
SPECIAL ISSUE ON SEISMIC IMAGING C T& F Vol . 8 Num . 2 D e c emb er 2 01 8 75

A R T I C L E I N F O :
Received : July 19, 2017
Revised : July 04, 2018
Accepted : September 06, 2018
CT&F - Ciencia, Tecnologia y Futuro Vol 8, Num 2 Dec. 2018. pages 75 - 82
DOI : https://doi.org/10.29047/01225383.83

COMPARATIVE ANALYSIS
OF 3D RTM
IMPLEMENTATION
STRATEGIES FOR AN
EFFICIENT USE OF
MEMORY IN A SINGLE GPU
Salamanca, William-Aa*; Ramirez, Ana-B.a; Vivas, Flor-A.b

aUniversidad Industrial de Santander,
carrera 27 calle 9, C.P 680002, Bucaramanga, Colombia,

b Ecopetrol - Instituto Colombiano del Petróleo,
km 7 vía Bucaramanga- Piedecuesta, C.P 681011, Piedecuesta Colombia.

*email: william.salamanca@correo.uis.edu.co

ABSTRACT
Reverse-Time Migration (RTM) is a two-way wave-equation based method used to generate images of the Earth’s subsurface. RTM
has been successfully used in seismic imaging as it allows defining complex structural areas. However, RTM is a highly computational
expensive algorithm that requires the computation of both the source and the receiver wavefields for each shot. Fortunately,
numerical methods that compute the wave propagation using the wave equation are highly parallelizable, so they can take leverage
on GPU features. However, the main problem of a GPU-RTM implementation is memory management. To take advantage of the GPU
computing capabilities, the transfers to host RAM memory storage, or more expensive hard disk storage must be avoided. We present
the analysis of three different strategies to implement RTM using only the memory available on a single GPU: (1) Stored wavefield
checkpointing (2) Backpropagation of source wavefield using stored boundaries, and (3) Backpropagation of source wavefield using
the two last snapshots and random boundaries, showing that the large amount of memory required in the first two strategies
becomes a restriction over the model size. The last method (using random boundary conditions) is shown as a suggested solution
to the memory problem of using a single GPU.

Graphical Processing Units | Reverse-Time
Migration 3D | Wavefield Computation Strategies.
Unidades de Procesamiento Gráfico (GPU)|
Migración Reversa en Tiempo 3D| Estrategias de
cálculo del campo de onda.

KEYWORDS / PALABRAS CLAVE AFFILIATION

ANÁLISIS COMPARATIVO
DE LAS ESTRATEGIAS
DE IMPLEMENTACIÓN
RTM 3D PARA EL USO
EFICIENTE DE LA
MEMORIA EN UNA GPU.

ctyf@ecopetrol.com.co

RESUMEN
La migración reversa en tiempo (RTM) es un método basado en la
ecuación de onda bidireccional usado para generar imágenes del
subsuelo. RTM ha sido empleado exitosamente en la exploración
sísmica debido a que resuelve áreas de alta complejidad estructural.
Sin embargo, RTM es un algoritmo con un alto costo computacional
que requiere el cálculo del campo de la fuente y el campo de
los receptores en cada disparo. Afortunadamente, los métodos
numéricos que permiten la extrapolación del campo de onda son
altamente paralelizables y se sacan provecho de la capacidad de
cómputo de la GPU. Sin embargo, el principal problema de una
implementación GPU-RTM es el manejo de memoria. Para sacar
provecho de la capacidad de cómputo de la GPU, se evitaron las

transferencias de memoria hacia la RAM del host u otras más
costosas como las transferencias al disco duro. Se presenta el
análisis de tres diferentes estrategias para implementar RTM usando
únicamente la memoria disponible en una GPU: (1) Almacenar el
campo en puntos de control, (2) Retropropagación del campo de
la fuente almacenando las fronteras, y (3) Retropropagación del
campo de la fuente usando los dos últimos snapshots y fronteras
aleatorias, mostrando que la gran cantidad de memoria requerida
por las dos primeras estrategias se convierte en una restricción
sobre el tamaño del modelo. El último método (usando condiciones
de frontera aleatoria) se presenta como la solución sugerida para el
problema de memoria usando únicamente una GPU.

