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ABSTRACT: Multiscale analysis and computation is a rapidly evolving area of research that have had a 
fundamental impact on computational science and applied mathematics and have influenced the way we view the 
relation between mathematics and science. Even though multiscale problems have been longly studied in 
mathematics, such techniques suffer of the ill-posedness nature of the problem. In the solution of several ill-posed 
problems, discrete mollification has been used for regularization. In this paper, we propose a new technique 
(procedure) for multiscale analysis by using discrete mollification. The multiscale scheme is based on numerical 
linear algebra results combined with the mollification method applied to the Mallat algorithm. The new technique 
has a simple theory, an efficient implementation and compares fairly well with classical wavelet transform 
procedures. An application on electrocardiographic signals contaminated with typical non-white noise is considered. 
 
KEYWORDS: ECG, GCV, multiscale analysis, mollification, non-white noise, regularization, thresholding. 
 
RESUMEN: El análisis multiescala es un área de gran actividad investigativa con fuerte impacto en  computación 
científica y matemática aplicada,  ocupando un lugar de privilegio en la forma como se entiende la relación entre la 
matemática y las demás ciencias. Aunque el estudio matemático de problemas multiescala está bastante 
documentado, estas técnicas heredan en el entorno discreto la naturaleza mal condicionada del problema.  La 
molificación discreta ha sido empleada con éxito en la solución numérica de diversos problemas mal condicionados. 
Este árticulo propone una nueva técnica de análisis multiescala, basada en molificación discreta.  El procedimiento 
aquí propuesto usa resultados de algebra lineal numérica para implementar molificación discreta en el algoritmo de 
Mallat. La nueva técnica tiene una teoría simple, una implementación eficiente y proporciona resultados de calidad 
comparable a técnicas multiescala clásicas tipo onditas (wavelet).  El proceso es aplicado en señales 
electrocardiográficas contaminadas con ruido no blanco, para fines de comparación. 
 
PALABRAS CLAVE: ECG, GCV, análisis multiescala, molificación, ruido no blanco, regularización, 
umbralización. 
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1.      MOLLIFICATION 
 
The mollification method is a filtering procedure 
based on convolution, which is appropriate for 
the regularization of ill-posed problems and for 
the stabilization of explicit schemes in the 
solution of partial differential equations. As a 
regularization method for ill-posed problems, the 
method is well documented, for instance in [1], 
[2] and [3]. For the definition of mollification, 
the implementation of numerical boundary 
conditions for discrete mollification and the 
automatic selection of mollification parameters, 
we recommend [1] and [4]. 
 
1.1      Abstract Setting 
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We work with the following truncated Gaussian 
kernel: 
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This kernel satisfies: ,0≥pδκ  

),,( ppCp −∈ ∞
δκ  pδκ  is zero outside  [ ]pp,−  

and .1=∫ pδκR  

 
Given RR→:f  locally integrable, we define 

its ionmollificatp −δ , denoted ,fJ pδ  as the 

convolution of f  with the kernel .pδκ   

 
That is, 

( )

.)()(

)()(

dsstfs

tftfJ

p

p

p

pp

+−=

∗=

∫
−

δ

δδ

κ

κ

      (3) 

 
 
 
 
 

1.2      Unbounded Discrete Domain 
 
Definition 1: Let 

{ }Z∈+== jjhxxxX jj  ,: 0  be a discrete 

domain with x 0  and h  given real numbers and 

.0>h  Let →XG :  R  be a function defined 

by .)( jj yxG =   Set 
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with jχ  the characteristic function of .jI  Then 

for 0>δ  and η  a given non-negative integer, 

we define the ionmollificat−δη  of G  as the 

ionmollificatp −δ  of f  with 

( ) ,2/1 hp += η                    (5) 
 that is, 

).()( xfJxGJ pδδη =                 (6) 

 

We are particularly interested in the value of  
GJ δη  at the points in .X  Let 

( ) . ,2/1 Z∈−= jhjt j              (7) 

 
 Then we can write 
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 Furthermore,  
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Notice that w  satisfies  
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 Theorem 2:  Let g  be a function defined on R  

with fourth derivative 
)4(g  continuous and 

bounded in .R  Let G  be its discrete version 

defined on .X  If 
εG  is another discrete function 

defined on X  and such that  
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then, there exists a constant C  such that 
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Furthermore, if g  is smooth enough, there exists 

a constant C  such that 
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where −+ DD ,  and 0D  are the forward, 

backward and central finite difference operators 

respectively. 

