximation task given by

(4)⏟ || − ||2  Subject to || ||0≤ ,

(5)|| − ||2
2 ,

(6){ , }=⏟
,

|| − ||2
2 Subject to || ||2=1

Where Dj  and Aj means the j-th column of dictionary D and j-th row 
of coefficients matrix A, respectively; also Ej=Xj-∑ Dj Aj is the error 
matrix without the j-th atom , Dk is the updated atom and A^Tis the 
new coefficient in row Aj. This problem can be solved using SVD 
decomposition of the matrix Ej=U∧VT; the update Dj  is a first column 
of U and the multiplication of the first eigenvalue ∧(1,1) and first 
column of V  is used to update the coefficient Aj

T.

A

D,A

1  : Input Initial dictionary D0, Signals X, Number of 
     coefficients k o error ε, iteration number k  
2  : Output Dictionary D, Sparse coding A subject 
     to x≈Da
3  : D ← D0
4  : for n = 1...k do
5  :     Ai = min ||x i -DAi||22               Sunject to ||A||0 ≤ K

6  :     for j=1...L do      
7  :         Dj=0 
8  :         i=indices of signals in X sparse coefficient Dj
9  :         E=Xi-DAi

10:          {Dj,A j} = min||E-DiAT||2F

11:          Dj=U1           Sunject to Ek=U VT

12:          Aj,i= ∧1,1*V1
13:      end for
14: end for

∧

eXPeRImeNTal 
DeVelOPmeNT

4.

DICTIONARY LEARNING

The set of training data for designing the dictionary is composed 
of 29 check-shot VSP datasets. The matrix of training signals is a 
non-overlapping array containing samples of size 100 in time. In 
order to build an initial dictionary, 160 signals of the VSP datasets 
are randomly selected. The dictionary has been trained based 
on the following parameters: k=15 iterations and K=5 number of 
coefficients for OMP sparse coding; these parameters are based 
on previous works found in literature, and 5 coefficients are the 
minimum coefficients that represented the signal with minimum 
error. Waveforms are shown in Figure 1 (zoom over 16 atoms), which 
are the best representation of VSP data as these dictionaries extract 
the main characteristics of training data. 
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Figure 1. Dictionary trained with K-SVD using VSP seismic 
data; waveforms shown wavelets with different phase.
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DENOISING SYNTHETIC VSP DATA

Synthetic data are obtained from a visco-acoustic attenuation model, 
and the source is modelled using a Ricker wavelet with 20 Hz as 
the dominant frequency, a quality factor of 50, a wave velocity of 
2000 m/s, and the geophones are placed in separate locations using 
regular distances. The synthetic signals are contaminated by additive 
white Gaussian noise with a SNR of 5 dB.  For noise reduction, the 
OMP algorithm is implemented with a window of 100 ms and one 
sample shifted at a time. Additionally, five coefficients are used for 
the sparse coding using OMP. Figure 2 shows the seismic traces 
before being interpolated and denoised. After the interpolating and 
denoising process, the output traces have a SNR equal to 16 dB, 
showing an improvement of about 11 dB. We use Fourier bases on 
the interpolation process to compare reconstructed traces, using 
OMP with both dictionaries (Fourier bases and dictionaries trained). 
To determine performance of both approaches, we use matching 
by correlation between reconstructed traces and the original trace. 
The correlation of the original trace with the reconstructed trace 
with OMP using Fourier bases is 0.6170 and 0.6260 using OMP with 
dictionaries learned (DL).

Trace Number
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Figure 2. Signal contaminated (zoom 15 traces) with withe 
Gaussian noise with SNR=5 dB and removed 4 traces.

Figure 4. (Top) Original traces (zoom over 21 traces) with 10 
traces removed. 

Figure 3. (a) Original (black) and interpolated and denoised trace with OMP with Fourier bases (red) and Dictionaries learned 
(blue). (b) Original (black) and interpolated and denoised (red, blue) amplitude spectrum.