Vol . 8 Num . 2 D e c emb er 2 01 8

76 Ec op e t r o l S . A SPECIAL ISSUE ON SEISMIC IMAGING

Reverse-Time Migration (RTM) is a seismic imaging method that
uses the solution of the full wave equation to obtain imaging of
complex areas, particularly those with abrupt changes of lateral
and vertical velocities. It was initially proposed by Baysal [1],
but only the last decade progress in computing technologies has
allowed the implementation of the algorithm and its practical use
in 3D depth seismic processing projects. In recent years, there
has been growing interest in high-performance computing (HPC)
architectures based on graphic processing units (GPUs) that
assemble a considerable amount of computing devices with single
instruction multiple thread (SIMT) cores [2]. HPC based on GPUs
are suitable architectures for the implementation of RTM, because
of the inherent parallelism on each time step in the algorithm [3].
In addition to the computing resources, RTM also demands large
memory resources, as the source and receiver wavefields must be
available for computing imaging condition. Thus, depending on the
volume of the wavefields, the implementation can exceed the limit
of a single device (GPU) memory. This implies the use of higher
memory hierarchy levels, which degrade the code performance due
to the data transfer overhead.

A different approach to overcome the GPU memory constraint is
to use implementation strategies where memory requirements
are reduced in exchange for increasing the number of computing
operations because the source wavefield should be recomputed.
Some strategies have been already implemented for CPU

architectures, such as optimal checkpointing proposed by Dussaud
et al. [4], which can be adapted to GPU architectures.

The aim of this work is to evaluate three different GPU implementation
strategies of the RTM method, focused on memory management
such that a 3D shot can be migrated in a single GPU, thus avoiding
expensive transfers from (or to) host RAM or hard disk memory.
The main contribution of our work is to demonstrate that the
robust oil industry RTM algorithm can be effectively mapped to
GPU based architectures. Our RTM implementation is based on a
3D Time Domain Finite Difference numerical scheme to solve the
acoustic wave equation, with absorbing boundary conditions. The
conclusions of this work about the GPU memory management in
the analyzed strategies can be extended to simulations based on the
same numerical scheme for other forms of wave equations, such
as visco-acoustic, elastic or electro-magnetic.

This document is organized as follows: the RTM method is introduced
in Section 2 and the implementation strategies of the RTM method
in Section 3. Section 4 summarizes the main characteristics of
the GPU architecture used for this work. Section 5 presents the
performance results from the different RTM implementations and,
finally, the conclusions and discussion are presented in Section 6.
All the implementation strategies are assessed in terms of the
resulting image quality, memory requirements, and execution times.

INTRODUCTION1.

2. TheOReTICal fRame
RTM is a mainstream method used to generate subsurface images
in complex areas, which favors the identification of possible reservoir
locations. RTM generates a reflectivity map R(x,y,z) by computing
an imaging condition from the correlation between the source and
the receiver wavefields. This condition is given by

where ps (x,y,z,t) is the source wavefield, which is obtained by
propagating the source through the medium; and pr (x,y,z,t) is the
receivers wavefield, which is obtained by backpropagating the
seismic traces information. Both wavefields require a numerical
solution of the wave equation that models the propagation of a
seismic source through a medium. In this work, we use the constant
density acoustic wave equation to model the propagation of a seismic
source. The isotropic acoustic wave equation is given by

where ∇2 is the Laplacian operator, and ν is the p—wave velocity
model of the subsurface. One of the most common methods to
find the numerical solution of the wave equation is applying finite
differences to the temporal derivative and compute the Laplacian
operator with finite differences or pseudo-spectral methods. The

2nd order finite difference approximation in time for the temporal
part of the equation is given by

 In Equation 3, pk is the p wavefield in the time t= k∆t. The source
wavefield can be computed from t=0 to t=tmax, assuming a non-
perturbed media in the two first time steps and knowing the source
position and its wavelet signature. In the same way, the receiver
wavefield can be back propagated from t=tmax to t=0 assuming
zero values in the last two time-snapshots and injecting the seismic
traces as sources.

