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RESUMEN. En éste trabajo se presenta la aplicación del método de síntesis subestructural (SSM) basado en la 
teoría de Rayleigh-Ritz a un problema de ingeniería. Dicho problema es el análisis de conducción de calor 
unidimensional en sistemas bidimensionales formados por miembros unidimensionales. Para este problema de 
conducción de calor se obtienen los autovalores asociados y su convergencia. Las soluciones obtenidas con el MSS 
son comparadas con las asociadas a la versión h del método del elemento finito convencional (MEF). Los resultados 
obtenidos abren un nuevo panorama de investigación relacionado con determinar la influencia del orden de las 
ecuaciones diferenciales que rigen el problema sobre la precisión y velocidad de convergencia de la solución dada 
por las funciones de aproximación. 
 
PALABRAS CLAVE: Método de Síntesis Subestructural, Método de Elementos Finitos, Conducción 
 
ABSTRACT. In this paper, the application of the Substructural Synthesis Method (SSM) on an engineering problem 
is presented, based on the theory by Rayleigh-Ritz.  This problem is the unidimensional heat conduction analysis on 
bidimensional systems made of unidimensional members.  For this heat conduction problem the associated 
eigenvalues and their convergence are obtained.  Solutions obtained with the SSM are compared to those associated 
to the h version of the conventional Finite Element Method (FEM). The results obtain opened a whole new panorama 
of investigation related with determinate the influence on the order of differential equations that ruled the problem 
about the precision and velocity of the convergence of the solution given by the approximation functions. 
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1.  INTRODUCTION 
 
Substructural synthesis is a method conceived to 
dynamically modeling a complex structure by 
using a reduce Degrees Of Freedom (DOF). The 
concept of sub-structural synthesis can be 
attributed to Hurty (1960-1965) [1], [2], who 
inspired by the idea of sub-structures, developed a 
dynamical analysis method also known as 
synthesis of component modes. After Hurty’s 
work,  Hale and Meirovitch (1980) [3] and 
Meirovitch and Hale (1981) [4] establish that the 
synthesis of component modes method and all of 

its variants are fundamentally different forms of 
Rayleigh-Ritz method, this new methodology was 
named as sub-structural synthesis, in which a 
constraint process forces the individually modeled 
substructures to act like a fully joint structure. 
 
Meirovitch and Kwak (1990) [5] during the 
analysis of simple members and for the purpose of 
improve convergence, introduce a new class of 
functions that were named quasi-comparison 
functions, these functions are a lineal combination 
of admissible functions;  
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Quasi-comparison functions besides satisfying 
geometric boundary conditions (GBC) are capable 
to approximate the natural boundary conditions 
(NBC) and the differential equation on the desired 
level. These new quasi-comparison functions are 
applied in the sub-structural synthesis method by 
Meirovitch and Kwak (1991) [6], and that is how 
its real effectiveness is shown. 
 
In general, structures do not posses the 
characteristics for which Meirovitch and Kwak 
(1991) had developed the SSM.  It is for this kind 
of structures that Morales (2000) [7] combines a 
kinematic process with a constraint generalizing 
the application of the SSM.  
After Morales’s work (2000), Zarzalejo (2001) [8] 
dynamically analyses three-dimensional 
structures. According to the excellent results 

showed by the sub-structural synthesis method in 
dynamical analysis [5], [7], [8], and the stability 
analysis in the solution of the eigenvalues 
problem associated with buckling presented by 
Ramírez (2002) [9], this investigation is meant to 
develop a formulation that allows to apply the 
SSM in another engineering area, heat 
conduction. 
 
2.  HEAT CONDUCTION GENERAL 

MODEL  
 
For a structure as the one showed on Fig. 1, a 
methodology that allows to apply SSM in 
problems related to heat conduction will be 
developed. 
 

 

 
Figure 1: General model of heat conduction. 

Figura 1: Modelo general de conducción de calor 
 

Formulation for this problem is done under the 
following considerations: 
• All the constituent elements of the structure 

have an equal and uniform straight section.  
• The material of two consecutive substructures 

is different generally, but homogenous within 
a same element. 

• An ideal isolation around all the elements will 
be considered. 

• The dimensions of any cross section are 
considered small enough as to say that the 
temperature is constant in the section 

• There is no internal heat generation. 

• An initial condition of functional temperature 
exists, and it is different from zero. 

• All the boundary conditions (BC) supposed 
are homogenous. 

