
SPECIAL ISSUE ON SEISMIC IMAGING C T& F Vol .  8  Num . 2 D e c emb er 2 01 8 99

A R T I C L E  I N F O :  
Received : April 21, 2018
Revised : August 29, 2018
Accepted : October 05, 2018
CT&F - Ciencia, Tecnologia y  Futuro Vol 8, Num 2 Dec. 2018. pages 99 - 111
DOI : https://doi.org/10.29047/01225383.86

A GPU IMPLEMENTATION OF 
THE SECOND ORDER ADJOINT 
STATE THEORY TO QUANTIFY 
THE UNCERTAINTY ON FWI 
RESULTS

Abreo, Sergio-Albertoa*; Ramírez, Ana-B.a; Reyes, Oscar-Mauricioa. 

aCPS Research Group, Depart. Electrical, 
Electronic and Telecom. Eng- Universidad Industrial de Santander,

 carrera 27 calle 9 Bucaramanga, Colombia
*email: abreosergio@gmail.com

ABSTRACT 
The second order scattering information provided by the Hessian 
matrix and its inverse plays an important role in both, parametric 
inversion and uncertainty quantification. On the one hand, for 
parameter inversion, the Hessian guides the descent direction 
such that the cost function minimum is reached with less 
iterations. On the other hand, it provides a posteriori information 
of the probability distribution of the parameters obtained after 
full waveform inversion, as a function of the a priori probability 
distribution information.

Nevertheless, the computational cost of the Hessian matrix 
represents the main obstacle in the state-of-the-art for practical 
use of this matrix from synthetic or real data. The second order 
adjoint state theory provides a strategy to compute the exact 
Hessian matrix, reducing its computational cost, because every 
column of the matrix can be obtained by performing two forward 
and two backward propagations. 

In this paper, we first describe an approach to compute the exact 
Hessian matrix for the acoustic wave equation with constant 
density. We then provide an analysis of the use of the Hessian 
matrix for uncertainty quantification of the full waveform inversion 
of the velocity model for a synthetic example, using the 2D 
acoustic and isotropic wave equation operator in time.

Inverse theory | Waveform inversion | Numerical 
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RESUMEN
La información de dispersión de segundo orden proporcionada por 
la matriz Hessiana y su inversa juegan un papel importante en la 
inversión paramétrica y en la cuantificación de la incertidumbre. Para 
la inversión de parámetros, el Hessiano guía la dirección de descenso 
de manera que se alcanza el mínimo de la función de costo en un 
menor número de iteraciones. Por otro lado, proporciona información 
a posteriori de la distribución de probabilidad de los parámetros 
obtenidos luego de usar la inversión de onda completa, como una 
función de la distribución de probabilidad a priori.

Sin embargo, el costo computacional de la matriz Hessiana 
representa el principal obstáculo de este método para su uso práctico 
sobre datos sintéticos o datos reales. La teoría del estado adjunto 
de segundo orden proporciona una estrategia para calcular la matriz 
Hessian exacta, reduciendo su costo computacional, ya que cada 
columna de la matriz se puede obtener realizando dos propagaciones 
hacia adelante y dos hacia atrás.

En este artículo, primero mostramos una metodología para calcular 
la matriz Hessiana exacta usando la ecuación de onda acústica con 
densidad constante. Luego, proporcionamos un análisis del uso de 
la matriz Hessiana para la cuantificación de la incertidumbre de la 
inversión de onda completa en un ejemplo sintético, utilizando como 
operador la ecuación de onda acústica 2D, isotrópa con densidad 
constante en el dominio del tiempo.
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Recently, full waveform inversion (FWI) has become an attractive 
technique for the estimation of high resolution parameters of 
the Earth's subsurface. FWI is formulated as a local optimization 
problem, where first-order or pre-conditioned first-order functions 
of the misfit between observed and modeled data, are used to find 
the search direction to the nearest minimum [1],[2] The inverse of 
the Hessian matrix not only guides the descent direction in the local 
optimization method, but also allows quantifying the uncertainty of 
the parameters estimated with FWI. For uncertainty quantification, 
the inverse of the Hessian matrix is related to the covariance matrix 
of the estimated set of parameters when Bayesian inference and 
Gaussian models are used to model the error between the real 
and estimated parameters [3]In fact, uncertainty of the FWI can be 
quantified using Gaussian model assumptions when 𝓵2-error norms 
are used as data-fitting term[4]. The second-order information of the 
misfit function, known as the Hessian matrix, is usually neglected in 
FWI implementations because computing this matrix for large scale 
problems (real inverse problems) is computationally unfeasible. 
Several methods have been proposed to compute approximations of 
the Hessian matrices, such as the BFGS and its variants [5], Newton, 
Gauss-Newton and Levenberg-Marquardt [6].

