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ABSTRACT 
Reverse-Time Migration (RTM) is a two-way wave-equation based method used to generate images of the Earth’s subsurface. RTM 
has been successfully used in seismic imaging as it allows defining complex structural areas. However, RTM is a highly computational 
expensive algorithm that requires the computation of both the source and the receiver wavefields for each shot. Fortunately, 
numerical methods that compute the wave propagation using the wave equation are highly parallelizable, so they can take leverage 
on GPU features. However, the main problem of a GPU-RTM implementation is memory management. To take advantage of the GPU 
computing capabilities, the transfers to host RAM memory storage, or more expensive hard disk storage must be avoided. We present 
the analysis of three different strategies to implement RTM using only the memory available on a single GPU: (1) Stored wavefield 
checkpointing (2) Backpropagation of source wavefield using stored boundaries, and (3) Backpropagation of source wavefield using 
the two last snapshots and random boundaries, showing that the large amount of memory required in the first two strategies 
becomes a restriction over the model size. The last method (using random boundary conditions) is shown as a suggested solution 
to the memory problem of using a single GPU.
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RESUMEN
La migración reversa en tiempo (RTM) es un método basado en la 
ecuación de onda bidireccional usado para generar imágenes del 
subsuelo. RTM ha sido empleado exitosamente en la exploración 
sísmica debido a que resuelve áreas de alta complejidad estructural. 
Sin embargo, RTM es un algoritmo con un alto costo computacional 
que requiere el cálculo del campo de la fuente y el campo de 
los receptores en cada disparo. Afortunadamente, los métodos 
numéricos que permiten la extrapolación del campo de onda son 
altamente paralelizables y se sacan provecho de la capacidad de 
cómputo de la GPU. Sin embargo, el principal problema de una 
implementación GPU-RTM es el manejo de memoria. Para sacar 
provecho de la capacidad de cómputo de la GPU, se evitaron las 

transferencias de memoria hacia la RAM del host u otras más 
costosas como las transferencias al disco duro. Se presenta el 
análisis de tres diferentes estrategias para implementar RTM usando 
únicamente la memoria disponible en una GPU: (1) Almacenar el 
campo en puntos de control, (2) Retropropagación del campo de 
la fuente almacenando las fronteras, y (3) Retropropagación del 
campo de la fuente usando los dos últimos snapshots y fronteras 
aleatorias, mostrando que la gran cantidad de memoria requerida 
por las dos primeras estrategias se convierte en una restricción 
sobre el tamaño del modelo. El último método (usando condiciones 
de frontera aleatoria) se presenta como la solución sugerida para el 
problema de memoria usando únicamente una GPU.
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Reverse-Time Migration (RTM) is a seismic imaging method that 
uses the solution of the full wave equation to obtain imaging of 
complex areas, particularly those with abrupt changes of lateral 
and vertical velocities. It was initially proposed by Baysal [1], 
but only the last decade progress in computing technologies has 
allowed the implementation of the algorithm and its practical use 
in 3D depth seismic processing projects. In recent years, there 
has been growing interest in high-performance computing (HPC) 
architectures based on graphic processing units (GPUs) that 
assemble a considerable amount of computing devices with single 
instruction multiple thread (SIMT) cores [2]. HPC based on GPUs 
are suitable architectures for the implementation of RTM, because 
of the inherent parallelism on each time step in the algorithm [3]. 
In addition to the computing resources, RTM also demands large 
memory resources, as the source and receiver wavefields must be 
available for computing imaging condition. Thus, depending on the 
volume of the wavefields, the implementation can exceed the limit 
of a single device (GPU) memory. This implies the use of higher 
memory hierarchy levels, which degrade the code performance due 
to the data transfer overhead. 

A different approach to overcome the GPU memory constraint is 
to use implementation strategies where memory requirements 
are reduced in exchange for increasing the number of computing 
operations because the source wavefield should be recomputed. 
Some strategies have been already implemented for CPU 

architectures, such as optimal checkpointing proposed by Dussaud 
et al. [4], which can be adapted to GPU architectures. 