ABSORBING BOUNDARY CONDITIONS

Representing the wavefield on a memory-constrained computing
system implies that only a reduced time-space part of the wavefield
can be stored. This means that artificial boundaries are created in
the border of the model. Depending on the numerical method, the
effect of the border can be: periodicity, if pseudo-spectral methods
are used; or reflections, if finite differences are used. In any case, the
energy reaching the artificial boundaries must be vanished, so that
it does not affect the migrated image. Several algorithms have been
proposed to manage the artificial boundaries. Perfectly Matched
Layer (PML) was used in this work for the first two strategies, as it
is an efficient and simple method. The third strategy uses a random
boundary method as proposed by Clapp [5]. In particular, for the PML

(1)(, ,)=∑ ∑ (, , ,) × (, , ,)
t=0

tmax

s r
∀sℎots

(2)
 1

2 ,,)(
2 (, , ,)

2 = ∇2 (, , ,)

=
2 (, , ,)

2 +
2 (, , ,)

2 +
2 (, , ,)

2

(3)
−1 − 2 + +1

∆ 2 = 2∇2

C T& F Vol . 8 Num . 2 D e c emb er 2 01 8 77

Ec op e t r o l S . A

SPECIAL ISSUE ON SEISMIC IMAGING

absorbing boundary conditions, we opted for the convolutional PML
(CPML), proposed by Pasalic [6], which applies PML directly on the
second-derivative wave equation in (2). The main idea of CMPL is to
introduce a complex stretching parameter given by

in the differential operators of the acoustic wave equation on each
direction i∈{x,y,z}. σi and αi are parameters that adjust the behavior
of vanishing energy. The new differential operators in the wave
equation are

where ψi and ζi are two additional wavefields that are computed
recursively on each time step as follows

In previous equations, ai and bi are given by.

Now, substituting the second derivatives given by Equation 5 in the
acoustic wave equation in (2), we have

Equation 8 is applied near the model borders. To use this equation,
the computation of a time snapshot follows the next three steps:

1. Update ψi
n using ψi

n-1 and the first derivative of pn.
2. Update ζi

n using ζi
n-1, the second derivative of pn and the first

derivative of ψi
n, computed in the previous step.

3. Use Equation 8 to compute pn+1.

The fields ψi and ζi require extra memory for each PML border.

eXPeRImeNTal
DeVelOPmeNT3.

MEMORY MANAGEMENT STRATEGIES

The implementation of the RTM algorithm requires large amounts
of memory in real seismic surveys. Naive implementations of this
algorithm can easily exceed the GPU memory limits, as it is shown
in Table 1; therefore, it is necessary to consider strategies to reduce
the memory usage. These strategies recompute the wavefields
when they are required, instead of storing the entire wavefields.
Thus, memory-constrained architectures, such as GPUs, can be
used at the cost of increasing the execution times of the algorithm.

In the RTM algorithm, each shot requires a sub-model size according
to the patch size, the migration apron, and the absorbing boundary
layer width, as shown in Figure 1. We estimate the memory
capacity required by the RTM algorithm for a FDTD approximation
of 8th order in space and 2nd order in time, an extended absorbing
boundary layer L=8 grid points, tmax=5s, single precision floating
point representation, and a full migration apron. The velocity model
size and the time step can be reduced depending on the central
frequency fq of the source wavelet. This reduces significantly the
memory requirements, but the numerical method must satisfy the
stability and a minimum number of points per wavelength. Table 1
shows the amount of required memory, and maximum spatial and
time sampling steps for different central frequencies of the source
wavelet, assuring a minimum number of points per wavelength of
ppwl = 3. The information given in Table 1 is for the SEG synthetic
velocity model.

(4) = 1 +
+

(5)

→ +
2

2 →
2

2 + +

(6)

= −1 + ()

= −1 + [(2

2) + ()]

(7)

= (+)Δ

= + (− 1)

(8)

2

2 +
2

2 +
2

2 + + + +

+ + =
1

2

2

2

PML
Extension

RTM

Submodel

Full Velocity Model

Migration Apron

Survey

Template

fq[Hz] dh[m] dt[ms] nt Wavefield
Snapshot [MB

Full
Wavefield [GB]

Wavefield
Boundaries [GB]Nx Ny Nz

3
6
12
18
24
31

160
80
40
27
20
16

85
169
337
505
673
841

85
169
337
505
673
841

26
50
99

148
197
246

16.17
8.08
4.04
2.69
2.02
1.61

309
618
1237
1855
2474
3092

0.75
5.71

44.97
150.97
356.91
695.96

0.23
3.53

55.63
280.06
882.99
2151.92

0.06
0.67
6.13
21.72
52.74
104.5

Table 1. Variation of the memory requirement to store the full wavefield for different frequencies fq of the source wavelet.