The main contributions of this work are two-fold. First, we provide the 
formulation of the adjoint wavefields used to compute the Hessian 
matrix using the Second Order Adjoint State Method (SOASM) 
for the acoustic and isotropic case. Special emphasis is placed on 
computing the adjoint wavefields using parallel programming such 
that a feasible implementation on GPUs is proposed. Second, we 

provide the link between the Hessian matrix and the uncertainty 
quantification of the estimated velocity model obtained with the 
acoustic and isotropic FWI. This is a function of the uncertainty of an 
a priori velocity model. The analysis of uncertainty of the estimated 
parameters are performed for different central frequencies of the 
source. Thus, we can identify which parameters are better resolved 
at different frequencies.

The exact Hessian matrix is obtained via the SOASM, which computes 
Hessian matrix-vector products by using auxiliary variables called 
adjoint variables [6]-[10]. As regards the acoustic and isotropic 
case, we obtained every column of the Hessian matrix using four 
wave propagations via finite-differences in time-domain (FDTD). 
In the FDTD scheme, every spatial point of a pressure wavefield 
snapshot can be computed independently, which generates an 
intrinsic parallelism in the numerical computation of the wave 
propagations. In this work, we exploit the high level of parallelism 
of the pressure wavefield modelled with FDTD through the use of 
parallel architectures as GPUs [11], for reducing the computational 
cost of the Hessian matrix computation.

This paper is organized as follows: the second section presents the 
adjoint wavefield equations and the pseudo-code of the parallel 
implementation on a GPU architecture. The third section describes 
the strategy for quantifying uncertainty of the estimated parameters 
after FWI. The fourth and fifth sections show the experiment 
conducted to test the SOASM implementation and the corresponding 
results with synthetic velocity models, respectively.

INTRODUCTION1

2. TheOReTICal fRame
In this section, we describe the adjoint wavefields that are used 
to obtain Hessian-vector products. In particular, we formulate the 
adjoint wavefields for the acoustic and constant density model 
of a seismic source wave propagation. Furthermore, the pseudo-
code of the adjoint wavefields implementation is presented and its 
computational cost on CPUs and GPUs is also discussed.

Let H(ν) be the Hessian matrix as a function of a given velocity model 
v. The ith column of H(ν) can be obtained through the interaction 
of the wavefields u and α with the adjoint wavefields u1

† and u2
† as

where wi is the vector used to select the column of the Hessian 
matrix and <a,b> is the inner product operator between vectors 
a  and b . The sources of the forward wavefields are f and Φw, and 
Nx×Nz represents the model size.

COMPUTING THE DERIVATIVE OF THE WAVEFIELD u

The wavefield u produced by a seismic source that propagates 
through an acoustic and isotropic medium can be modeled in two-
dimensions for constant density as

where v(x,z) is the acoustic velocity of the medium as a function of 
the spatial variables x and z; u denotes the scalar pressure field, t 
is the time variable, and f(x,z) represents the seismic source. The 
wavefield u can be numerically obtained by using a finite-difference 
stencil in time domain (FDTD), with the initial conditions given 
by u(x,z,0) = 0, ∂u/∂t(x,z,0) = 0. The non-natural boundaries (left, 
right and bottom sides) of the FDTD numerical implementation 
are handled using Convolutional Perfectly Matched Layer (CPML), 
proposed by [12].