Figure 3a shows that seismic trace 15 from the synthetic data after 
the OMP process improve the spectral distribution of the signal 
and recover the amplitude and phase of the wavelet, showing that 
relevant content of the trace are preserved.  It it also shows that 
the noise components at low and high frequencies are attenuated.

ReSUlTS 5.
ON REAL VSP DATA RESULTS

Improvements in SNR relation and recovery of lost traces is material 
in VSP processing, considering that quality factor estimation based 
on logarithmic spectral ratio, centroid frequency-shift, and peak 
frequency-shift methods are very sensitive to amplitude spectrum 
distribution.

We design an experiment to evaluate the performance of the OMP 
algorithm on real data. In this experiment, we removed ten traces 
from the original data at random locations, as shown in Figure 4, 
simulating missing traces. 

Assuming that bad traces and traces that first break do not 
correspond with neighbourhood traces, these are removed in the 
quality control stage.  The application of OMP algorithm must 
restore these traces by interpolation and attenuate the noise in all 
the data, as show in Figure 5.  Comparison at time and frequency 
domain between original and recovery traces by OMP is encouraging. 
The correlation between original traces with reconstructed traces 
with OMP using Fourier bases is 0.6538 and 0.6668 using OMP with 
dictionaries learned (DL). 
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Figure 6. Dictionary trained with refraction seismic data.

Figure 5. (a) Real trace 147 removed (black) and interpolated trace (red). (b)  real trace removed (black) and spectrum 
interpolated trace (red). 

Figure 7.  (a) Refraction seismic data with 6 traces removed (b) Data with interpolated traces.
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NEAR-SURFACE SEISMIC REFRACTION RESULTS

Acquisition in shallow seismic refraction to estimate a P-wave 
velocity-depth model requires the identification of first-arrival times 
associated with refracted waves [19]. Correct picking of first arrival 
is required for the tomography inversion process and it is affected 
by loss data and low S/N relation traces. 

A further problem in land data is the restriction to locate receivers 
in regular areas; therefore, new data acquisition design based in 
sparse data is a possible solution. We acquire refraction data to test 
the performance of OMP algorithm for interpolation of randomly 
annulled traces.

The experiment acquired 160 different shots with only one 
trace by shot so as to have sufficient redundancy to build the 
trained overcomplete dictionary. This dictionary contains main 
characteristics (shapes) of this kind of signals, which allows 
representing a wide range of signal phenomena. Figure 6 shows a 
trained dictionary of 160 atoms (traces) of 100 samples each in time.

Ti
m

e 
(m

s)
0

0

50

100

5 10 15 20

To evaluate this method on refraction seismic data, data was 
acquired using a sample rate of 0.5 ms and 24 different offsets. We 
remove 6 traces at random positions and used OMP for interpolation 
of these data. 

Figure 7a shows the data with 6 removed traces and the data after 
the interpolation process (Figure 7b). The correlation of the original 
traces with reconstructed traces with OMP using dictionaries learned 
is 0.6513. 
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Figure 8 shows the original trace and the interpolated trace. The 
reconstructed traces show the same shape as the original data, and 
preserve the amplitudes and phases, which produce a very good 
alignment of the refraction event.
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Figure 8. (a) original trace 19 removed (black) and interpolated trace (red). (b) original trace 19 removed (black) and 
interpolated trace (red). 

CONClUSIONS
o The main contribution of this work is the implementation 
and validation with real data of an Orthogonal Matching Pursuit 
(OMP) algorithm for interpolation and denoising. The advantage of 
the OMP technique in relation with other interpolation techniques 

is its robustness against the presence of noise, as it is based on a 
trained dictionary with redundant data.

o Real VSP data test demonstrated that it is possible to 
accurately recover seismic signals from low signal to noise ratio data 
eliminating high frequencies through overlapping windows with only 
a few coefficients from its representation. This result must have an 
impact on quality factor estimation methods in frequency domain.  

o This technique works as a reconstruction method that 
promotes prior knowledge of the signal sparsity.  Application to 
interpolation shows that traces missing randomly on refraction 
seismic data are recovered with high performance in amplitude and 
phase. 
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