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RESUMEN

En la mecénica cuantica, el estado fisico
de un electrén es descrito por una funcion
de onda. Segun la interpretacién de
probabilidad estdndar, la funcién de onda
de un electrén es amplitud de probabilidad,
y su modulo cuadrado da la densidad de
probabilidad de encontrar el electrén en
una cierta posicion en el espacio. En este
articulo, se muestra que esta suposicién
central de la mecénica cuantica puede tener
una extensiéon ontolégica. Se argumenta
que las particulas microscépicas como
los electrones son realmente particulas,
pero su movimiento no es continuo,
sino discontinuo y aleatorio. Desde esta
perspectiva, el modulo cuadrado de la
funcién de onda no sélo da la densidad
de probabilidad de que las particulas se
encuentren en ciertos lugares, sino que
también da la densidad de probabilidad
de que las particulas estén alli. En otras
palabras, la funcion de onda en la mecanica
cuéntica se puede considerar como una
representacion del estado de movimiento
discontinuo aleatorio de las particulas, y en
un nivel més profundo, puede representar
la propiedad disposicional de las particulas
que determina su movimiento discontinuo
aleatorio.
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ABSTRACT

In quantum mechanics, the physical state
of an electron is described by a wave
function. According to the standard
probability interpretation, the wave
function of an electron is probability
amplitude, and its modulus square gives
the probability density of finding the
electron in a certain position in space.
In this article, we show that this central
assumption of quantum mechanics may
have an ontological extension. It is argued
that microscopic particles such as electrons
are indeed particles, but their motion is
not continuous but discontinuous and
random. On this view, the modulus square
of the wave function not only gives the
probability density of the particles being
found in certain locations, but also gives the
probability density of the particles being
there. In other words, the wave function
in quantum mechanics can be regarded
as a representation of the state of random
discontinuous motion of particles, and
at a deeper level, it may represent the
dispositional property of the particles that
determines their random discontinuous
motion.
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The wave function gives not the density of stuff, but gives
rather (on squaring its modulus) the density of probability.
Probability of what, exactly? Not of the electron being
there, but of the electron being found there, if its position is
‘measured’. Why this aversion to ‘being’” and insistence on
‘finding’? The founding fathers were unable to form a clear
picture of things on the remote atomic scale. (Bell)

Introduction

The physical meaning of the wave function is an important interpretative
problem of quantum mechanics. The standard assumption is that
the wave function of an electron is a probability amplitude, and its
modulus square gives the probability density of finding the electron in
a certain location at a given instant. This is usually called the probability
interpretation of the wave function. Notwithstanding its great success,
the probability interpretation is not wholly satisfactory because of
resorting to the vague concept of measurement (Cf. Bell).

Recently a new penetrating analysis shows that the wave function not
only gives the probability of getting different outcomes, but also may
offer a faithful representation of reality (Pusey, Barrett and Rudolph).
This analysis confirms the earlier result obtained based on protective
measurements ((Aharonov and Vaidman) (Aharonov, Anandan and
Vaidman, “Meaning of”)), and shows that the standard probability
interpretation of the wave function is ripe for rethinking. In fact, the
realistic view of the wave function is already a common assumption in
the main alternatives to quantum mechanics such as the de Broglie-Bohm
theory and the many-worlds interpretation ((de Broglie) (Bohm) (Everett)
(DeWitt and Graham)). Unfortunately, however, the precise meaning of
the wave function is still an unresolved issue in these theories.

What, then, does the wave function truly represent? In this article, we
will try to answer this fundamental question through a new analysis
of protective measurements and the mass and charge distributions of a
quantum system. The answer may help to understand the deep nature
of quantum reality.

Measuring the state of a quantum system

The meaning of the wave function is often analyzed in the context
of conventional (impulsive) measurements, for which the coupling
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interaction between the measured system and the measuring device
is of short duration and strong. As a result, even though the wave
function of a quantum system is in general extended over space, an
ideal position measurement can only detect the system in a random
position in space'. Then it is unsurprising that the wave function is
assumed to be related to the probability of the random measurement
result by the standard probability interpretation. This also indicates that
conventional measurements cannot obtain enough information about
a single quantum system to determine what physical state its wave
function represents.

