
resumen

En la mecánica cuántica, el estado físico 
de un electrón es descrito por una función 
de onda. Según la interpretación de 
probabilidad estándar, la función de onda 
de un electrón es amplitud de probabilidad, 
y su modulo cuadrado da la densidad de 
probabilidad de encontrar el electrón en 
una cierta posición en el espacio. En este 
artículo, se muestra que esta suposición 
central de la mecánica cuántica puede tener 
una extensión ontológica. Se argumenta 
que las partículas microscópicas como 
los electrones son realmente partículas, 
pero su movimiento no es continuo, 
sino discontinuo y aleatorio. Desde esta 
perspectiva, el modulo cuadrado de la 
función de onda no sólo da la densidad 
de probabilidad de que las partículas se 
encuentren en ciertos lugares, sino que 
también da la densidad de probabilidad 
de que las partículas estén allí. En otras 
palabras, la función de onda en la mecánica 
cuántica se puede considerar como una 
representación del estado de movimiento 
discontinuo aleatorio de las partículas, y en 
un nivel más profundo, puede representar 
la propiedad disposicional de las partículas 
que determina su movimiento discontinuo 
aleatorio.
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abstract

In quantum mechanics, the physical state 
of an electron is described by a wave 
function. According to the standard 
probability interpretation, the wave 
function of an electron is probability 
amplitude, and its modulus square gives 
the probability density of finding the 
electron in a certain position in space. 
In this article, we show that this central 
assumption of quantum mechanics may 
have an ontological extension. It is argued 
that microscopic particles such as electrons 
are indeed particles, but their motion is 
not continuous but discontinuous and 
random. On this view, the modulus square 
of the wave function not only gives the 
probability density of the particles being 
found in certain locations, but also gives the 
probability density of the particles being 
there. In other words, the wave function 
in quantum mechanics can be regarded 
as a representation of the state of random 
discontinuous motion of particles, and 
at a deeper level, it may represent the 
dispositional property of the particles that 
determines their random discontinuous 
motion.
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interpreting the waVe Function — what are 
electrons? anD how Do they moVe? 

interpretaCión de la funCión de onda—
¿qué son los eleCtrones? Y ¿Cómo se mueven?
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The wave function gives not the density of stuff, but gives 
rather (on squaring its modulus) the density of probability. 

Probability of what, exactly? Not of the electron being 
there, but of the electron being found there, if its position is 
‘measured’. Why this aversion to ‘being’ and insistence on 

‘finding’? The founding fathers were unable to form a clear 
picture of things on the remote atomic scale. (Bell)

Introduction

The physical meaning of the wave function is an important interpretative 
problem of quantum mechanics. The standard assumption is that 
the wave function of an electron is a probability amplitude, and its 
modulus square gives the probability density of finding the electron in 
a certain location at a given instant. This is usually called the probability 
interpretation of the wave function. Notwithstanding its great success, 
the probability interpretation is not wholly satisfactory because of 
resorting to the vague concept of measurement (Cf. Bell).

Recently a new penetrating analysis shows that the wave function not 
only gives the probability of getting different outcomes, but also may 
offer a faithful representation of reality (Pusey, Barrett and Rudolph). 
This analysis confirms the earlier result obtained based on protective 
measurements ((Aharonov and Vaidman) (Aharonov, Anandan and 
Vaidman, “Meaning of”)), and shows that the standard probability 
interpretation of the wave function is ripe for rethinking. In fact, the 
realistic view of the wave function is already a common assumption in 
the main alternatives to quantum mechanics such as the de Broglie-Bohm 
theory and the many-worlds interpretation ((de Broglie) (Bohm) (Everett) 
(DeWitt and Graham)). Unfortunately, however, the precise meaning of 
the wave function is still an unresolved issue in these theories.

What, then, does the wave function truly represent? In this article, we 
will try to answer this fundamental question through a new analysis 
of protective measurements and the mass and charge distributions of a 
quantum system. The answer may help to understand the deep nature 
of quantum reality.

Measuring the state of a quantum system

The meaning of the wave function is often analyzed in the context 
of conventional (impulsive) measurements, for which the coupling 
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interaction between the measured system and the measuring device 
is of short duration and strong. As a result, even though the wave 
function of a quantum system is in general extended over space, an 
ideal position measurement can only detect the system in a random 
position in space1. Then it is unsurprising that the wave function is 
assumed to be related to the probability of the random measurement 
result by the standard probability interpretation. This also indicates that 
conventional measurements cannot obtain enough information about 
a single quantum system to determine what physical state its wave 
function represents.