Equation 2 can be re-written in a general form as

where L represents the acoustic wave equation. The derivative of 
Equation 3 with respect to the model parameters is given by

Once the auxiliary field ∂2u/∂t2 has been computed, the solution for 
Equation 4  is easily obtained by multiplying the auxiliary field by the 
scale factor -2/ν3 (x,z). This is shown in steps 1 and 2 of Algorithm 1.

(1)
( ) =< 2

†, ∂( ( , )− )
∂

>+  < 1
†, ∂( ( , )−Φ )

∂

+∑ ( ) <> ×
=1 1

†, ∂
2( ( , )− )

∂ 2 >  

(2)
∂2

∂ 2 +
∂2

∂ 2 −
1

2( , )
∂2

∂ 2 = ( , ) 

(3)( , ) =  

(4)∂( ( , ) − )
∂

=
−2

3( , )
∂2

∂ 2  



C T& F Vol .  8  Num . 2 D e c emb er 2 01 8 101

Ec op e t r o l  S . A

SPECIAL ISSUE ON SEISMIC IMAGING

Table 1.  Algorithm 1 SOASM for Hessian Matrix Computation.
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COMPUTING THE ADJOINT WAVEFIELD u1
†

Let the adjoint wavefield u1
†, in operator form, be given by

where f † is defined in Equation  7.  The derivative of previous operator 
with respect to the model parameters ν is then

As the acoustic and isotropic wave equation (Equation 2) is used 
for computing the forward wavefield u, its adjoint wavefield can 

(5)( †, ) = †  

(6)
∂( ( 1

†, ) − †)
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=
−2

3( , )
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1
†

∂ 2 . 

be computed using the same wave equation, because the system 
is self-adjoint. However, the propagation direction changes and the 
adjoint wavefield u1

† represents a back-propagation, meaning that 
the final conditions of the problem are defined as u1

† (x,z,T)=0 and 
(∂u1

†)/∂t(x,z,T)=0, for a final time T.

In order to compute the adjoint wavefield u1
†, the receivers become 

sources (adjoint source) and the real source disappears as a 
consequence of the least square minimization of the cost function. 
The mathematical expression for the new set of sources is given by

where dobs represents the measured pressure wavefield at the 
surface level (seismic traces), dmod are the modeled seismic traces 
and, R†(⋅) represents the operator to flip the vector of residuals. 
Note that the residuals, used as sources, are injected from the 
final sample to the first sample. This is shown in steps 3 and 4 of 
Algorithm 1.

COMPUTING THE DERIVATIVE OF α

Before obtaining ∂(L(α,v)-Φw)/∂v, the auxiliar source Φw, and the 
wavefield α should be defined. Let Φw be an auxiliary source, 
defined by 

where Nx is the number of grid points in the x direction, Nz is the 
number of points in the z direction, and wi (j) is a perturbation vector 
having zero-value in all but the jth coordinate. A non-zero value 
determines the location for the perturbation, which corresponds 
to one column vector of the Hessian matrix. If more than one 
perturbation is selected (i.e., more than one element in the vector 
wi (j) is different from zero) then the Hessian-vector-products 
compute a column that represents a linear combination of the 
selected Hessian matrix columns. The auxiliary wavefield α is a 
forward wavefield computed when the source is Φw, and the initial 
conditions are α(x,z,0)=0 and ∂α(x,z,0)/∂t=0.

The derivative of the wavefield α with respect to the model 
parameters ν, is given by

Equation 9 represents the interaction between the forward field 
α and the perturbation of the geophysical model. This is shown in 
steps 5, 6 and 7 of Algorithm 1.
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COMPUTING THE ADJOINT WAVEFIELD u2
†

The adjoint wavefield u2
† is computed using as source

where Rα is the pressure field at the surface, obtained with the 
auxiliary field α. This means that the adjoint wavefield u2

† uses the 
number of receivers and the perturbations of the geophysical model 
as sources. Also, the final conditions are u2

† (x,z,T)=0 and ((∂u2
†)/∂t)

(x,z,T)=0. Note that (∂2u2
†)/(∂t2) was obtained previously. 

