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ABSTRACT: We investigate the relaxation of two line defects of opposite strength in a confined nematic liquid 
crystal by solving the coupled tensor order parameter evolution and momentum balance equations in three 
dimensions.  The inclusion of hydrodynamic interactions causes the defects to move at different velocities and slows 
the overall relaxation process, but this effect is suppressed by increasing the degree of confinement.  The most 
notable flow features that develop in the system are large vortices that surround and follow the defects as they 
approach each other. 
 
KEYWORDS: liquid crystal, defect relaxation, confinement and hydrodynamic interactions. 
 
RESUMEN: La relajación de dos defectos lineales de magnitud opuesta dentro de un cristal líquido confinado, es 
investigada solucionando acopladamente la ecuación de evolución del parámetro de orden y las ecuaciones de 
momentum en tres dimensiones. Las interacciones hidrodinámicas hacen que los defectos se muevan con velocidades 
diferentes incrementado el tiempo de relajación, sin embargo este efecto desaparece al incrementar el grado de 
confinamiento. Las características del flujo mas notables en el sistema son grandes vórtices que rodean los defectos a 
medida que estos se aproximan uno a otro. 
 
PALABRAS CLAVE: cristal líquido, relajación de defectos, confinamiento, interacciones hidrodinámicas. 
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1.       INTRODUCTION 
 
 
In recent years, nematic liquid crystals have been 
employed extensively in detection of targeted 
biological entities, whereby surface events, such as 
binding of proteins, viruses and microbes [1-4], 
cause a local change in liquid crystal orientation. 
These orientational changes are amplified over 
several thousand molecular lengths through the 
emergence of mesoscopic defects that are easily 
detected using optical microscopy [1-4]. 
Applications to date have relied on optical images of 
final states, and have therefore been limited to static 
information. The dynamics or evolution of a sensor 
could potentially provide a wealth of information 
about analytes of interest, but to extract this 
information, one must first develop a realistic model 
for the dynamics of confined liquid crystals. 
 
Previous theoretical works have given considerable 
insight into defect structures in the nematic, both 
around nanoparticles [5-10] and in model biosensors 
in two dimensions [11, 12]. The dynamics of these 
calculations have only considered liquid crystal 
relaxation, where the orientation change with time 
has been solely due to a free energy gradient. A 
complete dynamic picture must include 
hydrodynamic interactions (HI). Several studies 
have investigated the rheology of the nematic [13-
15], but these have employed closure 

approximations (i.e. uuuu uu uu= ) and have 

been limited to two dimensions. A full 
hydrodynamic description of a nematic, however, 
necessitates a three-dimensional domain. Denniston 
et al. [16] have employed the Lattice-Boltzmann 
method to describe liquid crystal with HI in three 
dimensions; this method, however, is limited to 
regimes of finite (but non-zero) Reynolds and Mach 
numbers, which are unrealistic constraints in sensing 
applications. In this letter, we solve a detailed 
molecular model [17] of liquid crystal dynamics on 
a model sensor, and investigate the differences in 
defect relaxation that arise when effects of 
hydrodynamic interactions (HI) are considered. 
 

2.      METHODOLOGY 
 
 
In all calculations, the liquid crystal is 
characterized by the alignment tensor Q, a 
symmetric, traceless tensor order parameter 
[18]. The alignment tensor description is 
appealing because all the components of Q 
are continuous, even within a defect core 
where the components of the director n [18] 
are discontinuous. The nematic is also 
frequently characterized using a scalar order 
parameter S, which captures the degree of 
local orientational order; because of the 
abrupt orientation changes associated with 
defects, a defect core has a low value of S. In 
this paper, we adopt the convention that the 
largest eigenvalue of Q is always 

proportional to the scalar order parameter S, 
and the corresponding eigenvector is the 
director n. The Q description thus includes 
all of the information from the n and S 
descriptions of the nematic, with the added 
benefit of continuity at all points in the model 
domain. 
 
