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ABSTRACT: The pioneer schematic ideas of Kimura and Levenspiel (/Ind. Eng. Chem. Proc. Des. Dev., 16 (1977)
145 — 148) have been developed to find numerically the region of instability for adiabatic packed bed reactors. Three
different cases of special industrial interest and complexity are presented. The highly exothermic gas-phase
reactions: ammonia synthesis, methanol production from syn-gas, and SO, oxidation. Equations were parameterized
and solved according to a continuation homotopy numerical method. The results showed that concentration of inerts
and total pressure influences the size of the instability region.

KEYWORDS: Instability region, adiabatic packed bed reactors, homotopy continuation method.

RESUMEN: Las pioneras esquematicas ideas de Kimura y Levenspiel (/nd. Eng. Chem. Proc. Des. Dev., 16 (1977)
145 — 148) han sido desarrolladas para determinar numéricamente, para reactores de lecho empacado adiabaticos,
cuando un punto de operacion es o no estable, y para localizar la envolvente de las condiciones a las cuales se debe
evitar su operacion. Tres reacciones en fase gas, de especial interés industrial y complejidad, altamente exotérmicas,
se utilizan para ilustrar el método de analisis propuesto: la sintesis de amoniaco, la produccién de metanol a partir de
gas de sintesis, y la oxidacion de SO,. Las ecuaciones son parametrizadas y resueltas de acuerdo a un método de
continuacion por homotopia. Los resultados demuestran que la concentracion de inertes y la presion tienen marcada
influencia sobre el tamafio de la region de inestabilidad.

PALABRAS CLAVE: Region de inestabilidad, Reactores de lecho empacado adiabaticos, Método de continuacion
por homotopia.

1. INTRODUCTION

temperature, characterized by large recycle of
In the design of adiabatic packed bed reactors, there gas. Kimura and  Levenspiel [1]
are two types of temperature excursions that must be schematically have shown that a conversion
specially considered: (1) the existence of “hot spot” vs. temperature chart can become a
temperatures, characteristic of reactors with no convenient tool for identifying these unstable
recycle of gas; and (2) the unstable “runaway” points. For their recognition, they considered
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that “hot spot” and “runaway” temperatures can be
related to two ideal reactors models: plug flow
tubular reactor (PFTR) and completely stirred tank
reactor (CSTR), respectively. With this background,
they have developed a criterion to find stable points
and an envelope of operating conditions which must
be avoided in operation of adiabatic packed bed
reactors. From the CSTR model, they linked the
molar and adiabatic energy balances in a conversion
vs. temperature plot. For a given feed temperature
and operating residence time (7 or 7° = 7/C,,) the
adiabatic energy balance line and the S-shaped
material balance intersect each other at either one or
more stable or unstable points. At the unstable
points it is possible to generalize as follows:

slope of material . slope of adiabatic
balance curve

(1)

energy balance curve

Equation (1) was claimed by Kimura and Levenspiel
[1] as a fundamental criterion for mapping the
instability operation region. Thus, to map the
instability region, it is necessary to establish the
points where the slope of the constant 7’ line (molar
balance) equals to the slope of the corresponding
adiabatic line (adiabatic energy balance). These
points are joined in a z’-conversion-temperature
chart to obtain the boundary of unstable region.
Those kinds of charts are used in the literature to
solve optimization problems: e.g., to calculate
reactor sizes, and to compare alternative designs in
reaction rate-conversion-temperature charts [2, 3].
To create those kinds of charts, besides simple rate
laws (e.g., first order reactions), computational
procedures with complex numerical methods are
required due to nonlinearity rate laws and the
resulting models. Continuation or homotopy
methods have been demonstrated to be robust for the
location of all real roots of numerous types of
chemical engineering problems involving single or
systems of nonlinear equations [4]. Homotopy
methods obtain the solution of nonlinear equations
by tracking a path from a starting point that is the
solution of a much simpler function. Both, the
original function and the simpler function are
embedded into a parameterized initial-value
problem in ordinary differential equations, solved by
a predictor—corrector algorithm.