 
 
Using the previous considerations, it is possible to 
say that the outlined generic system is equivalent 
to the one shown in Fig. 2, where the elements 
can only be differentiated by the change in the 
material from a substructure to another one. 
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Figure 2: Equivalent model of heat conduction  

Figura 2: Modelo equivalente de conducción de calor  
 
For this heat conduction case, the totality of 
development in SSM made in the vibrations area 
is not applicable, in particular the Lagrangian 
formulation that allows to obtain the mass and 
stiffness matrices, then is necessary to define as 
departure point the partial differential equation 
that governs the heat conduction in one 
dimension, and then starting from this to 
determinate the eigenvalues problem associated as 
showed on Ec. (1). 
 

( ) ( ) 0=+ xUλρc
dx

xUd
k p2

2

  (1) 

where: 
U: Temperature 
k: Thermal Conductivity 
cp: Specific heat rate 
ρ: Mass density 
λ: Associated eigenvalues. 
 
To transform Ec (1) to a matrix from is necessary 
to outline the weak form of itself. In order to 
achieve this the weight function w is defined. Ec. 
(1) defines an eigenvalue problem, and 
multiplying it by the weight function the 
following is obtained: 
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Integrating Ec. (2) by parts over the domain, the 
following is obtained: 
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it represents the weak form of the equation that 
rules the heat conduction in one dimension. 
Expressing temperature U and weight function w 
in terms of approximation functions:  
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whereφ  is an admissible functions vector of 
different families and c is a vector of unknown 
coefficients, superscript (e) means that these 
approximations apply on each element and n is 
the approximation grade. 
 
Replacing the Ecs. (4) and (5) in Ec. (3) : 
 

)6(0
01

)()(

1

)(

0 1

)()(

1

)(

0 1

)(
)(

1

)(

=







−









−












⋅⋅

∑∑

∫ ∑∑

∫ ∑∑

==

==

==

L
n

j

e

j

e

j

n

i

e

i

L n

j

e

j

e

j

n

i

e

ip

L n

j

e

je

j

n

i

e

i

ck

dxcc

dx
dx

d
c

dx

d
k

ϕϕ

ϕϕλρ

ϕϕ

     

 
 
Here the first term represents the coefficients of 
the stiffness matrix, the second one the 
coefficients of the mass matrix, and the last one 
represents the BC of the eigenvalue problem [10]. 
Considering the solution of eigenvalue problems 
by means of the SSM, the GBC of the system are 
satisfied combining a correct selection of the 
approximation functions and a constraint process, 
and that approximation functions must also be 
able to approximate to the desired degree the 
NBC of the system, the last term of the Ec. (6) 
can be omitted in the formulation.  Now under 
this simplification the Ec. (6) can be rewrite it as: 
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Clearly is seen that Ec. (7) can be written in a 
matrix form: 

[ ] 0cMK =− (e)(e)(e) λ             (9) 

Ec. (9) defines the eigenvalue problem in matrix 
form for a constituent element or substructure and 
based on this equation write the eigenvalues 
problem in a matrix form in order to create a 
complete structure like the one shown one Fig. 1, 
the following is obtained: 

[ ] 0cMK =− ddd λ        (10) 

The matrices of the Ec. (10) can be transformed to 
the assembled system by using the constraint 
matrix C, which is generated when the 
compatibility of the temperature in the tie points 
of two contiguous substructures is guaranteed.  
Rewriting the Ec. (10) for the assembled system: 

[ ] 0cMK =− λ        (11) 

where: 

 d
T CKCK =    (12a) 

CMCM d
T =   (12b) 

Ccc =d    (12c) 

 
and C is the constraint matrix 
 
 
 
2.1    Application To A Particular System 
 
 
The detailed solution of the particular heat 
conduction problem by means of the SSM is 
showed next, the system appears in Fig 3. 

 
Figure 3: Particular structure for the analysis of heat 

conduction 
Figura 3: Estructura particular para el análisis de 

conducción de calor 
 

Equations (8a,b) defined the mass and stiffness 
matrix coefficients for a system’s constituent 
element, in these equations it is necessary insert 
the approximation functions for each one of the 
substructures of the system. 
 
 
Approximation functions. Solving the Ec.(1) 
under different boundary conditions is possible to 
obtain the approximation families that are going 
to be used and these appear in Table 1. 
 

Table 1: Approximation families 
Tabla 1: Familias de aproximación 

Family Boundary 
conditions 
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Where AI, ..., AIV  are constants used to normalize 
the width of the approximation functions. 
  
Approximation functions selection: 
Approximation functions selection is done based 
on Figure 4 and the BC offered by each one of the 
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approximation families (Table 1), with which the 
functions vectors of the Ec. (8a, b) end up as 
showed in the Ecs. (13) and (14).  
 