The dynamic equations for Q are based on 
the model of Stark and Lubensky [17]. Such 
a model differs slightly from earlier 
formulations [19-21] in the number of 
nonlinear terms in Q and the values of some 
kinetic coefficients. The Stark-Lubensky 
model agrees exactly with the Ericksen-
Leslie equations [22, 23] for the case of 
uniaxial Q. 
The free energy, F, of the liquid crystal is 
described by a functional of the form [18], 
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The first three terms of Eq. (1) represent the short-
range Landau-de-Gennes contribution to the free 
energy, which includes an energy scale of the phase 
transition (A) and a reduced temperature (U). The 
fourth term of Eq. (1) represents the elastic 
contribution to the free energy. We assume that all 
elastic constants are the same, so the elastic constant 
L1 is related to the splay, bend, and twist elastic 

constant K  by L1 = K /2S2  [18]. 
 

The model domain, illustrated in Fig. 1, is a three-
dimensional thin film of liquid crystal. This domain 
is representative of a sensor such as those 
considered in [1]. The nematic is confined in the z-
direction by two walls parallel to the x-y-plane. The 
periodic lengths in the x- and y-directions, Lx  and 
Ly , are three times that in the z-direction:  

 

Lx = Ly = 3H , where H is the separation 

between the walls. In the following 
theoretical description, all variables are non-
dimensional. Lengths are scaled by the 
domain thickness, H, and in all figures scaled 
lengths are denoted with an asterisk (i.e. 
x* = x /H ). Energies have been scaled using 
the length scale and the elastic constant of the 
liquid crystal, L1. The resulting simulation 

time scale, τ ≡ γH 2 /L1 , incorporates the 
rotational viscosity γ  of the nematic. For a 
typical liquid crystal (5CB) and domain size 
(H =1µm), the time scale is τ ≈1ms . This 
choice of scales leaves us with an additional 
dimensionless number, H /ξ , the ratio of 
domain thickness to ξ , the coherence length 
of the liquid crystal; for 5CB, ξ ≈ 20nm. 

 

 
Figure 1. The model domain at t/τ = 0 . (a) A cross section of  the director field at the y* =1.5  plane 
The position of the s = ±1/2  defects are marked with circles. (b) Isosurfaces of S = 0.3. The line 

defects form and move toward each other to annihilate  
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Defect relaxation is examined in the context of the 
domain in Fig. 1. The initial configuration consists 
of two domains: between x* =1 and x* = 2, there is 
a twisted domain in the liquid crystal, and outside 
those bounds the nematic is oriented parallel to the 
x-direction (Fig. 1). This choice of geometry is 
appealing because theoretical results can be 
validated experimentally.  

 
There is initially no variation in the y-direction, and 
the system is periodic in both the x- and y-directions. 
At the z* = 0  and z* =1 planes, the liquid crystal 
has strong planar anchoring, with an orientation 
parallel to the x-direction, and a no-slip condition 
for velocity ( v = 0) is enforced. This choice of 
initial condition results in two line defects of 
opposing strength, s = ±1/2 , that form at x* ≈1 
and x* ≈ 2 , respectively. These defects move 
toward the domain center to annihilate one another, 
thereby minimizing the elastic free energy. Films of 
thickness H =15ξ , H =10ξ , and H = 4ξ  were 
considered, and the simulation domain is discretized 
on a 45 × 45 ×15 point lattice in three dimensions; 
this discretization results in a grid spacing that is 
smaller than the coherence length ξ , thereby 
avoiding an artificial pinning of defects. 

 
With this choice of scales, the non-dimensional 
alignment tensor evolution equation of Stark and 
Lubensky [17] becomes 
 

∂Q
∂t

= −v ⋅ ∇Q + λλλλ :∇v −
δF
δQ
 

  
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  

st

            (2) 

 
This equation includes three contributions to the 
change in orientation: convection by flow 
(−v ⋅ ∇Q ), alignment with flow ( λλλλ :∇v ), and 
relaxation of free energy (− δF /δQ[ ]st ). The fourth-
order tensor λλλλ  describes the coupling  between the 
momentum and the orientation; for a full description 
of λλλλ , readers are referred to [17]. The free energy F 
is given by Eq. (1) [18]. 