This paper presents how numerically, by using a
homotopy continuation method, it is possible to find

the instability regions of complex reaction
rate systems, based on the pioneer schematic
ideas of Kimura and Levenspiel [1]. Three
different cases of special industrial interest
and complexity are presented: ammonia,
methanol, SO; synthesis.

2. MATHEMATICAL MODEL OF
UNSTABLE REGIONS IN PACKED
BED REACTORS

For the CSTR, the adiabatic energy balance
can be arranged as follows [5]:
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where X, corresponds to the conversion of
the limiting reactant. The CSTR molar
balance is defined as:

A= =7 0

The objective is to find the coordinated
points of equation (4), (X, 7), for a given 7,
with a value of J that satisfy equation (3). It
also means to solve the following equation:
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dx,

E(X,,T)=J- 7 =0 (5)
with:
dx, _ d(7(-r))__d(-r) ©)
dr dr\ c,, dT

It is difficult to evaluate the term
d(=r4)dT due to its nonlineal dependence on
conversion and temperature. This implies to solve
the following equation:

Dy

= S ()
T I—T'[a(_rA)J
0X, ,
This is a general expression that corresponds to the
instability criteria presented in equation (1). The
complexity of applying and solving equation (7)
depends on the rate law expression.

To accomplish a numerical solution of equation (1),
a second function can be defined as follows:

F(X,T,t")=X,-7'(-r,)=0 (8)

Thus, equations (5) and (8) have to be solved using
a homotopy method (details presented in the
appendix). As a result, these two equations are
grouped in a new variable named / as follows:

H(XA,m')=H(z,r')=m=o ©)

Equation (9) contains X and 7, which are grouped
in a new variable Z As X; = Xy7), or

= 7(Xy). the derivative of equation (9), with
respect to Zis:

(“50)
Zi = g N 20T A (10)

(o7,,)
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Basically, the algorithm consists of finding
values of the new variable, 7 for a given 7°.
This can be made using a multivariable
Newton-Raphson method.

3. REACTION SYSTEMS

Here the rate law expressions, for three cases
considered in this work, are presented. The
rate for ammonia synthesis is [2]:

N, +3H, < 2NH,

1.5
r=k [ﬂj —k [ P, J kmol N, kg, hr’

Pru, H,

20800 11

k=1.79x10"exp| - ; ( )
RT

k, =2.57%x10" exp[— 47400}

! RT

The formation of methanol based on CO with
H>is [6]:

CO+2H, & CH,OH

Pcu,on

r=k [pmpi,: - j, mol CO.cm™.min™"

P

k =2x10* exp(‘soo%)

K, = exp(—zm + 10913%)

(12)

The oxidation of sulfur dioxide to sulfur
trioxide, given by [2]:

SO, + 40, <> SO,
Pso,

)ik ]
r= Pso, Po, T v, kmol SO, kg ' .hr’!
22.414(14 K, poo, + K, P, )

k :exp(12A160—547%) (13)
K, :exp(—9953+861%)
K, = exp(—7lA745 + 5259%)

K, =exp(113007 —10.68)

kl p(): psr): [1 -

4. RESULTS

The proposed algorithm proved to be robust
and no convergence problems were detected
for any of the analyzed rate laws. Figure 1
presents the r esults obtained for ammonia,
methanol and sulfur trioxide synthesis.
Calculation time depended on the
complexity  of the rate law.
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Included curves at 7’ constant and, for the ammonia case, also at rate constant

For the three instability regions of Figure 1
computation time were of 115,35; 101,45; and
49,2 seconds for ammonia, methanol, and SO;,
respectively using a laptop with 1,8 Mhz
processor and 776 Mb of RAM. In general, a
region of instability is far from the equilibrium
(-r4 = 0). It is always to the left of the optimal
progression of temperature (maximum reaction
rate line in the reaction rate — conversion -

temperature chart).