The aim of this work is to evaluate three different GPU implementation 
strategies of the RTM method, focused on memory management 
such that a 3D shot can be migrated in a single GPU, thus avoiding 
expensive transfers from (or to) host RAM or hard disk memory. 
The main contribution of our work is to demonstrate that the 
robust oil industry RTM algorithm can be effectively mapped to 
GPU based architectures. Our RTM implementation is based on a 
3D Time Domain Finite Difference numerical scheme to solve the 
acoustic wave equation, with absorbing boundary conditions. The 
conclusions of this work about the GPU memory management in 
the analyzed strategies can be extended to simulations based on the 
same numerical scheme for other forms of wave equations, such 
as visco-acoustic, elastic or electro-magnetic. 

This document is organized as follows: the RTM method is introduced 
in Section 2 and the implementation strategies of the RTM method 
in Section 3. Section 4 summarizes the main characteristics of 
the GPU architecture used for this work. Section 5 presents the 
performance results from the different RTM implementations and, 
finally, the conclusions and discussion are presented in Section 6. 
All the implementation strategies are assessed in terms of the 
resulting image quality, memory requirements, and execution times.

INTRODUCTION1.

2. TheOReTICal fRame
RTM is a mainstream method used to generate subsurface images 
in complex areas, which favors the identification of possible reservoir 
locations. RTM generates a reflectivity map R(x,y,z) by computing 
an imaging condition from the correlation between the source and 
the receiver wavefields. This condition is given by

where ps (x,y,z,t) is the source wavefield, which is obtained by 
propagating the source through the medium; and pr (x,y,z,t) is the 
receivers wavefield, which is obtained by backpropagating the 
seismic traces information. Both wavefields require a numerical 
solution of the wave equation that models the propagation of a 
seismic source through a medium. In this work, we use the constant 
density acoustic wave equation to model the propagation of a seismic 
source. The isotropic acoustic wave equation is given by

where ∇2 is the Laplacian operator, and ν is the p—wave velocity 
model of the subsurface. One of the most common methods to 
find the numerical solution of the wave equation is applying finite 
differences to the temporal derivative and compute the Laplacian 
operator with finite differences or pseudo-spectral methods. The 

2nd order finite difference approximation in time for the temporal 
part of the equation is given by

 In Equation 3, pk is the p wavefield in the time t= k∆t. The source 
wavefield can be computed from t=0 to t=tmax, assuming a non-
perturbed media in the two first time steps and knowing the source 
position and its wavelet signature. In the same way, the receiver 
wavefield can be back propagated from t=tmax to t=0 assuming 
zero values in the last two time-snapshots and injecting the seismic 
traces as sources.

ABSORBING BOUNDARY CONDITIONS

Representing the wavefield on a memory-constrained computing 
system implies that only a reduced time-space part of the wavefield 
can be stored. This means that artificial boundaries are created in 
the border of the model. Depending on the numerical method, the 
effect of the border can be: periodicity, if pseudo-spectral methods 
are used; or reflections, if finite differences are used. In any case, the 
energy reaching the artificial boundaries must be vanished, so that 
it does not affect the migrated image. Several algorithms have been 
proposed to manage the artificial boundaries. Perfectly Matched 
Layer (PML) was used in this work for the first two strategies, as it 
is an efficient and simple method. The third strategy uses a random 
boundary method as proposed by Clapp [5]. In particular, for the PML 
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absorbing boundary conditions, we opted for the convolutional PML 
(CPML), proposed by Pasalic [6], which applies PML directly on the 
second-derivative wave equation in (2). The main idea of CMPL is to 
introduce a complex stretching parameter given by

in the differential operators of the acoustic wave equation on each 
direction i∈{x,y,z}.  σi and αi are parameters that adjust the behavior 
of vanishing energy. The new differential operators in the wave 
equation are

where ψi and ζi are two additional wavefields that are computed 
recursively on each time step as follows

In previous equations, ai and bi are given by.

Now, substituting the second derivatives given by Equation 5 in the 
acoustic wave equation in (2), we have

Equation 8 is applied near the model borders. To use this equation, 
the computation of a time snapshot follows the next three steps:

1. Update ψi
n using ψi

n-1 and the first derivative of pn.
2. Update ζi

n using ζi
n-1, the second derivative of pn and the first 

derivative of ψi
n, computed in the previous step.

3. Use Equation 8 to compute pn+1.

The fields ψi and ζi require extra memory for each PML border.

eXPeRImeNTal 
DeVelOPmeNT3.