The computation of the adjoint wavefield u2
† is shown in step 8 of 

Algorithm 1.

COMPUTING THE SECOND DERIVATE OF THE WAVEFIELD u

The second derivative of the forward wavefield u for the acoustic 
and isotropic case is given by

This is shown in step 9 of Algorithm 1. 

Finally, as the terms in Equation 1 are known and the columns of the 
Hessian matrix can be obtained. A physical interpretation of each 
kernel in Equation 1 was presented by Fichtner [10].

IMPLEMENTATION OF THE SOASM ON GPUS

The computational complexity of the wave propagation modeling is 
in the order of 𝒪(N3) for a squared synthetic model with N2 elements 
and N time steps. However, if the same task is performed on a GPU 
then the execution time is reduced, as if the number of operations 
were 𝒪(N), due to the parallelism level at each time step [11].

Now, according to the SOASM algorithm, the modeling of four 
wavefields (u,α,u1

† and u2
†) is needed to compute one column of the 

Hessian matrix. Furthermore, as a model of N2 elements produces 
a Hessian matrix of N2 columns, then the full Hessian matrix has a 
computational cost of 𝒪(4N5) for the SOASM. Nonetheless, when 
the SOASM is implemented on a GPU, the execution time is reduced 
as if the number of operations were 𝒪(4N3). The reduction of two 
orders of magnitude in the execution time of the full Hessian matrix 
makes it feasible for uncertainty quantification.

UNCERTAINTY QUANTIFICATION

This section describes the link between the posterior covariance 
and the Hessian matrix using Bayesian inference. The posterior 
probability function of the model  v given the observations dobs  can 
be expressed as

(11)∂2( ( , ) − )
∂ 2 =

6
4( , )

∂2

∂ 2  

(12)( | ) ∝ ( ) ( | ) 

(13)( | ) ∼ ( ~,∑ )  

where ρ(v) is the a priori density function of the model parameters 
and ρ(v|dobs) is the likelihood function that relates the observations 
with the given model parameters. If the likelihood and the a priori 
functions follow Gaussian multivariate distributions, and the relation 
between the observations and the model parameters is linear, then 
the posterior probability function ρ(v|dobs) is also Gaussian [3], and 
it is given by

where v~  is the maximum likelihood solution of the model parameters 
and ∑post  is the posterior covariance. The posterior covariance matrix 
can be obtained as a function of the Hessian matrix of the cost 
function H, and the a priori covariance matrix ∑prior, as follows

The a priori covariance matrix is chosen such that the correlations 
between model parameters are included. Assuming that the model 
parameters are uncorrelated and identically distributed, the a priori 
covariance matrix is given by

where I is the identity matrix, and the elements of the diagonal 
are the variance σ2

prior. Even though this is not a realistic model for 
the prior correlation of the model parameters, because usually 
parameters located at neighboring positions belong to the same 
class, the computation of the inverse ∑-1

prior is simple. Despite the 
assumption of uncorrelated model parameters in the prior density 
function of the model parameters, it is possible that the posterior 
covariance matrix has elements off-diagonal that are nonzero. The 
posterior correlation between the parameters v~i and v~j, means that 
they were not independently resolved by the observed data during 
the full waveform inversion.

(14)∑ = ( + ∑−1 )−1  

(15)∑= 2 ×

3. eXPeRImeNTal 
DeVelOPmeNT

In this section, we describe the experiment that has been formulated 
to evaluate the Hessian matrix computation for the uncertainty 
quantification of the velocity model obtained after multi-scale FWI. 
We also evaluate the computational performance of obtaining the 
Hessian matrix via SOASM using GPUs.