 
With the introduction of the fluid velocity v , an 
accompanying momentum balance must be solved 
[17]. We assume incompressibility (∇ ⋅ v = 0) and 
employ the previously described non-
dimensionalization. The full momentum balance 
then becomes 
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        (3) 

where τ v = ρH 2 /η  is the viscous time scale, 
ρ  the density and χ  is a ratio of dynamic 
and rotational viscosities ( χ =η /γ ). For 
5CB, χ ~ O 1( ), and for a typical domain 

size H ≈1µm, the viscous time is τ v ≈1µs . 
Recalling that τ ≈1ms , it can be seen that 
the left hand side of Eq. (3) is negligible; this 
omission of the inertial term makes intuitive 
sense, since in a typical sensor [1], the 
Reynolds numbers are essentially zero. The 
momentum balance is thus reduced to a 
balance of forces, 
 

−∇p+ ∇ ⋅σ 0 + ∇ ⋅
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: λλλλ
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This relation states that pressure forces 
(−∇p ), elastic forces 

∇ ⋅σ 0 + ∇ ⋅ δF /δQ : λλλλ( )( ) and viscous 

forces (χ∇ ⋅σ ') must balance each other. 
Since only the pressure gradient appears in 
the system, we specify the pressure at the 
point 0,0,0( ) to a value of p = 0. At each 
time step, the force balance of Eq. (4) is 
solved using a finite element method to 
obtain the velocity field v . The resulting 
velocity field is used in Eq. (2) to update the 
alignment tensor Q with an implicit Euler 
scheme.  
 
 
3.       RESULTS 
 
We first investigate the change of the defects’ 
positions with time. Figure 2 shows the 
distance from the defects’ cores to the center 
of the cell ( x* =1.5).  The precise location 
of the defect core is assumed to be the 
minimum in the scalar order parameter, 
which is approximated with a quadratic 
interpolation between grid points. Results in 
Fig. 2(a-b) correspond to a film of 
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“moderate” thickness (H =10ξ ). When Eq. (4) is 
ignored (no HI) and relaxation occurs without flow 
(Fig. 2(a)), the defects move with equal and opposite 
velocities and are equidistant from the domain 
center at all times. This picture changes when flows 
are included and the momentum balance of Eq. (4) 
is enforced for the same film thickness. Figure 2(b) 
shows a marked separation in the paths of the two 
defects. The large elastic stresses associated with the 
defects necessitate a compensating viscous stress, 
and the resulting velocity field reinforces the 
movement of the s = −1/2  defect while hindering 
the motion of the s = +1/2  defect. Since the defects 
no longer move at identical speeds, they do not meet 
at the exact center of the model domain as they did 
in the no-flow case. The net effect is that the 
relaxation of the defects is slowed down by HI. The 
magnitude of this effect changes, however, 
depending on the degree of confinement of the 
liquid crystal. When the nematic is tightly confined 
(H = 4ξ ), as in Fig. 2(c), the presence of flow has a 
diminished effect on the overall relaxation process, 
and the paths of the two defects are nearly mirror 
images. At weaker confinements (H =15ξ , not 
shown), the speed anisotropy of the two defects is 
comparable to that at H =10ξ .  These results 
confirm that confinement screens out the effect of 
HI. 
 
In an effort to provide some insight into these flow 
effects, in Fig. 3 we show streamlines atop scalar 
order parameter contours for H =10ξ . The large 
elastic stresses associated with the defects result in a 
strong initial flow field, illustrated in Fig. 3(a), 
which reinforces the motion of the s = −1/2  defect 
and opposes the motion of the s = +1/2  defect. The 
largest velocity magnitude is greater than 3H /τ , 
which is comparable in magnitude to the defects’ 
initial approach velocities in the absence of flow. As 
the defects develop and move, large vortices move 
along with them, as seen in Fig. 3(b-d). The 
magnitudes of the strongest flows, however, decay 
to more moderate values ( v

max
≈1) at later times. 