 

For a proof, see [4]. 
 
1.3      Discrete Mollification 
 
For working with finite length data some kind of 
boundary condition has to be assumed, [5], [6]. 
The most common and documented are Zero 
Padding (Dirichlet), Scaled version (Non-
homogeneous Dirichlet), Even Reflection 
(Neumann) and Periodic. All these options lead 
to linear operators with Toeplitz, Scaled Toeplitz, 
Toeplitz plus Hankel and Circulant matrix 
representation, respectively. 
 
 

Under periodic boundary conditions the FFT 
allows us to know the actual spectral action of 
the mollification kernel on the data, [6]. In the 
case of even reflection the Discrete Cosine 
Transform (DCT) results useful, [5]. 
 
 
2.        MULTISCALE ANALYSIS (MSA) 
 
2.1      Multiscale Decomposition Tree 
 
 
The clue in the multiscale analysis is the 
Decomposition Tree, [7], [8] (Fig. 1). 
 
 

 
 

Figure 1.  Multiscale decomposition tree 
 

The sAi

′  are filtered versions of S  at different 

scales or resolutions. The sDi

′  are the 

complementary details for obtaining the original 

source. The idea is that the approximations sAi

′  

give us an overview of the signal S  and the 

details sDi

′  give us its specials features. The 

approximations are usually obtained from 
successive applications of lowpass filters, and 
the details from associated highpass filters. 
 
2.2      The Idea 
 
A decomposition tree could be set up by using 
discrete mollification at different resolutions 

)( sδ ′  as approximations and residuals as details 

(Fig. 2). 
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Figure 2. Multiscale decomposition tree using 

discrete mollification 
 
2.3     Discrete MSA 
 
Weinan E and Bjorn Engquist in [9] state: 
"Given such a variety of multiscale methods in 
many different applications, it is natural to ask 
whether a general framework can be constructed.  
 
The general framework should ideally: 
• unify existing methods, 
• give guidelines on how to design new 

methods and improve existing ones, 
• provide a mathematical theory for stability 

and accuracy of these methods." 
 
 Definition 3: A 3-upla of collections 
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Example 4: The decomposition generated by 

orthogonal DWTs is a DMSA. 

Definition 5: A vector 
k

S 2
R∈  is said to be 

decomposed to J  levels if it has been written in 

the form 

,21 JJ ADDDS ++++= L           (15) 

where jkj WD −∈   and  .JkJ VA −∈   

 
 
3.      DMSA BY MOLLIFICATION 
 
3.1     Kernel Adjusting 
 
For 0>δ , consider the Gaussian kernel 
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Its Fourier transform is 
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 So, a dyadic dilation in the kernel's parameter 
δ  generates a dyadic contraction in its 
spectrum. 
Furthermore, under periodic boundary 
conditions, by taking  
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the discrete mollification process cuts the upper 
half of the frequency components off. 
 
Then the following decomposition scheme will 
produce a dyadic spectral decomposition of a 

vector in 
k2

R  (Fig. 3). 
 

 
Figure 3. Dyadic spectral decomposition 
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To this procedure we could associate a sub-band 
DMSA in the frequency domain. The problem is 
that, because of the shape of the Gaussian 
kernel's spectrum, the residuals (i.e. details) 
contain low-frequency information of the vector 
and consequently .jkj WD −∉  So, our scheme is 

not a perfect DMSA. 
 
3.2 Mallat's Algorithm 
 
In a perfect DMSA we can apply the Mallat's 
Algorithm for obtaining the MSA decomposition 
of a vector, [7], [8]. However, if this algorithm is 
directly applied to our scheme we will not obtain 
a perfect recovery structure. 
 
In our case, we propose the following algorithm 
(Fig. 4), whose action takes place in the 
frequency domain and consists on applying the 
downsampling operator to suppress the entries 
associated to the upper half of the spectrum. 
 

 
Figure 4. Decomposition tree (dyadic case) using 

discrete mollification 
 

3.3      Non-dyadic case 
 
For non dyadic vectors the DMSA by Discrete 
Mollification is implemented by increasing the 

sδ ′  values (Fig. 2). 
 