MEMORY MANAGEMENT STRATEGIES

The implementation of the RTM algorithm requires large amounts 
of memory in real seismic surveys. Naive implementations of this 
algorithm can easily exceed the GPU memory limits, as it is shown 
in Table 1; therefore, it is necessary to consider strategies to reduce 
the memory usage. These strategies recompute the wavefields 
when they are required, instead of storing the entire wavefields. 
Thus, memory-constrained architectures, such as GPUs, can be 
used at the cost of increasing the execution times of the algorithm.

In the RTM algorithm, each shot requires a sub-model size according 
to the patch size, the migration apron, and the absorbing boundary 
layer width, as shown in Figure 1. We estimate the memory 
capacity required by the RTM algorithm for a FDTD approximation 
of 8th order in space and 2nd order in time, an extended absorbing 
boundary layer L=8 grid points, tmax=5s, single precision floating 
point representation, and a full migration apron. The velocity model 
size and the time step can be reduced depending on the central 
frequency fq of the source wavelet. This reduces significantly the 
memory requirements, but the numerical method must satisfy the 
stability and a minimum number of points per wavelength. Table 1 
shows the amount of required memory, and maximum spatial and 
time sampling steps for different central frequencies of the source 
wavelet, assuring a minimum number of points per wavelength of 
ppwl = 3. The information given in Table 1 is for the SEG synthetic 
velocity model.
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Snapshot [MB

Full 
Wavefield [GB]

Wavefield
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3
6
12
18
24
31

160
80
40
27
20
16

85
169
337
505
673
841

85
169
337
505
673
841

26
50
99

148
197
246

16.17
8.08
4.04
2.69
2.02
1.61

309
618
1237
1855
2474
3092

0.75
5.71

44.97
150.97
356.91
695.96

0.23
3.53

55.63
280.06
882.99
2151.92

0.06
0.67
6.13
21.72
52.74
104.5

Table 1. Variation of the memory requirement to store the full wavefield for different frequencies fq of the source wavelet.

Figure 1. Top view for RTM shot migration sub-model
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Note in Table 1 that for source wavelet of central frequency of 31 Hz, 
the computing system may require up to 2 TB of memory to store the 
source wavefield for all the 3092 time steps. This amount of memory 
could be available at low memory hierarchy levels, such as hard disk 
drive, although its use may cause very slow and inefficient execution 
of the RTM algorithm. To overcome this problem, various strategies 
have been reported [4]. In this work, we focus in evaluating such 
strategies to select those that can be used in industry applications 
using a single GPU to migrate a single RTM shot.
 
STRATEGY 1: STORING WAVEFIELD CHECKPOINTING

The first strategy uses the available memory in the GPU device 
to store checkpoints in the source modeling process. When the 
imaging condition requires a non-stored source wavefield snapshot, 
it is recomputed from the nearest checkpoint. Additional to uniform 
checkpoint distribution along the modeling time steps, optimal 
checkpointing strategies have also been reported in the literature 
[7],[8]. These strategies increase the computational complexity, 
while reducing the memory complexity to a logarithmic function 
of the total number of steps. 

STRATEGY 2: BACKPROPAGATE THE SOURCE WAVEFIELD
USING STORED BOUNDARIES

In the previous strategy, the source wavefield is recomputed in the 
forward direction starting from checkpointing snapshots. However, 
the source propagation is a reversible process itself, taking into 
account that we can solve for pi-1 in Equation 3 instead of solving 
for pi+1. This allows us to propagate the source field up to tmax and 
then recompute it backwards, saving only the two last time steps 
with two memory buffers.

The main problem with this strategy is that the energy at the 
boundaries cannot be reversed, as the PML vanishes the energy 
reaching the model’s border. This means that on a single time step, 
the field in the inner part of the model can be recovered, but the PML 
must be stored [9],[4]. Strategy 2 is an efficient implementation 
strategy, in terms of memory management, but the amount of 
memory used to store the wavefield at the boundaries can depend 
largely on the size of the model. For the velocity models shown 
in Table 1, and assuming FDTD approximation of 8th order in the 
spatial derivatives, the wavefield at the boundaries ranges from 
0.06 GB up to 104.5 GB of memory. Currently, the most advanced 
GPU cannot handle such amount of memory, making this strategy 
impractical for industry applications using a single GPU. 