Fortunately, it has been known that the physical state of a single quantum
system can be protectively measured ((Aharonov and Vaidman)
(Aharonov, Anandan and Vaidman “Meaning of”) (Aharonov, Anandan
and Vaidman, “The meaning of”) (Vaidman)). A general method is to
let the measured system be in a nondegenerate eigenstate of the whole
Hamiltonian using a suitable protective interaction (in some situations
the protection is provided by the measured system itself), and then make
the measurement adiabatically so that the state of the system neither
collapses nor becomes entangled with the measuring device appreciably.
In general, the measured state needs to be known beforehand in order to
arrange a proper protection. In this way, such protective measurements
can measure the expectation values of observables on a single quantum
system, and in particular, the mass and charge distributions of a quantum
system as one part of its physical state, as well as its wave function,
can be measured as expectation values of certain observables. Since the
principle of protective measurement is independent of the controversial
collapse postulate and only based on the linear Schrodinger evolution
(for microscopic systems such as electrons) and the Born rule’, which
are two established parts of quantum mechanics, its result as predicted
by quantum mechanics can be used to investigate the meaning of the
wave function®.

! In this article we only consider the spatial wave functions of quantum systems.

> Note that the earlier objections to the validity and meaning of protective measurements have
been answered ((Aharonov, Anandan and Vaidman, “The meaning of”) (Dass and Qureshi)
(Vaidman) (Gao, “Comment on”)).

* It is worth noting that the possible existence of very slow collapse of the wave function for
microscopic systems does not influence the principle of protective measurement.

4Tt can be expected that protective measurements will be realized in the near future with the rapid
development of quantum technologies (Cf. Lundeen et al.).

15



Shan Gao

According to protective measurement, the charge of a charged quantum
system such as an electron is distributed throughout space, and the
charge density in each position is proportional to the modulus square
of the wave function of the system there. Historically, the charge density
interpretation for electrons was originally suggested by Schrodinger
when he introduced the wave function and founded wave mechanics
(Schrodinger). Schrodinger clearly realized that the charge density
cannot be classical because his equation does not include the usual
classical interaction between the densities. Presumably since people
thought that the charge density could not be measured and also lacked a
consistent physical picture, this initial interpretation of the wave function
was soon rejected and replaced by Born’s probability interpretation
(Born). Now protective measurement re-endows the charge distribution
of an electron with reality by a more convincing argument. The question
then is how to find a consistent physical explanation for it>. Our following
analysis can be regarded as a further development of Schrodinger’s
original idea to some extent. The twist is: that the charge distribution is
not classical does not imply its non-existence; rather, its existence may
point to a new, non-classical picture of quantum reality that hides behind
the mathematical wave function.

Electrons are particles

The key to unveil the meaning of the wave function s to find the physical
origin of the charge distribution. The charge distribution of a quantum
system such as an electron has two possible existent forms: It is either
real or effective. The distribution is real means that it exists throughout
space at the same time, e.g. there are different charges in different
positions at any instant. The distribution is effective means that there
is only a localized particle with the total charge of the system in one
position at every instant, and the time average of its motion (during an
infinitesimal time interval) forms the effective distribution in the whole
space. Moreover, since the integral of the formed charge density in any
region is required to be equal to the average value of the total charge in
the region, the motion of the particle is ergodic.

These two existent forms of the charge distribution of a quantum system
have different physical effects, and thus they can be distinguished.

’ The proponents of protective measurement did not analyze the origin of the charge distribution.
According to them, this type of measurement implies that the wave function of a single quantum
system is a real physical wave (Aharonov, Anandan and Vaidman, “Meaning of”).
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Experiments show that different charges in different positions at a given
instant have electrostatic interaction, while a charge at one instant has no
electrostatic interaction with the charge at another instant. Therefore, if
the charge distribution is effective, then there will exist no electrostatic
self-interaction of the distribution, while if the charge distribution is real,
then there will exist electrostatic self-interaction of the distribution. In
short, the first form entails the existence of electrostatic self-interaction
of the charge distribution of a quantum system, while the second form
does not.