Fortunately, it has been known that the physical state of a single quantum 
system can be protectively measured ((Aharonov and Vaidman) 
(Aharonov, Anandan and Vaidman “Meaning of”) (Aharonov, Anandan 
and Vaidman, “The meaning of”) (Vaidman))2. A general method is to 
let the measured system be in a nondegenerate eigenstate of the whole 
Hamiltonian using a suitable protective interaction (in some situations 
the protection is provided by the measured system itself), and then make 
the measurement adiabatically so that the state of the system neither 
collapses nor becomes entangled with the measuring device appreciably. 
In general, the measured state needs to be known beforehand in order to 
arrange a proper protection. In this way, such protective measurements 
can measure the expectation values of observables on a single quantum 
system, and in particular, the mass and charge distributions of a quantum 
system as one part of its physical state, as well as its wave function, 
can be measured as expectation values of certain observables. Since the 
principle of protective measurement is independent of the controversial 
collapse postulate and only based on the linear Schrödinger evolution 
(for microscopic systems such as electrons) and the Born rule3, which 
are two established parts of quantum mechanics, its result as predicted 
by quantum mechanics can be used to investigate the meaning of the 
wave function4.

1 In this article we only consider the spatial wave functions of quantum systems.
2 Note that the earlier objections to the validity and meaning of protective measurements have 
been answered ((Aharonov, Anandan and Vaidman, “The meaning of”) (Dass and Qureshi) 
(Vaidman) (Gao, “Comment on”)).
3 It is worth noting that the possible existence of very slow collapse of the wave function for 
microscopic systems does not influence the principle of protective measurement.
4 It can be expected that protective measurements will be realized in the near future with the rapid 
development of quantum technologies (Cf. Lundeen et al.).
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According to protective measurement, the charge of a charged quantum 
system such as an electron is distributed throughout space, and the 
charge density in each position is proportional to the modulus square 
of the wave function of the system there. Historically, the charge density 
interpretation for electrons was originally suggested by Schrödinger 
when he introduced the wave function and founded wave mechanics 
(Schrödinger). Schrödinger clearly realized that the charge density 
cannot be classical because his equation does not include the usual 
classical interaction between the densities. Presumably since people 
thought that the charge density could not be measured and also lacked a 
consistent physical picture, this initial interpretation of the wave function 
was soon rejected and replaced by Born’s probability interpretation 
(Born). Now protective measurement re-endows the charge distribution 
of an electron with reality by a more convincing argument. The question 
then is how to find a consistent physical explanation for it5. Our following 
analysis can be regarded as a further development of Schrödinger’s 
original idea to some extent. The twist is: that the charge distribution is 
not classical does not imply its non-existence; rather, its existence may 
point to a new, non-classical picture of quantum reality that hides behind 
the mathematical wave function.

Electrons are particles

The key to unveil the meaning of the wave function is to find the physical 
origin of the charge distribution. The charge distribution of a quantum 
system such as an electron has two possible existent forms: It is either 
real or effective. The distribution is real means that it exists throughout 
space at the same time, e.g. there are different charges in different 
positions at any instant. The distribution is effective means that there 
is only a localized particle with the total charge of the system in one 
position at every instant, and the time average of its motion (during an 
infinitesimal time interval) forms the effective distribution in the whole 
space. Moreover, since the integral of the formed charge density in any 
region is required to be equal to the average value of the total charge in 
the region, the motion of the particle is ergodic.

These two existent forms of the charge distribution of a quantum system 
have different physical effects, and thus they can be distinguished. 

5 The proponents of protective measurement did not analyze the origin of the charge distribution. 
According to them, this type of measurement implies that the wave function of a single quantum 
system is a real physical wave (Aharonov, Anandan and Vaidman, “Meaning of”).
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Experiments show that different charges in different positions at a given 
instant have electrostatic interaction, while a charge at one instant has no 
electrostatic interaction with the charge at another instant. Therefore, if 
the charge distribution is effective, then there will exist no electrostatic 
self-interaction of the distribution, while if the charge distribution is real, 
then there will exist electrostatic self-interaction of the distribution. In 
short, the first form entails the existence of electrostatic self-interaction 
of the charge distribution of a quantum system, while the second form 
does not.