This strategy can be extended to the RTM with a visco-acoustic 
modeling but the wavefield should be reconstructed including 
attenuation phenomena [10]

STRATEGY 3: BACKPROPAGATE THE SOURCE WAVEFIELD 
USING ONLY TWO LAST SNAPSHOTS AND RANDOM 
BOUNDARIES

The random boundaries technique proposed by Clapp [5] extends 
the velocity model with carefully generated random values. The 
goal of this technique is to generate a random reflection pattern of 
the energy reaching the model’s border. Its two main characteristics 
are: first, the energy reflected by the boundaries at the source 
wavefield is not coherent with the receiver wavefield and, therefore, 

the final image will be affected only by a random noise; second, the 
energy is not vanished and the modeling process is now reversible 
with a stable scheme. The latter reduces significantly the memory 
requirements as the wavefield at the boundaries does not need 
to be stored, and the source wavefield only requires the last two 
snapshots to be recomputed. These features allow for successful 
application of strategy 3 to in industry applications where a 3D shot 
can be migrated with RTM in a single GPU without any problem with 
the memory available in the device..

GPU ARCHITECTURE

The RTM strategies under study in this work will be implemented 
on the Nvidia K40 GPU. Therefore, in this Section we describe only 
the GPU architecture, and the specifications of the CPU, host RAM 
and I/O bandwidth are irrelevant for the paper’s main objective.

GPUs are parallel computing devices designed for video operations 
such as image rendering. These devices contain hundreds of cores 
based on a Single Instruction Multiple Thread (SIMT) architecture 
and have been adapted for scientific computation algorithms. 
Nowadays, general purpose applications can be developed using 
these devices with programming models and APIs like CUDA and 
OpenCL.

K40 GPU

GK110b

192 Single precision cores

SMX

64 Double precision cores

32 Special Function Units

65536x32 register file

64 KB Shared Memory / L1 Cache

L2 Cache

Device Memory RAM

PCI bus

SMX
SMX

SMX
SMX

Figure 2. GPU architecture

The GPU gathers thousands of computing elements in a single chip 
adding new memory hierarchy levels as shown in Figure 2. These 
computing elements represent more computational power than 
conventional CPUs, but they require optimal data transferences to 
achieve the best performance. Data reaches GPU from CPU through 
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ReSUlTS4.
The three strategies of the RTM method were implemented on a 
Nvidia K40 GPU. The constant density acoustic wave equation was 
solved using FDTD approximation, and the CPML condition was 
implemented to avoid artificial reflections on the model’s border for 
the first two strategies. The last strategy uses random boundaries 
to manage artificial boundaries.

The essence of all strategies is the routine to generate one time-
step in the modeling process. At each time-step, the wave equation 
is solved with an explicit scheme, such that each point in the 
model can be computed independently. In the proposed parallel 
implementation, one time-step is generated in two GPU kernels: one 
for the wave equation, and one for the CPML absorbing boundary 
conditions, such that all spatial points of a single snapshot are 
computed in parallel. Before starting a GPU process, the data 
must be transferred to the GPU memory. The transfers between 
GPU and CPU must be minimized as they are slow compared with 
the computing time. The capacity of the GPU memory available to 
process each shot for the K40 GPU device memory is 12 GB.

Figure 3. GPU thread architecture. Adapted from [2]

the PCI bus, and it is stored on the device memory. Then, the data 
can be accessed from the computing cores and can be cached in 
shared, L1 and L2 memories.

Programmers employ cores launching a large amount of threads on 
the GPU. This hides memory latencies creating a pipeline between 
computing and memory access operations. The threads have their 
own hierarchy, which constrains the hardware resources they can 
access. This is shown in Figure 3. A single thread can have its own 
general purpose registers; a group of threads, called a block, may 
have access to the resources of a single Streaming Multiprocessor 
(SMX) including shared memory, and the grid conformed by the 
whole set of thread blocks can access all device resources including 
the device RAM memory. 

Single  Thread

Single  core

Registers

SMX

Shared Memory

GPU

Device Memory

Thread Block

Grid

Parameter Value 
Nx
Ny
Nz
dx
dy
dz

Shots
dt(data)
fq(data)

169
169
50

80 [m]
80 [m]
80 [m]

196 [shots]
4 [ms]
5 [Hz]

Table 2. Model Parameters and acquisition used in all 
experiments

Table 3. L2-error norm of the migrated image using all 
strategies compared with the migrated image storing the 

entire wavefields. GPU memory and execution times required 
for all strategies.

