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ABSTRACT 
Full waveform inversion (FWI) has been recently used to estimate 
subsurface parameters, such as velocity models. This method, 
however, has a number of drawbacks when applied to zones with 
rugged topography due to the forced application of a Cartesian 
mesh on a curved surface. In this work, we present a simple 
coordinate transformation that enables the construction of a 
curved mesh. The proposed transformation is more suitable for 
rugged surfaces and it allows mapping a physical curved domain 
into a uniform rectangular grid, where acoustic FWI can be applied 
in the traditional way by introducing a modified Laplacian. We 
prove that the proposed approximation can have a wide range 
of applications, producing precise near-surface velocity models 
without increasing the computing time of the FWI.
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RESUMEN
La inversión de onda completa (FWI) ha sido usada recientemente 
para estimar parámetros del subsuelo, tal como modelos de 
velocidad. Este método sin embargo, tiene diferentes inconvenientes 
cuando se aplica a zonas con topografía abrupta debido a la 
aplicación forzada de una malla cartesiana sobre una superficie 
curvada. En este trabajo, presentamos una transformación de 
coordenadas simple que posibilita la construcción de una malla 
curvada. La transformación propuesta es más apropiada para 
superficies abruptas y permite mapear un dominio físico curvado 
a  una malla rectangular uniforme, donde la FWI acústica puede 
ser aplicada de la manera tradicional introduciendo un Laplaciano 
modificado. Nosotros sugerimos que la aproximación propuesta 
puede tener un amplio rango de aplicaciones, produciendo modelos 
de velocidad precisos cerca a la superficie sin incrementar el tiempo 
de cómputo.
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Artificial seismic waves are used to study the Earth’s inner 
structure. These waves travel through the subfurface and their 
echoes are collected by sensors placed at the surface, known as 
geophones. This information is used to infer the properties of the 
subsurface such as velocity of propagation of seismic waves or 
density. Subfurface velocity models were traditionally obtained 
with first arrival travel time tomography, a technique that uses part 
of the recorded information, like early arrivals [1]. The advances 
of computational power in hardware and software enable current 
methods to consider the full information of the waveform to produce 
high-resolution properties maps; this is the case of FWI [2]-[5]. After 
applying this method, migration algorithms can find an accurate 
location of subsurface reflectors.

FWI is a data-fitting method that uses a rough velocity model of 
the subsurface and iteratively finds better estimates. The purpose 
is to iteratively reduce the squared error between the modeled 
seismogram (computed with the estimated velocity model) and 
the observed seismogram. FWI can be applied in time domain 
[3,4,6] or frequency domain [7]; each option implies advantages 
and disadvantages. The first scheme is more straightforward, faster 
and requires less memory. It is also sensitive to time sampling, 
requires more computational time, and may present cycle-skipping 
problems. On the other hand, in the frequency domain, only one or 
a few frequencies can be used for FWI. If all the frequencies are 
simultaneously inverted [7], this approach is equivalent to its time 
domain counterpart. There are several ways to update the estimate 
of the velocity model in each iteration, but one of the simplest is 
the gradient descent method. Furthermore, the strategy proposed 
by Plessix [8] can be used to compute the gradient via the ad-joint 
state method. We refer the reader to a comprehensive review for 
the FWI method written by J. Virieux and S. Operto [5].

Currently, FWI is an active research topic from a mathematical, 
computational and geophysical standpoint. Several drawbacks 
of this method still remain as open problems. Other issues are t 
the inconvenience of avoiding local minima, the sensitivity of the 
method to amplitude errors [5], and its computational efficiency-
related complications. In addition, the problem of incorporating 
a curved topography into the method is also of great interest 

as good estimates of model parameters at the near surface are 
required. This is important in the oil industry because the extractive 
potential may be significant in onshore zones with complex geology 
that hide complicated structures. The traditional approach to 
handle topography is the datuming method [9], which adjusts the 
amplitudes of the computed wave-field so that the wave-fronts 
seem to be emitted from points in the curved surface of a complex 
topography. However, datuming introduces amplitude errors to 
which the FWI algorithm is very sensitive, leading to potentially 
inaccurate images of the Earth’s subsurface.