50,+0.50, <+ SO,

P=1atm
Feed ratio 0,/50,= 14

—a— 7= 1x10’
—0—z=2
—A— =05
—v—7=0.15
—— 2 =5x10"
—— 7= 1x10"

1400

Figure 1. The instability region of the adiabatic packed bed reactors for ammonia, methanol, and SO; synthesis.

The size of the instability region highly depends
on the inert concentration as presented for
ammonia synthesis (Figure 2). However, for a
high concentration of inerts the instability region
disappears. Since the instability region has its
origins in the difference between generated and
removed energy of the system, it can be expected
that a decrease in the reactant concentration
diminishes the extension of the instability region.
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Figure 2. Effect of concentration of inerts on the size

of the instability region of an adiabatic packed bed
reactor for ammonia synthesis

The trajectories of the instability region have a
maximum temperature (Figure 2). The maximum
temperature represents the temperature limit for
the instability region, and it could be correlated
to the adiabatic operation line of a packed bed
reactor. The curve of the locus of maxima is also
shown in Figure 2. Above this locus curve the
derivative dXydT is always negative thus,
reactor conversion decreases as temperature
increases. Below the locus curve reactor
conversions always increases. Consequently, the
minimum feed temperature can be found from
the adiabatic reactor energy balance (equation
(3)). The locus of maxima curve is controlled by
operation parameters, such as: type and
concentration of inerts (its heat capacity), total
pressure, molar feed rate, heat transfer area,
temperature of fluid inside the heat-exchange
tube; and reactor construction material (its global
heat-transfer coefficient) etc... Two of them are
presented here: the effect of inert concentration
in Figure 2 and the influence of the total pressure
on the instability region that is presented in
Figure 3, both for ammonia synthesis. In Figure
3, it is possible to observe that upon a decrease
on total pressure (at 186 atm, light gray line), the
locus curve moves downwards, and slightly to
lower temperatures, comparing to those at higher
pressures (e.g., 296 atm).

09

Feedratio N-H-NH -Inerts
1-2,97-024-0,36
Pressure, atm

0,8

0,74

0,6

0,54

ol

04

0,3

0,2

0,1

- ¥+
400 500 600 700 800 900 1000 1100 1200

Tenperature, K
Figure 3. Effect of total pressure on instability region
size of an adiabatic packed bed reactor for ammonia
synthesis

An increase of total pressure leads to an increase
of the extent of the instability region. This can be
expected since for an equilibrium reaction,
where the number of moles of products is lower
than that of reactants, high pressures shifts the
equilibrium to the right. Thus, at higher
pressures the reaction extent is higher as well as
the heat evolution. The locus of maxima of those
trajectories is adjusted to straight line, parallel to
the temperature axis.

5. CONCLUSIONS

In this paper, a numerical approach, along the
original schematic lines of Kimura and
Levenspiel [1], for mapping the region of
instability of adiabatic packed bed reactors has
been shown for three reaction rate laws of high
complexity and industrial interest. It was found
that the instability region is far from the
equilibrium (-r4 = 0), and to the left of the
optimal progression of temperatures. The shape
and size of the instability region of an adiabatic
packed bed reactor are controlled by type and
concentration of inerts (its heat capacity), total
pressure, molar feed rate, heat transfer area,
temperature of fluid inside the heat-exchange
tube; and reactor construction material. For a
high concentration of inerts, the instability
region disappears and the increase in total
pressure leads to an increase of the extent of the
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instability region. The proposed homotopy
continuation method appears to be a reasonable
simple and accurate numerical technique, for
which a simple personal computer amply
suffices.