Figure 1. Top view for RTM shot migration sub-model

Vol . 8 Num . 2 D e c emb er 2 01 8

78 Ec op e t r o l S . A SPECIAL ISSUE ON SEISMIC IMAGING

Note in Table 1 that for source wavelet of central frequency of 31 Hz,
the computing system may require up to 2 TB of memory to store the
source wavefield for all the 3092 time steps. This amount of memory
could be available at low memory hierarchy levels, such as hard disk
drive, although its use may cause very slow and inefficient execution
of the RTM algorithm. To overcome this problem, various strategies
have been reported [4]. In this work, we focus in evaluating such
strategies to select those that can be used in industry applications
using a single GPU to migrate a single RTM shot.

STRATEGY 1: STORING WAVEFIELD CHECKPOINTING

The first strategy uses the available memory in the GPU device
to store checkpoints in the source modeling process. When the
imaging condition requires a non-stored source wavefield snapshot,
it is recomputed from the nearest checkpoint. Additional to uniform
checkpoint distribution along the modeling time steps, optimal
checkpointing strategies have also been reported in the literature
[7],[8]. These strategies increase the computational complexity,
while reducing the memory complexity to a logarithmic function
of the total number of steps.

STRATEGY 2: BACKPROPAGATE THE SOURCE WAVEFIELD
USING STORED BOUNDARIES

In the previous strategy, the source wavefield is recomputed in the
forward direction starting from checkpointing snapshots. However,
the source propagation is a reversible process itself, taking into
account that we can solve for pi-1 in Equation 3 instead of solving
for pi+1. This allows us to propagate the source field up to tmax and
then recompute it backwards, saving only the two last time steps
with two memory buffers.

The main problem with this strategy is that the energy at the
boundaries cannot be reversed, as the PML vanishes the energy
reaching the model’s border. This means that on a single time step,
the field in the inner part of the model can be recovered, but the PML
must be stored [9],[4]. Strategy 2 is an efficient implementation
strategy, in terms of memory management, but the amount of
memory used to store the wavefield at the boundaries can depend
largely on the size of the model. For the velocity models shown
in Table 1, and assuming FDTD approximation of 8th order in the
spatial derivatives, the wavefield at the boundaries ranges from
0.06 GB up to 104.5 GB of memory. Currently, the most advanced
GPU cannot handle such amount of memory, making this strategy
impractical for industry applications using a single GPU.

This strategy can be extended to the RTM with a visco-acoustic
modeling but the wavefield should be reconstructed including
attenuation phenomena [10]

STRATEGY 3: BACKPROPAGATE THE SOURCE WAVEFIELD
USING ONLY TWO LAST SNAPSHOTS AND RANDOM
BOUNDARIES

The random boundaries technique proposed by Clapp [5] extends
the velocity model with carefully generated random values. The
goal of this technique is to generate a random reflection pattern of
the energy reaching the model’s border. Its two main characteristics
are: first, the energy reflected by the boundaries at the source
wavefield is not coherent with the receiver wavefield and, therefore,

the final image will be affected only by a random noise; second, the
energy is not vanished and the modeling process is now reversible
with a stable scheme. The latter reduces significantly the memory
requirements as the wavefield at the boundaries does not need
to be stored, and the source wavefield only requires the last two
snapshots to be recomputed. These features allow for successful
application of strategy 3 to in industry applications where a 3D shot
can be migrated with RTM in a single GPU without any problem with
the memory available in the device..

GPU ARCHITECTURE

The RTM strategies under study in this work will be implemented
on the Nvidia K40 GPU. Therefore, in this Section we describe only
the GPU architecture, and the specifications of the CPU, host RAM
and I/O bandwidth are irrelevant for the paper’s main objective.