Thus, we propose hereunder a method based on a previous work 
that used generalized meshes for seismic modeling [10]. This 
work used a general physical domain with curved upper surface 
and mapped it into a rectangular domain, where a uniform grid 
was used to propagate and retro-propagate wavefields. The same 
transformation domain was used to obtain imaging conditions. The 
general transformation consists of modifying the Laplacian operator 
by introducing space-dependent coefficients known as metric 
coefficients. Wave propagation in this domain is similar to that of 
a Riemannian space, where the metric is not Euclidean. Once the 
wave-fields and velocity models are computed in the transformed 
domain, these are translated back into the (curved) physical domain.

Reverse time migration in curved meshes [11] and FWI methods for 
rugged topography [12] have been proposed before. Unfortunately, 
their computational cost is greater than that of their Cartesian 
counterparts. The approaches proposed in the literature, although 
very clever, are rather unpractical as transformations drastically 
reduce the spatial step size, which results in limiting the time step 
size due to the Courant–Friedrichs–Lewy condition.

In this work, we introduce a type of transformation that preserves 
the spatial size and, therefore, the time step. Hence, the execution 
time of the algorithm is shorter compared to the same method using 
Cartesian coordinates. Experimental results show that our approach 
enables to perform FWI in domains with a general rugged surface. It 
also estimates satisfying velocity models even for the near-surface 
region, where obtaining good results is usually difficult.

INTRODUCTION1

2. TheOReTICal fRame
The transformation that maps a rectangular domain with 
coordinates (ξ1,ξ2) (named computational domain) into the physical 
domain of coordinates  (x1,x2) is 

where φ(ξ1)=φ(x1) is a smoothed function that represents the curved 
upper boundary of the physical domain. This transformation is 
depicted in Figure 1.

Note from (1) that Δx1= Δξ1 and from (2) that if we vary ξ2 along a 
vertical line with ξ1=const, we have φ=const, which implies Δx2= 
Δξ2, i.e., the step size in space is not affected by the transformation

When the variables in (1) and (2) are changed, a new expression is 
found for the Laplacian operator by using the chain rule. The acoustic 
wave equation for the transformed domain is given by

where

Equation 4 gives the generalized Laplacian, where |g| is the absolute 
value of the determinant of the metric tensor gij, given by
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In order to re-write the wave equation, we need the contravariant 
representation of the metric tensor gij=(gij)-1 [13], and a sum over 
repeated indexes is implied. Note that c2 is the square of the velocity 
vector, which is a scalar value and, therefore, it is not transformed.  
However, its arguments are transformed. 

Expanding the Laplacian we can re-write Equation 4 in a more 
convenient way, as

where

The elements ζi are also geometric coefficients that are computed 
only once, as well as gij. For our specific transformation, given in 
Equations 1 and 2, we have

Figure 1. The straight lines of the rectangular domain are transformed into curved lines in the physical domain. For example, the 
horizontal line on top of the computational domain is mapped into the curved dark line in the physical domain, which represents 
the topographic profile
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[11] introduced a heuristic stability condition for this equation, 
given by

Now, Equation 3 can be numerically solved in the computational 
domain, i.e., in a rectangular domain, and the classic FWI algorithm 
can be implemented.

The purpose of the traditional FWI algorithm is to minimize the 
quadratic error given by

where ξs=(ξ1s,ξ2s=0) are the source positions, that according to 
Equation 2 corresponds to  

x2= φ(ξ1)=φ(x1), i.e., the mountain border, and the ξr are the locations 
of the receivers. In Equation 11,  Pobs is the wave-field measured by 
the sensors (geophones in a real on-shore seismogram), and Pmod 
is the modeled seismogram, obtained with the velocity model, ck, 
estimated at iteration k.  The algorithm requires an initial velocity 
model c0, and it updates the estimate at each iteration by using the 
gradient descent direction. This is

where G(ck) is the gradient given by Plessix [8]:
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Figure 2. (a) The starting velocity model. (b)  final velocity model for a source of 5 Hz. (c) final velocity model using a 
source of 15 Hz and taking the model in (b) as the starting model. (d) original model.