 

Figure 4: Boundary conditions of each substructure 

Figura 4: Condiciones de borde de cada subestructura. 
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Inserting the Ecs. (13) and (14) in the Ecs. (8a, b), 
and all this as well in the Ec. (7), the eigenvalues 
problem of the disjoint system can be obtained as 
Ec. (10) shows.  Now with the previously selected 
families the GBC in the starting points are 
satisfied automatically for substructures 1 and 3.  
In order to transform the eigenvalue problem of 
the disjoint system to the assembled one it is 
necessary to guarantee the compatibility in the 
temperature of the tie points of substructure 1 
with the 2, and of substructure 2 with the 3.  This 
can be done mathematically by means of the 
following equations 
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Introducing the Ec. (5) in the Ecs. (15a, b) and 

where the vectors (e)φ  are based on the Ecs. (13) 
and (14), the constrain matrix C can be obtained, 
and as it shows the Ecs. (12a, b, c) transform the 
matrices from the disjoint system to the 

assembled one, thus to solve the eigenvalue 
problem associated to the heat conduction. 

Results.  In order to develop this example 
numerically the following properties for each one 
substructures of the system are considered: 
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iα  is thermal diffusivity for substructure 
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Eigenvalue problem is solved by means of the 
proposed SSM, in addition with the purpose of 
validating and comparing the obtained results it is 
also solved by means of the FEM using link 
elements with 1 DOF by node and polynomials of 
Lagrange like approximation functions.  The 
convergence of the three first eigenvalues of the 
system, and for an equal precision up to five 
significant figures are showed in Table 2, where n 
represents the order of the involved matrices in 
eigenvalue problem and that is equivalent as well 
to the DOF of the assembled system. 
 
On Table 2 it is possible to see that for two first 
eigenvalues and the precision given, the solution 
obtained by means of the FEM presents 
characteristics of convergence superior to the ones 
showed by the SSM. Specifically for the first 
eigenvalue, by means of the FEM the 
convergence of five significant figures is reached 
with 38 DOF, whereas applying the SSM that 
level of precision is not possible to reach it with 
the approximation degree that allows the model 
(34 DOF), because from that point numerical 
problems appear, and that prevent to increase the 
DOF of the approximation. Considering that both 
methods of solution present a uniform 
convergence from above, for the second 
eigenvalue although neither methods reach the 
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given precision, can be said that the eigenvalue 
found by means of the FEM with 38 DOF is more 
accurate to the actual eigenvalue that the 
presented one with 34 DOF by the SSM.  Now for 
the third eigenvalue a very similar behavior in the 

approximation by means of both methods is 
notice, but the speed of convergence of the SSM, 
is minimally superior that the one of the FEM. 
 
 

 
Table 2: Convergence of the three first eigenvalues 

Tabla 2: Convergencia de los tres primeros autovalores 
First Eigenvalue Second Eigenvalue Third Eigenvalue 

n SSM n FEM n SSM n FEM n SSM n FEM 
4 0.0044566 2 0.0020384 4 0.0079590 2 0.0045620 4 0.0371538 2  
7 0.0022048 5 0.0019707 7 0.0040752 5 0.0040710 7 0.0075277 5 0.0064562 
10 0.0021140 8 0.0019582 10 0.0039776 8 0.0039701 10 0.0060024 8 0.0061271 
13 0.0019559 11 0.0019538 13 0.0039311 11 0.0039350 13 0.0059813 11 0.0060088 
16 0.0019556 14 0.0019518 16 0.0039238 14 0.0039187 16 0.0059270 14 0.0059541 
19 0.0019543 17 0.0019507 19 0.0039217 17 0.0039099 19 0.0059203 17 0.0059244 
22 0.0019529 20 0.0019500 22 0.0039161 20 0.0039046 22 0.0058938 20 0.0059066 
25 0.0019522 23 0.0019496 25 0.0039136 23 0.0039012 25 0.0058826 23 0.0058950 
28 0.0019520 26 0.0019493 28 0.0039128 26 0.0038988 28 0.0058792 26 0.0058870 
31 0.0019518 29 0.0019491 31 0.0039122 29 0.0038971 31 0.0058767 29 0.0058814 
34 0.0019516 32 0.0019489 34 0.0039116 32 0.0038959 34 0.0058738 32 0.0058772 
  35 0.0019488   35 0.0038949   35 0.0058740 
  38 0.0019487   38 0.0038942   38 0.0058715 
  41 0.0019487   41 0.0038936   41 0.0058695 
 
Because convergence problems exist, in particular 
the fact that it is not possible to go beyond of 34 
DOF in the SSM approximation, a new group of 
approximation families will allow making a 

combination of three families by each 
substructure.  For these new approximation 
functions a BC of radiating end will be considered 
and showed in Table 3. 