GPUs are parallel computing devices designed for video operations
such as image rendering. These devices contain hundreds of cores
based on a Single Instruction Multiple Thread (SIMT) architecture
and have been adapted for scientific computation algorithms.
Nowadays, general purpose applications can be developed using
these devices with programming models and APIs like CUDA and
OpenCL.

K40 GPU

GK110b

192 Single precision cores

SMX

64 Double precision cores

32 Special Function Units

65536x32 register file

64 KB Shared Memory / L1 Cache

L2 Cache

Device Memory RAM

PCI bus

SMX
SMX

SMX
SMX

Figure 2. GPU architecture

The GPU gathers thousands of computing elements in a single chip
adding new memory hierarchy levels as shown in Figure 2. These
computing elements represent more computational power than
conventional CPUs, but they require optimal data transferences to
achieve the best performance. Data reaches GPU from CPU through

C T& F Vol . 8 Num . 2 D e c emb er 2 01 8 79

Ec op e t r o l S . A

SPECIAL ISSUE ON SEISMIC IMAGING

ReSUlTS4.
The three strategies of the RTM method were implemented on a
Nvidia K40 GPU. The constant density acoustic wave equation was
solved using FDTD approximation, and the CPML condition was
implemented to avoid artificial reflections on the model’s border for
the first two strategies. The last strategy uses random boundaries
to manage artificial boundaries.

The essence of all strategies is the routine to generate one time-
step in the modeling process. At each time-step, the wave equation
is solved with an explicit scheme, such that each point in the
model can be computed independently. In the proposed parallel
implementation, one time-step is generated in two GPU kernels: one
for the wave equation, and one for the CPML absorbing boundary
conditions, such that all spatial points of a single snapshot are
computed in parallel. Before starting a GPU process, the data
must be transferred to the GPU memory. The transfers between
GPU and CPU must be minimized as they are slow compared with
the computing time. The capacity of the GPU memory available to
process each shot for the K40 GPU device memory is 12 GB.

Figure 3. GPU thread architecture. Adapted from [2]

the PCI bus, and it is stored on the device memory. Then, the data
can be accessed from the computing cores and can be cached in
shared, L1 and L2 memories.

Programmers employ cores launching a large amount of threads on
the GPU. This hides memory latencies creating a pipeline between
computing and memory access operations. The threads have their
own hierarchy, which constrains the hardware resources they can
access. This is shown in Figure 3. A single thread can have its own
general purpose registers; a group of threads, called a block, may
have access to the resources of a single Streaming Multiprocessor
(SMX) including shared memory, and the grid conformed by the
whole set of thread blocks can access all device resources including
the device RAM memory.

Single Thread

Single core

Registers

SMX

Shared Memory

GPU

Device Memory

Thread Block

Grid

Parameter Value
Nx
Ny
Nz
dx
dy
dz

Shots
dt(data)
fq(data)

169
169
50

80 [m]
80 [m]
80 [m]

196 [shots]
4 [ms]
5 [Hz]

Table 2. Model Parameters and acquisition used in all
experiments

Table 3. L2-error norm of the migrated image using all
strategies compared with the migrated image storing the

entire wavefields. GPU memory and execution times required
for all strategies.

To understand the GPU components and to make efficient
applications, programmers use the hardware abstraction model
of the GPU given by the available APIs. Also, GPU vendors provide
recommendations to improve application’s performance, especially
on memory access. These recommendations include the reduction
of memory transfers between CPU and GPU, but due to the large
memory required by the RTM algorithm, GPU RAM could be not
enough to store all the wavefields, and CPU RAM may be used. This
increases the data transfers between GPU and CPU and decreases
performance significantly; hence, computing strategies become
the solution to make all calculations using only the GPU memory.

Velocity Model in x = 7440.0[m]

Distance - crossline [m]

D
ep

th
 [m

]

Ve
lo

ci
ty

0
0

2000

2000

1000

3000

4000

4000
3500
3000
2500
2000
1500

4000 6000 8000 10000 12000

Velocity Model in y = 4960.0[m]

Distance - inline [m]

D
ep

th
 [m

]

Ve
lo

ci
ty

0
0

2000

2000

1000

3000

4000

4000
3500
3000
2500
2000
1500

4000 6000 8000 10000 12000

Figure 4. Left: Cross-line of the SEG velocity model at 7.44km. Right: In-line of the SEG velocity model at 5.12km.