Since the existence of electrostatic self-interaction is inconsistent with
the superposition principle of quantum mechanics, and especially, the
existence of such electrostatic self-interaction for individual electrons
already contradicts experimental observations (e.g. the results of the
double-slit experiments with single electrons)®, the charge distribution of
a quantum system such as an electron must be effective. This means that
at every instant there is only a localized particle with the total mass and
charge of the system, and during an infinitesimal time interval the time
average of the ergodic motion of the particle forms the effective mass and
charge distributions of the system. In short, electrons are particles, and
their charge distributions in space, which are measureable by protective
measurements, are formed by the ergodic motion of these particles.

Particles move in a discontinuous and random way

The next question is which sort of ergodic motion the particles undergo.
If the ergodic motion of a particle is continuous, then it can only form
the mass and charge distributions during a finite time interval. But the
mass and charge distributions of a quantum system at each instant,
which is proportional to the modulus square of the wave function of the
system at the instant, is required to be formed during an infinitesimal
time interval near the instant. Thus it seems that the ergodic motion of
the particle cannot be continuous.

We can also reach this conclusion by analyzing a concrete example.
Consider an electron in a superposition of two energy eigenstates in

¢ As another example, consider the electron in the hydrogen atom. If there exists such electrostatic
self-interaction for individual electrons, then since the potential of the electrostatic self-interaction
is of the same order as the Coulomb potential produced by the nucleus, the energy levels of
hydrogen atoms will be remarkably different from those predicted by quantum mechanics and

confirmed by experiments. For a detailed analysis see Gao (“The wave function”, “Meaning of
the”, “Interpreting quantum”).
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two separated boxes . (x) + W,(x). In this example, even if one assumes
that the electron as a localized particle can move with infinite velocity, it
cannot continuously move from one box to another due to the restriction
of box walls. Therefore, any sort of continuous motion cannot generate
the effective charge density e | @, (x) + W,(x) | >. One may object that this
is merely an artifact of the idealization of infinite potential. However,
even in this ideal situation, the model should also be able to generate the
effective charge distribution by means of some sort of ergodic motion of
the electron; otherwise it will be inconsistent with quantum mechanics’.

On the other hand, if the motion of a particle is discontinuous, then
the particle can readily move throughout all regions where the wave
function is nonzero during an arbitrarily short time interval at a
given instant. Furthermore, if the probability density of the particle
appearing in each position is proportional to the modulus square of
its wave function there at every instant, the discontinuous motion can
also generate the right effective mass and charge distributions. This
may solve the problems plagued by the classical ergodic models. The
discontinuous ergodic motion requires no existence of a finite ergodic
time. A particle undergoing discontinuous motion can also move from
one region to another spatially separated region, no matter whether
there is an infinite potential wall between them, and such discontinuous
motion is not influenced by the environment and setup between these
regions either.

In conclusion, we have argued that the mass and charge distributions of
a quantum system such as an electron are formed by the discontinuous
motion of a localized particle with the total mass and charge of the
system, and the probability density of the particle appearing in each
position is proportional to the modulus square of its wave function there.

Meaning of the wave function

According to the above analysis, microscopic particles such as electrons
are indeed particles. Here the concept of particle is used in its usual
sense. A particle is a small localized object with mass and charge, and

7 It is very common in quantum optics experiments that a single-photon wave packet is split into
two branches moving along two well separated paths in space. In particular, the experimental
results are not influenced by the environment and setup between the two paths of the photon.
Thus it is very difficult to imagine that the photon performs a continuous ergodic motion back
and forth in the space between its two paths.
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it is only in one position in space at an instant. Moreover, the motion of
these particles is not continuous but discontinuous in nature. We may say
that an electron is a quantum particle in the sense that its motion is not
continuous motion described by classical mechanics, but discontinuous
motion described by quantum mechanics.

From a logical point of view, for the discontinuous motion of a quantum
particle, there should exist a probabilistic instantaneous condition that
determines the probability density of the particle appearing in every
position in space, otherwise it would not “know” how frequently they
should appear in each position in space. In other words, the particle
should have an instantaneous property that determines its motion
in a probabilistic way. This property is usually called indeterministic
disposition or propensity in the literature®. As a result, the position of
the particle at every instant is random, and its trajectory formed by the
random position series is also discontinuous. In short, the motion of the
particle is essentially discontinuous and random.