To understand the GPU components and to make efficient 
applications, programmers use the hardware abstraction model 
of the GPU given by the available APIs. Also, GPU vendors provide 
recommendations to improve application’s performance, especially 
on memory access. These recommendations include the reduction 
of memory transfers between CPU and GPU, but due to the large 
memory required by the RTM algorithm, GPU RAM could be not 
enough to store all the wavefields, and CPU RAM may be used. This 
increases the data transfers between GPU and CPU and decreases 
performance significantly; hence, computing strategies become 
the solution to make all calculations using only the GPU memory.

Velocity Model in x = 7440.0[m]

Distance - crossline [m]

D
ep

th
 [m

]

Ve
lo

ci
ty

0
0

2000

2000

1000

3000

4000

4000
3500
3000
2500
2000
1500

4000 6000 8000 10000 12000

Velocity Model in y = 4960.0[m]

Distance - inline [m]

D
ep

th
 [m

]

Ve
lo

ci
ty

0
0

2000

2000

1000

3000

4000

4000
3500
3000
2500
2000
1500

4000 6000 8000 10000 12000

Figure 4. Left: Cross-line of the SEG velocity model at 7.44km. Right: In-line of the SEG velocity model at 5.12km.

Strategy kc L2-error GPU Memory
per shot [GB]

Execution
Time [s]

1
1
1
1
2
3

4
8

14
20

N.A.
N.A.

0
0
0
0

2.09×10-6

4.48×10-4

8.16
3.17
1.88
1.36
1.47
0.16

17.55
33.05
52.78
72.70
20.05
23.27

The proposed parallel implementation for the three strategies was 
tested using the SEG velocity model shown in Figure 4. The model 
parameters and data are shown in Table 2. The average execution 
time to migrate a single shot and the GPU memory required by all 
strategies are shown in Table 3.
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STRATEGY 1

This strategy only stores some snapshots of the source wavefield 
and the missing snapshots are recomputed from the last stored 
checkpoint. To analyze the required memory and the execution 
time, the imaging condition was calculated on each time-step, but 
the interval to set our checkpoints range from kc=4 to kc=20. The 
memory resources and the execution times used by this strategy, 
for different kc values, are shown in Table 3. The resulting image is 
shown in Figure 5. These images are used as reference to compare 
with the images obtained with the following strategies.

STRATEGY 2

The second strategy only stores the boundaries of the source 
wavefield. The L2-error norm obtained with this strategy is 2.09 
×10-6 and the computational resources are also shown in Table 3. 
The migrated image is shown in Figure 6 -left and -right. Note that 
the error in the quality of the migrated image is tolerable, and the 
balance between the GPU memory requirements and execution 
time makes this strategy very convenient for large size 3D models.

STRATEGY 3

The last strategy presented herein required only 0.16 GB of device 
memory, but the L2-error norm is 4.48×10-4  compared to the 
migrated image obtained with strategy 1. The migrated image 
obtained with this strategy is shown in Figure 7. It must be noted 
that, despite the numerical error obtained with this strategy, the 
image locates adequately the reflectivity map as there is incoherent 
random boundaries energy reflection and, therefore, the forward 
and backward wavefields correlate poorly, minimizing coherent 
artifacts produced by the boundaries. The greatest error is caused 
by the top boundary that is very close to the source and generates 
strong random reflections and diffractions at first modeling time 
snapshots. Different solutions can be used to solve this problem, 
such as applying PML boundary conditions to the top part of 
the model or increasing the random boundary length at the top. 
Those solutions, however, would increase the memory amount 
requirements of strategy 3. 

Figure 8 and Figure 9 compare the results of strategies 2 and 3 
respect to the reference: Strategy 1. The magnitude of the difference 
is larger in strategy 3, according to the L2 error calculated on Table 
3. The error in Strategy 2 is located on the top of the model as the 
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Figure 7. Left: Crossline of the migrated image at 7.44 km, and Right: Inline of the migrated image at 5.12 km; using RTM 
implementation with strategy 3.

Figure 6. Left: Crossline of the migrated image at 7.44 km, and Right: Inline of the migrated image at 5.12 km; using RTM 
implementation with strategy 2.