EXPERIMENT DESCRIPTION

The synthetic true velocity model used to obtain the observed 
data dobs is depicted in Figure 1. The velocity model is of size 
Nx×Nz=211×68, with a spatial grid of 25 m (Δx=Δz=25 m). The 
background velocity is 2000 m/s and the diffracting squared area 
has a velocity of 2500 m/s. The diffracting element is a square of 
size 9×9 centered at the position x = 2650 m and z = 850 m. The 
observed and modeled data were produced using a set of 171 
receivers placed in line at a depth of 125 m every 25 m, starting from 
the position 525 m to the position 4775 m. Each receiver recorded 
3.5 s at a time step of 4 ms (Δt=4e -3s). 

(10)
×
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†
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Figure 1. Original velocity model [m/s] used in FWI with a background velocity of 2000 m/s and a diffracting square of 2500 
m/s. The initial velocity model only has the background velocity of 2000 m/s and in both cases, the area out of the red square 
represents the CPML zone (left, right and down) and the free surface conditions (up). The source positions are marked in 
yellow and the 171 receivers are placed from the position 525 m to the position 4775 m all of them at the same depth of the 
sources (125 m).

(16)= −2 0( − 0)exp (−2 0( − 0)2) 

Different number of sources were located at z=125 m and all of 
them have the source wavelet defined by

where f0 Hz is the central frequency, and t0 is a time delay parameter. 
All the parameters of the numerical implementation were set to 
satisfy the Courant's stability criterion with a CPMLarea=20 (grid 
points). Please refer to [12] for the definition of the variables used 
in the CPML.

The velocity model used as starting point for a multi-scale FWI 
approach [13] is the same as Figure 1 but without the diffracting 
square (white square), where the central frequencies of the source 
wavelet were set to 3 Hz, 6 Hz and 9 Hz. The implementation uses 
a second and eighth order stencil of FDTD for approximating the 
time and spatial derivatives, respectively. We compute the gradient 
through the inner product between the derivative of the forward 
modeling and the residuals back propagation as it is proposed by 
Plessix [14] in Equation 36. Besides, the gradient computation uses 
CUDA-C for GPUs [15]-[16]. For the first FWI iteration, we used linear 
interpolation to compute the step forward, and for the subsequent 39 
iterations, we used L-BFGS [17]. The resulting velocity model of the 
first inversion (f0=3Hz) becomes the starting model for the second 
inversion (f0=6 Hz). This process is repeated for the last frequency 
(f0=9 Hz). The sources were placed at a depth of Sz=125 m and their 
spatial location were obtained using the following equation

where a is the grid position of the first source (a=21), b the grid 
position of the last source (b=191), n the number of sources (n=1,51), 
SR the spatial resolution (SR=25 m) and ⌊ ⌉ represents the nearest 
integer operator.

(17)= ⋅⌊ + ( − )
( − 1) ⋅ ⌉   ={0,1,2,⋯, −1} 

The estimated velocities for the multi-scale process for one and fifty-
one sources are depicted in Figure 2a and Figure 2b, respectively. In 
Figure 2 can be noticed that the estimated velocity for the diffracting 
square is closer to the true velocity as the number of sources 
increases. In fact, the FWI method is able to estimate the velocities 
inside the diffracting area with at least 51 sources. However, the 
zone below the diffracting area cannot be updated correctly during 
the inversion due to the acquisition geometry.

The Hessian matrix associated to the velocity model estimated with 
the FWI multi-scale approach for one source is shown in Figure 3. 
Note that the Hessian matrix, obtained via SOASM, differs from the 
one given by Virieux (see Figure 2a in [1]) because it is not symmetric. 
The lack of symmetry is a consequence of using superficial sources 
and receivers only. To obtain a symmetric Hessian matrix, an array 
of sources and receivers should be located enclosing the area of 
interest [1], but this is not feasible in real seismic acquisitions. Also, 
the resulting Hessian matrix is not positive definite, which can be 
explained by the fact that in a surface acquisition, we do not have 
sufficient observations to build a high-dimensional Hessian (or 
covariance) matrix from a reduced number of measurements. This 
can also be evidenced through the magnitude of the eigenvalues 
of the Hessian matrix, which rapidly decay to zero (see Figure 4).