As the defects move into close proximity of one 

another, each defect’s approach velocity is 
more than 20 times the magnitude of the 
maximum fluid velocity, so the flow 
contribution to the dynamics at late times is 
much smaller than at the earliest times. 
Eventually the defects combine, and the 
remaining vortices dissipate as the liquid 
crystal adopts its preferred uniform state.  At 
all times, small but finite flows are present in 
the y-direction, the effects of which will be 
the subject of future work. While there is no 
appreciable variation in the y-direction, the 
three dimensional nature of the calculations 
will allow for extension to dynamic systems 
where a third dimension is required, such as 
aggregation. 

 
The initial stress field is responsible for the 
initial flow field. We consider here only the 
xx-component of the stresses, since the 
largest initial flows and the sharpest initial 
orientation gradients both occur in the x-

direction. While the elastic stresses (not 
pictured) are mirror images about the 
x* =1.5 plane, the xx-component of the 
elastic stress has both positive and negative 
components. Enforcing the momentum 
balance of Eq. (4) thus has two effects. First, 
the viscous stresses at the two defect centers 
have opposite signs, as seen in Fig. 4(a).  
Second, since the pressure gradient must 
have opposite sign, the pressure in Fig. 4(b) 
shows a peak at the s = −1/2  defect and a 
depression at the s = +1/2  defect. The 
difference in pressure around these two 
defects is comparable to that predicted from 
far-field calculation of pressure around 
isolated s = ±1/2  defects. Additionally, the 
viscous stress has local extrema near the 
confining walls, which is reasonable given 
the strong anchoring and no-slip conditions at 
those surfaces. An analysis of the remaining 
components of the stress tensor is 
forthcoming.  
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Figure 2. Defect distance from x* =1.5 plane vs. time. The s = −1/2  defect is denoted by (o), the 

s = +1/2  defect by (+). (a) Whit a no-flow condition, the two defects relax along identical paths, meeting 
in the exact center of the cell. (b) The defects come together more slowly when hydrodynamic interactions 

are included. Since the two defects now travel with different speeds, they no longer meet at exactly 

x* =1.5, and the s = −1/2  defect crosses the midplane ( x* < 0). (c) In the high confinement 
(H = 4ξ ), the paths of the two defects are nearly identical, even with the inclusion of hydrodynamic 

interactions 
. 
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Figure 3. Streamlines atop contours of scalar order parameter for H =10ξ . Velocity magnitudes are in units 

of H /τ . (a) t /τ = 0.0001. Flows reinforce the motion of the s = −1/2  defect (left) but deter the motion 
of the defect of opposite strength. (b-c) t /τ = 0.0008 and t /τ = 0.019, respectively. The flow strength 
decays, and distinct vortices begin to develop and shadow the defects. (d) The fully-developed vortices 

shadow the defects as they relax 
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Figure 4. Film of H =10ξ  at time t /τ = 0.0001. (a) Contours of the viscous stress component σ 'xx . The 
extrema in the viscous stress occur at the defect centers and at the confining walls. (b) Pressure field. The 

pressure compensates for the total stresses in the system 
 
4.     CONCLUSIONS 
 
The results presented in this work constitute the first 
instance in which defect relaxation in a nematic 
liquid crystal has been considered with a complete, 
molecular treatment of hydrodynamic interactions. It 
is found that the dynamics of simple defects change 
quantitatively when hydrodynamics are properly 
included. These hydrodynamic interactions will 
become vitally important when simulating dynamic 
events in the nematic, such as aggregation processes 
and dynamic sensing mechanisms.  Since controlled 
experimental studies of defect dynamics in liquid 
crystals have been extremely limited, our results 
provide a benchmark that might motivate 
experiments aimed at understanding liquid crystal 
dynamics under confinement. 
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