Strategy kc L2-error GPU Memory
per shot [GB]

Execution
Time [s]

1
1
1
1
2
3

4
8

14
20

N.A.
N.A.

0
0
0
0

2.09×10-6

4.48×10-4

8.16
3.17
1.88
1.36
1.47
0.16

17.55
33.05
52.78
72.70
20.05
23.27

The proposed parallel implementation for the three strategies was
tested using the SEG velocity model shown in Figure 4. The model
parameters and data are shown in Table 2. The average execution
time to migrate a single shot and the GPU memory required by all
strategies are shown in Table 3.

Vol . 8 Num . 2 D e c emb er 2 01 8

80 Ec op e t r o l S . A SPECIAL ISSUE ON SEISMIC IMAGING

STRATEGY 1

This strategy only stores some snapshots of the source wavefield
and the missing snapshots are recomputed from the last stored
checkpoint. To analyze the required memory and the execution
time, the imaging condition was calculated on each time-step, but
the interval to set our checkpoints range from kc=4 to kc=20. The
memory resources and the execution times used by this strategy,
for different kc values, are shown in Table 3. The resulting image is
shown in Figure 5. These images are used as reference to compare
with the images obtained with the following strategies.

STRATEGY 2

The second strategy only stores the boundaries of the source
wavefield. The L2-error norm obtained with this strategy is 2.09
×10-6 and the computational resources are also shown in Table 3.
The migrated image is shown in Figure 6 -left and -right. Note that
the error in the quality of the migrated image is tolerable, and the
balance between the GPU memory requirements and execution
time makes this strategy very convenient for large size 3D models.

STRATEGY 3

The last strategy presented herein required only 0.16 GB of device
memory, but the L2-error norm is 4.48×10-4 compared to the
migrated image obtained with strategy 1. The migrated image
obtained with this strategy is shown in Figure 7. It must be noted
that, despite the numerical error obtained with this strategy, the
image locates adequately the reflectivity map as there is incoherent
random boundaries energy reflection and, therefore, the forward
and backward wavefields correlate poorly, minimizing coherent
artifacts produced by the boundaries. The greatest error is caused
by the top boundary that is very close to the source and generates
strong random reflections and diffractions at first modeling time
snapshots. Different solutions can be used to solve this problem,
such as applying PML boundary conditions to the top part of
the model or increasing the random boundary length at the top.
Those solutions, however, would increase the memory amount
requirements of strategy 3.

Figure 8 and Figure 9 compare the results of strategies 2 and 3
respect to the reference: Strategy 1. The magnitude of the difference
is larger in strategy 3, according to the L2 error calculated on Table
3. The error in Strategy 2 is located on the top of the model as the

Reflectivity map in x = 7440.0[m]

Distance - crossline [m]

D
ep

th
 [m

]

2000

1000

3000

0
2000 4000 6000 8000 10000 12000

Reflectivity map in y = 4960.0[m]

Distance - inline [m]

D
ep

th
 [m

]

2000

1000

3000

0
2000 4000 6000 8000 10000 12000

Reflectivity map in x = 7440.0[m]

Distance - crossline [m]

D
ep

th
 [m

]

2000

1000

3000

0
2000 4000 6000 8000 10000 12000

Reflectivity map in y = 4960.0[m]

Distance - inline [m]

D
ep

th
 [m

]

2000

1000

3000

0
2000 4000 6000 8000 10000 12000

Reflectivity map in x = 7440.0[m]

Distance - crossline [m]

D
ep

th
 [m

]

2000

1000

3000

0
2000 4000 6000 8000 10000 12000

Reflectivity map in y = 4960.0[m]

Distance - inline [m]

D
ep

th
 [m

]

2000

1000

3000

0
2000 4000 6000 8000 10000 12000

Figure 7. Left: Crossline of the migrated image at 7.44 km, and Right: Inline of the migrated image at 5.12 km; using RTM
implementation with strategy 3.

Figure 6. Left: Crossline of the migrated image at 7.44 km, and Right: Inline of the migrated image at 5.12 km; using RTM
implementation with strategy 2.

Figure 5. Left: Crossline of the migrated image at 7.44 km, and Right: Inline of the migrated image at 5.12 km; using RTM
implementation with strategy 1.