UNCERTAINTY QUANTIFICATION

The posterior covariance matrix can be obtained using Equation 14 
for the estimated velocity models with a multi scale FWI method. 
The Hessian matrix  H is obtained via SOASM and the a priori 
covariance is obtained assuming uncorrelated pixels, as expressed 
in Equation 15.

For the estimated models using 1 and 51 sources, shown in Figure 
2, the uncertainty of the model can be quantified using three 
different Hessian matrices, each associated to a central wavelet 
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Figure 2. Multi-scale FWI results using the central frequencies f0=3, 6 and 9 Hz with 40 iterations per frequency step. Results for 
(a) 1 source and (b) 51 sources with the vertical log (c) taken at x=2.65 Km and the horizontal log (d) placed at z=0.85 Km of depth. 
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Figure 4. Eigenvalues of the Hessian Matrices computed at 
(a) 3 Hz, (b) 6~Hz and (c) 9~Hz for one source and fifty-one 
sources. These eigenvalues describe the interaction of the 
7182 elements inside the red square (see Figure 1).

Figure 3. Hessian matrix for the velocity model estimated 
with multi-scale FWI using 1 source and 171 receivers (see 
Figure 2a). This Hessian matrix describes the interaction of 
the 7182 elements inside the red square (see Figure 1).
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frequency (3, 6 and 9 Hz). The posterior covariance matrices ∑post 
are obtained by setting the a priori standard deviation for all pixels 
in σa=3, 5, 10, 20 and, 100 m/s. Figure 5 and Figure 6 depict the 
standard deviation of each pixel in the model, for one and fifty-one 
sources, which correspond to the square diagonal elements of the 
posterior covariance matrix ∑post  . Note in Figure 5 and Figure 6 that 
the posterior variance decreases in comparison to the prior variance, 
in the area that is properly illuminated by the sources. For only one 
source, the illumination angle is smaller than for 51 sources, and 
thus only a small portion of the model is properly updated during 
the inversion process. Also, note that for the smaller frequency (3 
Hz), the uncertainty can only be quantified coarsely, whereas for 
the larger frequency (9 Hz), the uncertainty can be quantified at a 
level of pixel. 

In addition, the uncertainty of the prior velocity model is reduced due 
to the “new” information brought by the observations in the inversion 
process. The comparison between posterior uncertainties and prior 
uncertainties can also be quantified. The uncertainty reduction of 
the ith pixel in the model, after the multi-scale FWI is measured as

where σ2
pi is the posterior variance of the ith pixel in the model. A 

value of VRi =0 or negative means that no-new information was 
brought from the observed data on the ith pixel. A positive value 
of VRi means that the inversion method added new information on 
the ith pixel and thus the uncertainty of the posterior variance σ2

pi is 
smaller than the a priori variance.
Information that complements the FWI results. The Hessian matrix 

(18)=
2 − 2

2  
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Figure 5. Posterior standard deviations, computed using Equation (14) at (a) 3 Hz, (b) 6 Hz and, (c) 9 Hz, for the velocity model 
estimated with 1 source (see Figure 2a). The Hessian matrices are computed using the SOASM and the a priori covariances are 
obtained using Equation 15 with the a priori standard deviations: (a) 100 m/s, (b) 20 m/s and, (c) 5 m/s. The red dots are placed at 
five points with different illumination.
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Figure 6. Posterior standard deviations, computed using Equation 14 at (a) 3 Hz, (b)  6 Hz and, (c) 9 Hz, for the velocity model 
estimated with 51 sources (see Figure 2b). The Hessian matrices are computed using the SOASM and the a priori covariances are 
obtained using Equation 15 with the a priori standard deviations: (a) 20 m/s, (b) 10 m/s and, (c) 3 m/s. The red dots are placed at 
five points with different illumination.
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is mainly affected by the illumination area produced by sources and 
receivers, the source Figure 7 and Figure 8 illustrate the variance 
reduction. The uncertainty reduction given in Figure 7a shows that 
only a few parameters in the model have been “correctly” resolved. 
This occurs since the posterior covariance is obtained using a low 
frequency wavelet as source, which quantifies the uncertainty of a 
group of neighboring pixels instead of the uncertainty of one single 
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Figure 7. Variance reduction computed with Equation 18 for the posterior standard deviations illustrates in Figure 5. For these 
results the a priori variances were set to (a) 10000 [m/s]2 for 3 Hz, (b) 400 [m/s]2 for 6 Hz and (c) 25 [m/s]2 for 9 Hz. The red dots 
are placed at five points with different illumination.