Figure 1. Continuous motion vs. discontinuous motion.

Unlike the deterministic continuous motion, the trajectory function x(t)
can no longer provide a useful description for random discontinuous
motion. For a quantum particle, there is no continuous trajectory at all.
Rather, the random discontinuous motion of the particle forms a particle
“cloud” extending throughout space (in an infinitesimal time interval),
and the state of motion of the particle is represented by the density and
flux density of the cloud, denoted by p(x, t) and j(x, t), respectively. This

8 It is worth stressing that the propensities possessed by the particles relate to their objective
motion, not to the measurements on them as in the existing propensity interpretations of quantum
mechanics (Cf. Suarez).
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is similar to the description of a classical fluid in hydrodynamics. But
their physical meanings are different. The particle cloud is formed by the
random discontinuous motion of a single particle, and the density of the
cloud, p(x, t), represents the objective probability density of the particle
appearing in position x at instant t. By assuming that the nonrelativistic
equation of motion is the Schrodinger equation in quantum mechanics’,
the complex wave function y(x, t) can be uniquely expressed by p(x, t)
and j(x, t) (except for a constant phase factor):

S 4,

Y1) = JpGrie PE

In this way, the wave function y(x, t) also provides a complete description
of the state of random discontinuous motion of a particle.

The description of the motion of a single particle can be extended to
the motion of many particles. At each instant the quantum system of N
particles can be represented by a point in a 3N-dimensional configuration
space, and the motion of these particles forms a cloud in the configuration
space. Then, similar to the single particle case, the state of the system
is represented by the density and flux density of the cloud in the
configuration space, p(x,, X,..., X,) and j(x,, X,..., X, ), where the density
p(x,, X,..., X,,) represents the probability density of particle 1 appearing
in position x, and particle 2 appearing in position x,, ..., and particle N
appearing in position x . Since these two quantities are defined not in the
real three-dimensional space, but in the 3N-dimensional configuration
space, the many-particle wave function, which is composed of these two
quantities, is also defined in the 3N-dimensional configuration space.

One important point needs to be stressed here. Since the wave function
in quantum mechanics is defined at a given instant, not during an
infinitesimal time interval, it should be regarded not simply as a
description of the state of motion of particles, but more suitably as a
description of the dispositional property of the particles that determines
their random discontinuous motion at a deeper level . In particular, the
modulus square of the wave function determines the probability density
of the particles appearing in certain positions in space. By contrast, the

? For a derivation of the free Schrodinger equation see Gao (“Interpreting quantum”).
' For a many-particle system in an entangled state, this dispositional property is possessed by
the whole system.
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density and flux density of the particle cloud, which are defined during
an infinitesimal time interval at a given instant, are only a description
of the state of the resulting random discontinuous motion of particles,
and they are determined by the wave function. In this sense, we may
say that the motion of particles is “guided” by their wave function in
a probabilistic way:.

Conclusions

In this article, we have argued that quantum mechanics may have
already spelled out the meaning of the wave function. There are three
main steps to reach this conclusion.

First of all, protective measurement, whose principle is based on the
established parts of quantum mechanics, shows that the charge of a
charged quantum system such as an electron is distributed throughout
space, and the charge density in each position is proportional to the
modulus square of its wave function there. Next, the superposition
principle of quantum mechanics requires that the charge distribution
is effective, that is, it is formed by the ergodic motion of a localized
particle with the total charge of the system. Lastly, the consistency of
the formed distribution with that predicted by quantum mechanics
requires that the ergodic motion of the particle is discontinuous, and the
probability density of the particle appearing in every position is equal
to the modulus square of its wave function there.

Therefore, quantum mechanics seems to imply that the wave function
describes the state of random discontinuous motion of particles, and at
a deeper level, it represents the dispositional property of the particles
that determines their random discontinuous motion. In particular, the
modulus square of the wave function not only gives the probability
density of the particles being found in certain locations as the standard
probability interpretation assumes, but also gives the probability density
of the particles being there. It will be interesting to see how this new
interpretation of the wave function can be extended to quantum field
theory and what it implies for the solutions to the measurement problem.
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