C T& F Vol . 8 Num . 2 D e c emb er 2 01 8 81

Ec op e t r o l S . A

SPECIAL ISSUE ON SEISMIC IMAGING

reconstruction of the source wavefield is less accurate on the early
time steps, near to the source location. This means that the error is
mainly produced by numerical rounding due to the recomputation
the source wavefield. Furthermore, strategy 3 locates the error near
the lateral random boundaries.

Finally, Figure 10 presents a comparison of memory usage for all
strategies as a function of the execution time. The best execution
time is achieved by Strategy 1, but it also requires the largest
memory. This strategy trades off between memory and computation

Figure 8. Left: Crossline of the difference between the migrated images at 7.44 km, and Right: Inline of the difference between
the migrated images at 5.12 km; using the RTM implementation strategies 1 and 2. The amplitude of the images is amplified

106 compared to Figure 6.

Figure 9. Left: Crossline of the difference between the migrated images at 7.44 km, and Right: Inline of the difference between
the migrated images at 5.12 km; using the RTM implementation strategies 1 and 3. The amplitude of the images is amplified

103 compared to Figure 7.

Figure 10. : Comparison of the memory usage (in GiB) for all
strategies as a function of the execution time (in secs.).

Reflectivity map in x = 7440.0[m]

Distance - crossline [m]

D
ep

th
 [m

]

2000

1000

3000

0
2000 4000 6000 8000 10000 12000

Reflectivity map in y = 4960.0[m]

Distance - inline [m]

D
ep

th
 [m

]

2000

1000

3000

0
2000 4000 6000 8000 10000 12000

Reflectivity map in x = 7440.0[m]

Distance - crossline [m]

D
ep

th
 [m

]

2000

1000

3000

0
2000 4000 6000 8000 10000 12000

Reflectivity map in y = 4960.0[m]

Distance - inline [m]

D
ep

th
 [m

]

2000

1000

3000

0
2000 4000 6000 8000 10000 12000

Memory vs Execution time

M
em

or
y

[G
iB

]

Execution time [s]

8

7

6

Strategy 1 Strategy 2 Strategy 3

5

4

3

2

1

0
0 10 20 30 40 50 60 70

time, depending on the kc parameter. This makes this strategy a
very flexible option to fit the algorithm on any memory constrained
architecture. For the specific experiment, Strategy 2 has good
performance in terms of memory and execution times at the same
time. However, in a large scale problem, the GPU memory available
can be exceeded when the boundaries are large. Strategy 3 obtains
the best ratio between execution time and memory, but due to the
boundary conditions method, it introduces an error in the image.
However, the quality of the image is acceptable in terms of reflection
events and the artifacts can be attenuated applying post-processing
filters to reduce incoherent noise in the image.

CONClUSIONS
In this work, we evaluate three RTM implementation strategies
focused on managing the memory, such that the seismic RTM
algorithm can be executed on a single GPU device. The GPU is
a memory-constrained architecture that reaches its maximum
performance when memory transfers from (or to) CPU are
minimized. In the strategies studied herein, each shot is migrated
independently by making only memory transfers at the beginning
and end of the migration. The entire source wavefield cannot be
fully stored in any GPU available. Furthermore, the three strategies
analyzed in this work fix this problem by recomputing portions of
the source wavefield.

Strategy 1 can use all the memory available on the GPU by adapting
the checkpoint parameter; however, the computing time increases.
Strategy 2 stores the boundary of the source wavefield to recompute
it backwards in time and gets good balance between the GPU
memory requirements and the execution time; however, if the GPU
memory available is not enough to store the boundary and the two
last snapshots, this strategy cannot be used. Finally, Strategy 3 has

Vol . 8 Num . 2 D e c emb er 2 01 8

82 Ec op e t r o l S . A SPECIAL ISSUE ON SEISMIC IMAGING

aCKNOWleDGemeNTS
This work is supported by Ecopetrol and Colciencias as part of the research project grant 0266 of 2013.
The authors gratefully acknowledge the support of CPS research group at Universidad Industrial de Santander.