pixel at the time. Figure 7b and Figure 7c show the uncertainty 
reduction using sources with higher frequencies. Particularly, Figure 
7c shows the reduction in the uncertainty for every single parameter 
in the model, and a higher reduction is obtained (as expected) in the 
area underneath the source. 
The a priori standard deviations were selected to define the lowest 
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Figure 8. Variance reduction computed with Equation 18 for the posterior standard deviations illustrates in Figure 6. For these 
results the a priori variances were set to (a) 〖400 [m/s]2 for 3 Hz, (b)  〖100 [m/s]2  for 6 Hz and (c)  〖9 [m/s]2 for 9 Hz. The red dots 
are placed at five points with different illumination.
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eigenvalues of the Hessian matrices accepted to compute the 
posterior covariance matrices. As the eigenvalues behavior vary 
when both the number of sources and the source frequency change 
then each experiment uses its own a priori standard deviation 
(see Figure 4). If the a priori standard deviation is set to a very 
small value then the information provided by the Hessian matrix 
is almost neglected for the posterior covariance. On the other 
hand, a large a priori standard deviation value produces a posterior 

covariance matrix that can be affected by the small eigenvalues 
of the Hessian matrix generating undesired effects (e.g. complex, 
negative or extremely high variance values). For the six tests, the 
a priori variances were selected to obtain as much information as 
possible from the Hessian matrices avoiding the undesired effects 
of the small eigenvalues.
Five pixels in the velocity model were selected to identify areas 
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with low illumination (P1=(0.6,1) km and P2=(4.5,0.4) km), with high 
illumination and under a high velocity contrast area (P3=(2.65,0.975) 
km) and with high illumination over a high velocity area (P4=(2,0.625) 
km and P5=(2.65,0.75) km). The true velocity value for P1,P2,P3 and P4 
is 2000 m/s (outside the diffracting square) and for P5 is 2500 m/s 
(inside the diffracting square). The pixels are marked in red color in 
Figure 5, Figure 6, Figure 7, and Figure 8. For all the tests P1, P2 and 
P3 were never updated as a consequence of the lack of illumination 
or the interference produced by the diffracting square. The standard 
deviation for P4 and P5 are affected by the source frequency, the 
number of sources and σprior  as Figure 5 and Figure 6 illustrates.

COMPUTATIONAL PERFORMANCE

The cost of computing the full Hessian matrix using FDTD, in terms 
of execution time and memory resources, is high since four wavefield 
propagations need to be obtained for each column. In particular, 
we evaluate the performance of computing a single column when 
the FDTD approximation uses a second order stencil for time 
derivative and an eighth order stencil for the spatial derivatives. Two 
implementations are evaluated: (1) A serial ANSI-C implementation 
on an Intel(R) Xeon(R) E5-2609 and (2) a CUDA-C implementation 
on a Nvidia(R) GPU K40c. The execution times of one single column 
of the Hessian matrix are presented in Table 1. Besides, Table 2 
summarizes the execution times and RAM requirements by the 
CUDA-C implementation to compute the full Hessian matrix. Note in 
Table 2 that increasing the number of sources does not increase the 
RAM required, but instead the computational cost increases linearly 
with the number of sources. The execution times of the full Hessian 
matrix for the serial ANSI-C implementation are not presented in 
Table 2, as these are not computationally feasible.