We evaluate the performance of the FWI method in generalized 
coordinates using the Canadian Foothills model, a synthetic velocity 
model for a zone in British Columbia that shows several complex 
structures common in that region of Canada. The computational 
grid of the proposed experiment is 334×200, with Δx1=Δx2=0.03 
km. In every grid point, a receiver is located. The minimum offset is 
0.03 km, and the maximum is 8.4 km. We used seven point sources 
in shape of a Ricker wavelet, placed every 40 grid points starting in 
the grid point number 60. This FWI follows a multi-scale strategy, 
where the sources have central frequencies of f1=5 Hz and f1=15 Hz. 
In the multi-scale strategy, the estimated velocity model obtained 
for the first frequency is then used as starting-point for the second 
frequency. For each wave-propagation, we use a sampling time of 
1ms, a total acquisition time of 2.5 s, and the FWI included 200 
iterations. The initial velocity model is shown in Figure 2a. The final 
estimated models for one and two frequencies are shown in Figures 
2b and 2c, respectively. As the velocity model originally presents a 
flat bottom, the curved mesh must go beyond. Therefore, the missing 
area of the curved mesh is filled with a constant velocity (6 Km/s), 
which does not negatively affect the results because those points 

In Equation 13, ΔP(T-t,ξ1,ξ2) is the retro-propagation of the residual 
field Pmod - Pobs.  The parameter λk is a step size that can be optimized 
by Liu, et. al. [14]

where

Once the FWI method retrieves the estimated velocity models, it can 
be mapped into the physical domain by using the transformation 
given in Equation 2.
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Figure 3. Convergence curve associated to the 15 Hz stage.

Figure 4. Percentage difference between final inverted 
model and the original model (Figure 2d). The color bar 
shows a scale between -20% and +20%.  

are mainly immersed in the attenuation layer and do not imply a 
significant variation of velocities. Additionally, the topographic profile 
of the original model was smoothed before making any computation. 
The observed data was generated synthetically using the original 
model shown in Figure 2d. 
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The proposed transformation, in combination with the classical FWI 
algorithm, produces results with small errors as compared to the 
original synthetic model.

The curved grid used allows the FWI algorithm to map, in a clear 
way, the near-surface structures of the velocity model.

Other curved grids applied to simple velocity models were reported 
previously by other authors.  Our method was applied to a complex 
model that exhibits imbricate geological structures and curved 
topography.  The resulting velocity model shows good agreement 
with the original, within a small percentage difference.

CONClUSIONS

Figure 3 shows the convergence curve for the final result 
corresponding to Figure 2c. The residual decreases around 90%, 
when 100 iterations are performed. A quick decrease is observed 
for the first 10 iterations and then it flattens up. Figure 4 shows 
the difference between the inverted model and the original model. 
Small differences between the two models are observed, except at 
a few points near the borders of the model. It shows the percentage 
residual for the last stage in FWI.  A difference of less than 10% is 
observed at the center of the model. Note that although the error 
bar is between -20% and +20%, these extremes are reached only in 
small spurious locations.
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Aditivos para mejorar la 
movilidad de crudos pesados
ECO-FI-100 y ECO-NE-100 

• Mejoran el flujo de crudos 
pesados y extrapesados

• No requieren de pretratamientos, 
ya que actúan directamente en 
el fluido de producción

• Pueden adicionarse en fondo o 
cabeza de pozo y en líneas de 
producción

• Disminuyen en alto porcentaje 
el consumo de nafta 

• Mejoran la gravedad API
• No producen espuma
• Pueden aplicarse a temperaturas 

desde 5°C en adelante 
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Polynex (ECO-FI-100 y ECO-NE-100)
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extra-heavy crudes
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it acts directly in the production 
fluid

• Can be added at the bottom or 
wellhead and in production lines

• N a p h t h a  c o n s u m p t i o n 
decreases in a high percentage

• Improves API gravity
• Does not produce foam
• Can be applied at temperatures 

from 5 ° C upwards
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FI-100) and Polynex (ECO-FI-100 and 
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