 
4.      REGULARIZATION BY 
THRESHOLDING 
 
4.1     Introduction 
 

A measured vector ,εS  contaminated with 
additive       noise,      can      be      modeled     as 

,2,,2,1for  ,)( k

iii ixsS L=+= εε       (20) 

where )( ixs  represents the exact data function 

and iε  the corresponding added noise, usually a 

random variable. Let  
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Now we apply J  levels of DMSA to εS  to 
obtain a decomposition of the form 
 

.12
εεεεε DDDAS JJ ++++= L       (22) 

 

We expect ε
JA  to be somewhat similar to S  and 

the details to depend in some way on the noise. 
At this point we do some assumptions 
• The magnitude of the noise is small 

compared with the signal S  (SNR>10dB 
[10]). 

• The approximation procedure is good 
enough, so the residuals in the details are 
expected to be zero or close to zero at most 
of the points. 

 
Under these hypotheses we make zero the detail 
components with magnitude under a certain 
threshold value, because they are suspicious of 
being noise. The entries with magnitude above 
this value are reduced in magnitude, for 
continuity purposes (soft-thresholding). With 
this procedure we obtain a modified version of 
the measured data which is expected to be 
smooth and to preserve the most important 
features of the signal, [7], [10]. 
 
A different threshold value is selected for each 
level, because each level of detail deals with 
different frequency bands and probably different 
noise behavior. 
 
Theorem 6 (Numerical Convergence): Let ,S  

k

S 2
R∈ε

 such that  

,εε ≤−
∞

SS                   (23) 

If 
ε
λS  and λS  denote the results of 

reconstructing after J  levels of DMSA by 

mollification and soft-thresholding with 

threshold values [ ]TJλλλλ ,,, 21 L=  applied to  
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εS  and S  respectively, then  
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Consequently, it holds the convergence 
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4.2 Threshold value selection 
 
As usual in regularization methods, the most 
difficult and relevant task is the automatic 
selection of regularization parameters that allow 
an optimal balance between the errors of 
regularization and perturbation, [10], [11]. The 
procedure selected for this task is Generalized 
Cross Validation (GCV), which offers: 
• Efficiency 
• No information about the magnitude or 

variance of the noise is required 
• Asymptotic optimality. 
 
The GCV function in this case is 
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 where )(0 λN  denotes de number of 

components in ε
jD  with magnitude under the 

threshold value .λ  
 
 
5.      EXPERIMENTAL SETUP 
 
5.1 ECG Database 
 
The experiments were performed on 55 registers 
extracted from the MIT-BIH arrhythmia database 
and corrupted, at a 6dB signal-to-noise ratio, 
with three different types of synthesized noise: 
electromyographic interference, 60Hz powerline 
interference and electrosurgical noise [12],[13]. 
This test shows how DMSA by discrete 
mollification works in noise reduction in 

comparison with another popular multiscale 
procedure: wavelet. Four levels of 
decomposition were used for both methods. The 
wavelet of choice was “db4”. 
 
5.2     Scoring criterion 
 
For each register, the scouring routine obtains 
absolute error between original and filtered 
signal for both methods. The result on the i-th 
register is denoted by ie . 
Afterwards, mean value, variance, maximum 
and minimum values are computed as follows: 
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6. RESULTS 

 
Table 1. Absolute error in ECG signals after 

regularization by thresholding. Four levels, wavelet 
of choice: ‘db4’ 

 µ Var Max Min 

Original 0.1390 0.0106 0.4542 0.0002 
DMSA by 
mollification 

0.0334 0.0008 0.1871 0.0002 

DMSA by wavelet 0.0353 0.0008 0.1582 0.0000 

 
Both methods are aceptable for non-white noise 
reduction in ECG signals, but a discriminat 
factor could be the maximus error. Because of 
that, DMSA by mollification still shows a little 
pikes reduction on ECG signals. 
 

 
Figure 5.  Result of applying DMSA by Discrete 

Mollification for filtering ECG signals 
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7.       CONCLUSION 
 
The results show how the new procedure is 
capable of making an automatic filtering 
preserving not only the low frecuencies but also 
the main high frecuency features of the signal. 
 
Additionally, this work offers a fully discrete 
mathematical analysis of the tool. This could be 
useful in the convergence analysis of algorithms 
using DMSA for the solution of multiscale 
problems. 
  
All this imply that DMSA by mollification could 
be applied to a wide range of problems with 
strong multiscale interaction.  Additional work 
on this matter has to be done.  
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