Source number RAM (MB) Exec. Time [HH:MM:SS] 
1

51
101

206.3
206.3
206.3

00:46:00
39:06:00
77:26:00

Architecture Language Exec. Time [s] 
Intel(R) Xeon(R) E5-2609

GPU K40c
ANSI-C
CUDA-C

14.78
0.38

Table 2.  Execution times required for computing one-column 
of the Hessian matrix in CPU (Intel(R) Xeon(R) E5-2609) and 

GPU (Tesla K40c).

Table 3.  Execution times and RAM size used to compute the 
full matrix H (7182×7182 elements) for different sources using 

a GPU Tesla K40c.

4. ReSUlTS aNalYSIS
The Hessian matrix provides valuable information for resolution, 
uncertainty analysis and radiation patterns identification [18]. 
Therefore, computational strategies are needed to make feasible 
the use of the Hessian matrix. In this work, it has been demonstrated 
that GPU architectures make feasible the implementation of the 
second-order adjoint method because the execution time is reduced 
in two orders of magnitude.

This work presents a parallel implementation of the Hessian matrix-
vector products using GPU architectures. The implementation uses 
the FDTD approximation to compute the wavefield propagations 
required by the SOASM. 

We presented a practical method to compute the standard deviation 
over the final results (σp) from the a priori variance (σa

2) and HSOASM. 
Also, a variance reduction (VR) is computed to define the areas 
with less uncertainty. It is shown that VR growths when the 
source frequency and the number of sources increase. However, 
a statistical analysis fails for P1, P2 and P3 because they are not 
correctly illuminated.

According to Table 2, the computational cost of obtaining the Hessian 
matrix has a linear behavior when the number of sources change. 
However, the main concern about computing the Hessian matrix 
arises when the model size increases given that the computational 
cost for the 2D implementation is 𝒪(4N5). To overcome this problem, 
a cluster of GPUs that divides the load over all the nodes can be 
used. Also, the computation of the Hessian matrix only for the area 
of interest decreases the computational cost.

The eigenvalues of a matrix are useful to identify, classify and 
compare set of matrices through characteristics as the condition 
number, the rank and the trace [19]. In the theoretical case, if the 
velocity model has been correctly resolved then the rank of the 
Hessian matrix evaluated at that point equals the number of model 
dimensions (i.e., Nx×Nz) and the condition number equals one because 
all the eigenvalues have a magnitude close to one.

In this case, the theoretical behavior of the Hessian matrix near 
the solution is used as a reference to define whether the velocity 
models are improving after the FWI. Figure 4 illustrates the 
eigenvalue magnitudes of the Hessian matrices computed from 
the FWI results at 3 Hz, 6 Hz and 9 Hz for one and fifty-one sources 
including the 7011 dimensions (171×41). The eigenvalues of all the 
Hessian matrices are non-zero and their magnitudes are above -250 
dB. This produces full rank matrices (i.e., rank=Nx×Nz=7182) for all 
the cases. Besides, if the number of sources increases from one to 
fifty-one then the eigenvalue magnitudes also increase. But, in all 
cases the results are still far from the theoretical behavior of the 
Hessian matrix because the condition numbers are much greater 
than one due to the ratio of the largest singular value to the smallest 
singular value is also much greater than one.

CONClUSIONS
Hessian matrices are key for decision-making processes, as they 
provide new frequency used for the Hessian kernels computation, 
the resolution of the estimated velocity model and the numerical 
error of the implementation. Therefore, a deepest sensitivity analysis 
must be done on how the above parameters affect the Hessian 
matrix. Finally, our implementation makes it feasible to obtain the 
Hessian matrix for small models. Nonetheless, other computational 
strategies must be explored to reduce both RAM requirements and 
execution time, before the SOASM can be successfully applied on 
real data.
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