RefeReNCeS
[1] Baysal, E., Kosloff, D. D., & Sherwood, J. W. Reverse
time migration. Geophysics, 1983, 48 (11), 1514-1524.
doi:10.1190/1.1441434

[2] NVIDIA Corporation. CUDA C best practices guide,
2017, [On line]. Avaliable at: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

[3] Clapp, R. G., Haohuan Fu, & Lind, O. Selecting the right
hardware for reverse time migration. The Leading Edge,
2010, 29(1), 48-58. https://doi.org/10.1190/1.3284053

[4] Dussaud, E., Total, E., Symes, W. W., Williamson,
P., Lemaistre, L., Singer, P., Sa, T. Computational
strategies for reverse-time migration. SEG Las Vegas
2008 Annual Meeting, 2008, 2267-2271. https://doi.
org/10.1190/1.3059336

[5] Clapp, R. G. Reverse time migration with random
boundaries. SEG Houston 2009 International Exposition
and Annual Meeting, 2009, 2809-2813. https://doi.
org/10.1190/1.3255432

[6] Pasalic, D., & McGarry, R. Convolutional perfectly
matched layer for isotropic and anisotropic acoustic wave
equations. 2010 SEG Annual Meeting, 2010, 2925-2929.
Available at: http://www.onepetro.org/mslib/servlet/one
petropreview?id=SEG-2010-2925

[7] Griewank, A. Achieving logarithmic growth of
temporal and spatial complexity in reverse automatic
differentiation. Optimization Methods and Software, 2011,
35-54. doi:10.1080/10556789208805505

[8] Symes, W. W. (9 de 2007). Reverse time migration
with optimal checkpointing. Geophysics, 2007, 72(5),
SM213--SM221. doi:10.1190/1.2742686

[9] Bo, F., & Huazhong, W. Reverse time migration with
source wavefield reconstruction strategy. Journal of
Geophysics and Engineering, 2012, 9 (1), 69. [On line]
Available at: http://stacks.iop.org/1742-2140/9/i=1/
a=008

[10] Yang, P., Brossier, R., Métivier, L., & Virieux, J.
Wavefield reconstruction in attenuating media: A
checkpointing-assisted reverse-forward simulation
method. Geophysics, 2016, 81(6), R349-R362.
doi:10.1190/geo2016-0082.1

[11] Gulunay, N. FXDECON and complex wiener prediction
filter. SEG Technical Program Expanded Abstracts 1986,
1986, 279-281. https://doi.org/10.1190/1.1893128

[12] Naghizadeh, M. Seismic data interpolation and
denoising in the frequency-wavenumber domain.
Geophysics, 2012, 77(2), V71-V80. https://doi.
org/10.1190/geo2011-0172.1

[13] Gholami, A., Haghshenas, H. Curvelet-TV regularized
Bregman iteration for seismic random noise attenuation.
Journal of Applied Geophysics, 2014, 109, 233 - 241.
https://doi.org/10.1016/j.jappgeo.2014.08.005

the lower execution time and requires less memory as compared
with other strategies. Nevertheless, the reconstruction of the
source wavefield introduces numerical error in the migrated image.
Strategy 3 is therefore the recommended strategy to implement in
the GPU architecture for large data and the numerical error in the
final image produced by the random boundaries can be removed
with post-processing techniques such as FX-decon [11], TFD [12]
and structure tensors [13].

To conclude this analysis, the maximum frequency that can be
migrated with the same parameters, the same velocity model, and
the same GPU used in this article are determined. The results show
that Strategy 1 can migrate up to 30 [Hz], Strategy 2 can migrate
up to 30 [Hz] and Strategy 3 can migrate up to 70 [Hz]. Then, we

extend this analysis to a hypothetic advanced seismic acquisition,
such as broadband, which provides both low and high frequencies
to obtain better resolution in imaging. In this case, RTM migration
has the challenge to process data with frequencies above 100 [Hz].
Thus, we propose a marine survey acquisition with 18 cables 8000
[m]. The maximum frequency that each strategy can migrate, using
the same GPU, is: 3 [Hz] for strategy 1, 3 [Hz] for strategy 2 and 12
[Hz] for strategy 3.

The frequency parameter quickly increases the memory required as
it reduces spatial sampling of the velocity model and the timestep
propagation. This analysis validates our recommendation about
using Strategy 3 for migrations with high memory requirements.