 
 

Table 3: Approximation Families 
Tabla 3: Familias de Aproximación 

Family Boundary Conditions Approximation Functions 
5 ( ) ( ) ( ) 000 =+= LαULU'      ;  U  

x)Z(SenA)x(U;
L

Z
)Tan(Z jVV

j

j jj
=−=    

α
 

6 ( ) ( ) ( ) 0000 ==+ LU      ; αUU'  ( )
αL

Z
ZTan

j

j =  

( ) 















−







=

L

xZ
Cos

αL

Z

L

xZ
SenAxU

jjj

VIVI jj
 

7 ( ) ( ) ( ) ( ) 0000 =+=+ LαULU'      ; αUU'  
 

x)exp(A)x(U;LZ
jj VIIVIIj αα −==     

 
In families the from 5 to 7 α  is a positive 
constant, and AV , AVI , AVII are constants that will 
allow to standardize the amplitude of the 
approximation functions. [11] 
 

Considering the 7 approximation families 
available and not to violate the Homogeneous 
Geometric Boundary Condition (HGBC) other 
possible combinations were made, the one that 
threw better results is shown:  
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SSM1:  
Substructures 1 and 3:  Family 1 + Family 5 + 
Family 4. 
 

 
Substructures 2:  Family 3 + Family 1 + Family 2. 
α = 1 

                                                                                                                                         
Table 4: Convergence of the three first eigenvalues                                                                                                 

Tabla 4: Convergencia de los tres primeros autovalores 

First Eigenvalue Second Eigenvalue Third Eigenvalue 
n SSM1 n FEM n SSM1 n FEM n SSM1 n FEM 
4 0.0144578 2 0.0020384 4 0.0238152 2 0.0045620 4 0.0373603 2  
7 0.0044326 5 0.0019707 7 0.0078640 5 0.0040710 7 0.0177614 5 0.0064562 
10 0.0018837 8 0.0019582 10 0.0045416 8 0.0039701 10 0.0078690 8 0.0061271 
13 0.0020607 11 0.0019538 13 0.0040044 11 0.0039350 13 0.0074279 11 0.0060088 
16 0.0019928 14 0.0019518 16 0.0039988 14 0.0039187 16 0.0067128 14 0.0059541 
19 0.0019501 17 0.0019507 19 0.0039036 17 0.0039099 19 0.0058332 17 0.0059244 
22 0.0019491 20 0.0019500 22 0.0039019 20 0.0039046 22 0.0058318 20 0.0059066 
25 0.0019491 23 0.0019496 25 0.0039019 23 0.0039012 25 0.0058318 23 0.0058950 
28 0.0019490 26 0.0019493 28 0.0039019 26 0.0038988 28 0.0058318 26 0.0058870 
31 0.0019490 29 0.0019491 31 0.0039019 29 0.0038971 31 0.0058318 29 0.0058814 
34 0.0019490 32 0.0019489 34 0.0039019 32 0.0038959 34 0.0058318 32 0.0058772 
37 0.0019490 35 0.0019488 37 0.0039019 35 0.0038949 37 0.0058318 35 0.0058740 
40 0.0019490 38 0.0019487 40 0.0039019 38 0.0038942 40 0.0058318 38 0.0058715 
43 0.0019490 41 0.0019487 43 0.0039019 41 0.0038936 43 0.0058318 41 0.0058695 
 
On Table 4 it is possible to see the combination of 
3 families by each substructure in the SSM, not 
only allows to improve the convergence, but that 
also can increased the DOF, switching from 34 
DOF in the previous combinations up to 43 DOF 
in this one.  Specifically the convergence of the 
first eigenvalue for precision of five significant 
figures is reached by means of the FEM with 38 
DOF, whereas applying the SSM this precision is 
not reached in the level of 43 DOF, is clearly 
possible to see that the convergence of the SSM 
stops in the same number since 28 DOF.  
Comparing the eigenvalues thrown by each one of 
the methods, the superiority of the SSM over the 
FEM is clearly seen. 
 
 
3.    CONCLUSIONS    
 
 
The SSM can be applied in other areas of the 
engineering in which eigenvalue problems exist 
and can be solved. 
The solution of the heat conduction eigenvalue 
problem by means of the SSM, although is viable 

because it throws values very near to those of the 
FEM, is not as efficient as in the case of 
vibrations or buckling, because in general FEM 
converges with a given precision to the 
eigenvalue using a smaller number of DOF for the 
approximation.  This reduction of the 
convergence characteristics of the SSM in heat 
conduction can be attributed to the fact that heat 
problem is mathematically different from the 
dynamic problems (vibrations and buckling); 
additionally in the heat conduction model a 
kinematic process which help to increase the 
convergence speed of the method can not be 
applied. 
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