Figure 5. Left: Crossline of the migrated image at 7.44 km, and Right: Inline of the migrated image at 5.12 km; using RTM 
implementation with strategy 1.
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reconstruction of the source wavefield is less accurate on the early 
time steps, near to the source location. This means that the error is 
mainly produced by numerical rounding due to the recomputation 
the source wavefield. Furthermore, strategy 3 locates the error near 
the lateral random boundaries.

Finally, Figure 10 presents a comparison of memory usage for all 
strategies as a function of the execution time. The best execution 
time is achieved by Strategy 1, but it also requires the largest 
memory. This strategy trades off between memory and computation 

Figure 8. Left: Crossline of the difference between the migrated images at 7.44 km, and Right: Inline of the difference between 
the migrated images at 5.12 km; using the RTM implementation strategies 1 and 2. The amplitude of the images is amplified 

106 compared to Figure 6.

Figure 9. Left: Crossline of the difference between the migrated images at 7.44 km, and Right: Inline of the difference between 
the migrated images at 5.12 km; using the RTM implementation strategies 1 and 3. The amplitude of the images is amplified 

103 compared to Figure 7.

Figure 10. : Comparison of the memory usage (in GiB) for all 
strategies as a function of the execution time (in secs.).
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time, depending on the kc parameter. This makes this strategy a 
very flexible option to fit the algorithm on any memory constrained 
architecture. For the specific experiment, Strategy 2 has good 
performance in terms of memory and execution times at the same 
time. However, in a large scale problem, the GPU memory available 
can be exceeded when the boundaries are large. Strategy 3 obtains 
the best ratio between execution time and memory, but due to the 
boundary conditions method, it introduces an error in the image. 
However, the quality of the image is acceptable in terms of reflection 
events and the artifacts can be attenuated applying post-processing 
filters to reduce incoherent noise in the image.

CONClUSIONS
In this work, we evaluate three RTM implementation strategies 
focused on managing the memory, such that the seismic RTM 
algorithm can be executed on a single GPU device. The GPU is 
a memory-constrained architecture that reaches its maximum 
performance when memory transfers from (or to) CPU are 
minimized. In the strategies studied herein, each shot is migrated 
independently by making only memory transfers at the beginning 
and end of the migration. The entire source wavefield cannot be 
fully stored in any GPU available.  Furthermore, the three strategies 
analyzed in this work fix this problem by recomputing portions of 
the source wavefield. 

Strategy 1 can use all the memory available on the GPU by adapting 
the checkpoint parameter; however, the computing time increases. 
Strategy 2 stores the boundary of the source wavefield to recompute 
it backwards in time and gets good balance between the GPU 
memory requirements and the execution time; however, if the GPU 
memory available is not enough to store the boundary and the two 
last snapshots, this strategy cannot be used. Finally, Strategy 3 has 
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the lower execution time and requires less memory as compared 
with other strategies. Nevertheless, the reconstruction of the 
source wavefield introduces numerical error in the migrated image. 
Strategy 3 is therefore the recommended strategy to implement in 
the GPU architecture for large data and the numerical error in the 
final image produced by the random boundaries can be removed 
with post-processing techniques such as FX-decon [11], TFD [12] 
and structure tensors [13].

To conclude this analysis, the maximum frequency that can be 
migrated with the same parameters, the same velocity model, and 
the same GPU used in this article are determined. The results show 
that Strategy 1 can migrate up to 30 [Hz], Strategy 2 can migrate 
up to 30 [Hz] and Strategy 3 can migrate up to 70 [Hz]. Then, we 

extend this analysis to a hypothetic advanced seismic acquisition, 
such as broadband, which provides both low and high frequencies 
to obtain better resolution in imaging. In this case, RTM migration 
has the challenge to process data with frequencies above 100 [Hz]. 
Thus, we propose a marine survey acquisition with 18 cables 8000 
[m]. The maximum frequency that each strategy can migrate, using 
the same GPU, is: 3 [Hz] for strategy 1, 3 [Hz] for strategy 2 and 12 
[Hz] for strategy 3. 

The frequency parameter quickly increases the memory required as 
it reduces spatial sampling of the velocity model and the timestep 
propagation. This analysis validates our recommendation about 
using Strategy 3 for migrations with high memory requirements.