Since the existence of electrostatic self-interaction is inconsistent with 
the superposition principle of quantum mechanics, and especially, the 
existence of such electrostatic self-interaction for individual electrons 
already contradicts experimental observations (e.g. the results of the 
double-slit experiments with single electrons)6, the charge distribution of 
a quantum system such as an electron must be effective. This means that 
at every instant there is only a localized particle with the total mass and 
charge of the system, and during an infinitesimal time interval the time 
average of the ergodic motion of the particle forms the effective mass and 
charge distributions of the system. In short, electrons are particles, and 
their charge distributions in space, which are measureable by protective 
measurements, are formed by the ergodic motion of these particles.

Particles move in a discontinuous and random way

The next question is which sort of ergodic motion the particles undergo. 
If the ergodic motion of a particle is continuous, then it can only form 
the mass and charge distributions during a finite time interval. But the 
mass and charge distributions of a quantum system at each instant, 
which is proportional to the modulus square of the wave function of the 
system at the instant, is required to be formed during an infinitesimal 
time interval near the instant. Thus it seems that the ergodic motion of 
the particle cannot be continuous.

We can also reach this conclusion by analyzing a concrete example. 
Consider an electron in a superposition of two energy eigenstates in 

6 As another example, consider the electron in the hydrogen atom. If there exists such electrostatic 
self-interaction for individual electrons, then since the potential of the electrostatic self-interaction 
is of the same order as the Coulomb potential produced by the nucleus, the energy levels of 
hydrogen atoms will be remarkably different from those predicted by quantum mechanics and 
confirmed by experiments. For a detailed analysis see Gao (“The wave function”, “Meaning of 
the”, “Interpreting quantum”).
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two separated boxes ψ1(x) + ψ2(x). In this example, even if one assumes 
that the electron as a localized particle can move with infinite velocity, it 
cannot continuously move from one box to another due to the restriction 
of box walls. Therefore, any sort of continuous motion cannot generate 
the effective charge density e|ψ1(x) + ψ2(x)|2. One may object that this 
is merely an artifact of the idealization of infinite potential. However, 
even in this ideal situation, the model should also be able to generate the 
effective charge distribution by means of some sort of ergodic motion of 
the electron; otherwise it will be inconsistent with quantum mechanics7.

On the other hand, if the motion of a particle is discontinuous, then 
the particle can readily move throughout all regions where the wave 
function is nonzero during an arbitrarily short time interval at a 
given instant. Furthermore, if the probability density of the particle 
appearing in each position is proportional to the modulus square of 
its wave function there at every instant, the discontinuous motion can 
also generate the right effective mass and charge distributions. This 
may solve the problems plagued by the classical ergodic models. The 
discontinuous ergodic motion requires no existence of a finite ergodic 
time. A particle undergoing discontinuous motion can also move from 
one region to another spatially separated region, no matter whether 
there is an infinite potential wall between them, and such discontinuous 
motion is not influenced by the environment and setup between these 
regions either.

In conclusion, we have argued that the mass and charge distributions of 
a quantum system such as an electron are formed by the discontinuous 
motion of a localized particle with the total mass and charge of the 
system, and the probability density of the particle appearing in each 
position is proportional to the modulus square of its wave function there.

Meaning of the wave function

According to the above analysis, microscopic particles such as electrons 
are indeed particles. Here the concept of particle is used in its usual 
sense. A particle is a small localized object with mass and charge, and 

7 It is very common in quantum optics experiments that a single-photon wave packet is split into 
two branches moving along two well separated paths in space. In particular, the experimental 
results are not influenced by the environment and setup between the two paths of the photon. 
Thus it is very difficult to imagine that the photon performs a continuous ergodic motion back 
and forth in the space between its two paths.
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it is only in one position in space at an instant. Moreover, the motion of 
these particles is not continuous but discontinuous in nature. We may say 
that an electron is a quantum particle in the sense that its motion is not 
continuous motion described by classical mechanics, but discontinuous 
motion described by quantum mechanics.

From a logical point of view, for the discontinuous motion of a quantum 
particle, there should exist a probabilistic instantaneous condition that 
determines the probability density of the particle appearing in every 
position in space, otherwise it would not “know” how frequently they 
should appear in each position in space. In other words, the particle 
should have an instantaneous property that determines its motion 
in a probabilistic way. This property is usually called indeterministic 
disposition or propensity in the literature8. As a result, the position of 
the particle at every instant is random, and its trajectory formed by the 
random position series is also discontinuous. In short, the motion of the 
particle is essentially discontinuous and random.