NOMENCLATURE

C,0= Concentration of reactant in feed, mol/m’.
Cp; = Specific heat of the fluid per mole of
entering reactant, cal/(mol.K).
-AHr.,= Heat of reaction per mole of reactant A,
cal/mol.
k ;= Reaction rate constant.
K;= Adsorption equilibrium constant.
K, = Partial pressure equilibrium constant.
p; = Partial pressure of 7.
R=Ideal gas law constant, 1.9859 cal/(mol.K).
-r,= Rate of reaction.
T= Temperature, K.
7, = Entering temperature, K.
X, = Fraction of reactant A converted into
product.
7= Space time based on unit mass or volume of
catalyst.
0; = Ratio of the molar flow of species 7 entering
to the molar flow of A entering

APPENDIX

Continuation or homotopy methods have been
served as useful tools in modern mathematics
and engineering [4]. Stated briefly, a homotopy
method consists of the following. Suppose the
situation in which very little of a priori
knowledge concerning zero points of a function
F(x) is available. A normal iteration method will
often fail to determine the values that make zero
the function F{x) because poor starting values
are likely to be chosen. As a possible solution, a
homotopy or deformation function H(x,A) is
defined. It consists of a linear combination of
two functions:

F(x)=H(x1) (A1)
G(x)=H(x,0) (A2)

(A6). It should guaranty that the solution curve Z
consists of zero (or near zero) points (u) of H.

where G(x) is a function for which a zero is
known, and A4 the continuation or homotopy
parameter, which allows tracking a solution path
that connects an arbitrary starting point to the
solution of A(x) = 0. A standard deformation
which is often used is the global homotopy
function:

H (x,2)=2F (x)+ (1= 2)G (x)=0 (A3)

The choice of ((x) is arbitrary. As the parameter
of continuation is in the range [1 0], a series of
solutions to H(x,A) = 0 traces a path to the
solution of A(x) = 0. H(x,A) is recursively solved
at each value of A wusing an appropriate
numerical method (e.g., a newton type method).

In some instances, even if the function is
parametrizable with respect to A4, it may be
necessary to choose an extremely small
increment 4 for the algorithm to succeed. To
remedy this failure or poor performance it can be
consider a differential arclength form of equation
(A3). Thus, defining a new group of variables:

Z(s)=[x(s).2(s)] (A4)
In this way:
H(Z(s))=0 (A5)

Differentiating the equation (5) with respect to
arclength s, along the solution path:

e
os

oHZ_,
o7 os
2(0)=(x1)

(A6)

Defining:

o _
oz

A A(A)= ‘Z—f (A7)

Where A(A) is the tangent vector induced by A
Now, numerical methods for solving initial value
problems may be applied to

Hence, one leads to integrate numerically the
equation (A6) very coarsely and then locally use
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an iterative method for solving the equation (A5)
as a stabilizer.

To describe how the points zare generated along
the curvez, it is necessary to suppose that a
point z has been accepted so thatHH(ul.)H <&,

where . is a numerical value describing the
tolerance of the numerical method (. . ). This
accepted point can be presented as follows:

Z(5=0)=[x,,1] (A8)

where x, is a vector of length defined and with
any numerical value.

Such a definition of the equation (AS) is possible
since the following statement (A9) is always
true:

H(X,1)=F(X,)=0 (A9)

After accepting this point, it proceeds to
integrate the following initial value problem:

%:z(fx), z(0)=u, (A10)

To obtain a new point ., along the curve z, it

is necessary to perform a predictor step due to
the difficulty to obtain /”L( A) .

Normally, this predictor step is obtained by a
simply numerical integration step of the initial
value problem (equation A10). Thus, with an
Euler predictor method:

I/I.+1=u1.+AS~/”L(A), As>0 (A11)

The point v,

7., 1s just an approximation to the

point u,,. To obtain the correct point that

satisfies H( u,, )H <&, it is necessary to apply a

corrector step, such as Newton-type method.
This homotopy method applies until ; < ¢ . This
procedure is applied now in two steps for
mapping the instability region for tubular packed
bed reactors.
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