Figure 1. Continuous motion vs. discontinuous motion.

Unlike the deterministic continuous motion, the trajectory function x(t) 
can no longer provide a useful description for random discontinuous 
motion. For a quantum particle, there is no continuous trajectory at all. 
Rather, the random discontinuous motion of the particle forms a particle 
“cloud” extending throughout space (in an infinitesimal time interval), 
and the state of motion of the particle is represented by the density and 
flux density of the cloud, denoted by ρ(x, t) and j(x, t), respectively. This 

8 It is worth stressing that the propensities possessed by the particles relate to their objective 
motion, not to the measurements on them as in the existing propensity interpretations of quantum 
mechanics (Cf. Suarez).
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is similar to the description of a classical fluid in hydrodynamics. But 
their physical meanings are different. The particle cloud is formed by the 
random discontinuous motion of a single particle, and the density of the 
cloud, ρ(x, t), represents the objective probability density of the particle 
appearing in position x at instant t. By assuming that the nonrelativistic 
equation of motion is the Schrödinger equation in quantum mechanics9, 
the complex wave function ψ(x, t) can be uniquely expressed by ρ(x, t) 
and j(x, t) (except for a constant phase factor):

In this way, the wave function ψ(x, t) also provides a complete description 
of the state of random discontinuous motion of a particle.

The description of the motion of a single particle can be extended to 
the motion of many particles. At each instant the quantum system of N 
particles can be represented by a point in a 3N-dimensional configuration 
space, and the motion of these particles forms a cloud in the configuration 
space. Then, similar to the single particle case, the state of the system 
is represented by the density and flux density of the cloud in the 
configuration space, ρ(x1, x2…, xN) and j(x1, x2…, xN), where the density 
ρ(x1, x2…, xN) represents the probability density of particle 1 appearing 
in position x1 and particle 2 appearing in position x2, …, and particle N 
appearing in position xN. Since these two quantities are defined not in the 
real three-dimensional space, but in the 3N-dimensional configuration 
space, the many-particle wave function, which is composed of these two 
quantities, is also defined in the 3N-dimensional configuration space.

One important point needs to be stressed here. Since the wave function 
in quantum mechanics is defined at a given instant, not during an 
infinitesimal time interval, it should be regarded not simply as a 
description of the state of motion of particles, but more suitably as a 
description of the dispositional property of the particles that determines 
their random discontinuous motion at a deeper level 10. In particular, the 
modulus square of the wave function determines the probability density 
of the particles appearing in certain positions in space. By contrast, the 

9 For a derivation of the free Schrödinger equation see Gao (“Interpreting quantum”).
10 For a many-particle system in an entangled state, this dispositional property is possessed by 
the whole system.
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density and flux density of the particle cloud, which are defined during 
an infinitesimal time interval at a given instant, are only a description 
of the state of the resulting random discontinuous motion of particles, 
and they are determined by the wave function. In this sense, we may 
say that the motion of particles is “guided” by their wave function in 
a probabilistic way.

Conclusions

In this article, we have argued that quantum mechanics may have 
already spelled out the meaning of the wave function. There are three 
main steps to reach this conclusion.

First of all, protective measurement, whose principle is based on the 
established parts of quantum mechanics, shows that the charge of a 
charged quantum system such as an electron is distributed throughout 
space, and the charge density in each position is proportional to the 
modulus square of its wave function there. Next, the superposition 
principle of quantum mechanics requires that the charge distribution 
is effective, that is, it is formed by the ergodic motion of a localized 
particle with the total charge of the system. Lastly, the consistency of 
the formed distribution with that predicted by quantum mechanics 
requires that the ergodic motion of the particle is discontinuous, and the 
probability density of the particle appearing in every position is equal 
to the modulus square of its wave function there.

Therefore, quantum mechanics seems to imply that the wave function 
describes the state of random discontinuous motion of particles, and at 
a deeper level, it represents the dispositional property of the particles 
that determines their random discontinuous motion. In particular, the 
modulus square of the wave function not only gives the probability 
density of the particles being found in certain locations as the standard 
probability interpretation assumes, but also gives the probability density 
of the particles being there. It will be interesting to see how this new 
interpretation of the wave function can be extended to quantum field 
theory and what it implies for the solutions to the measurement problem.
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