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ABSTRACT: Normally, in a heterogeneous formation, the transition period of flow from fissures to matrix takes
place during the radial flow regime. However, depending upon the value of the interporosity flow parameter, this
transition period can show up before or after the radial flow regime. An accurate understanding of how the reservoir
produces and the magnitude of producible reserves can lead to competent decisions and adequate reservoir
management.

So far, no methodology for interpretation of pressure tests under the above mentioned conditions has been presented.
Currently, an interpretation study can only be achieved by non-linear regression analysis (simulation) which is
obviously related to nonunique solutions. Therefore, in this paper, a detailed analysis of pressure and pressure
derivative behavior for a vertical well in an elongated closed heterogeneous formation is presented. We studied
independently each flow regime, especially the dual-linear flow regime since it is the most characteristic
“fingerprint” of these systems; new equations to characterize such reservoirs is introduced and were successfully
verified by interpreting both field and synthetic pressure tests for oil reservoirs.

KEY WORDS: Dual-linear flow regime, radial flow regime, interporosity flow parameter, dimensionless storativity
coefficient

RESUMEN: Normalmente, en una formacion heterogénea, el periodo de transicion del flujo fracturas-matriz toma
lugar durante el flujo radial. Sin embargo, dependiendo del valor del parametro de flujo interporoso, dicha transicion
puede ocurrir antes o después del flujo radial. Un entendimiento preciso de la forma como el yacimiento produce y la
magnitud de las reservas producibles puede conducir a una toma de decision competente y una adecuada
administracion del yacimiento.

Hasta ahora, no existe metodologia para interpretar pruebas de presion bajo las condiciones mencionadas
anteriormente, por lo que el unico estudio de interpretacion debia conducirse usando analisis de regresion no lineal
(simulacién) que esta relacionado con mas de una solucion. Por ende, en este articulo se presenta un analisis
detallado de la presion y la derivada de presion para un pozo vertical que produce de una formacién alargada y
heterogénea. Se estudiaron independientemente los regimenes de flujo especialmente el flujo dual lineal puesto que
reviste la “huella dactilar” méas importante para estos sistemas. Se desarrollaron nuevas ecuaciones para caracterizar
tales yacimientos, las cuales fueron satisfactoriamente verificadas con datos simulados y de campo.
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PALABRAS CLAVE: Régimen de flujo dual lineal, régimen flujo radial, pardmetro de flujo interporoso,

coeficiente de almacenaje adimensional

1. INTRODUCTION

An important number of pressure tests are
conducted in long and narrow reservoirs. This
type of geometry, caused by fluvial deposition,
faulting or deep sea fans deposition requires its
proper identification and characterization.

Among the investigations on pressure tests for
elongated systems during this decade, [1]
introduced the application of the 7DS technique
for characterization of long and homogeneous
reservoirs presenting new equations for
estimation of reservoir area, reservoir width and
geometric skin factors. In reference [2]
introduced a new flow regime exhibiting a
negative half slope on the pressure derivative
curve once dual-linear flow has ended. They
called this as parabolic flow. Reference [3] has
also found this same behavior. However, they
called it “dipolar flow”. Later, [4] studied the
impact of the geometric skin factors on
elongated systems. Characterization of pressure
tests in elongated systems using the conventional
method was presented by [5]. Also, reference [7]
provided a way to estimate reservoir anisotropy
when reservoir width is known in the mentioned
systems from the combination of information
obtained from the linear and radial flow regimes.

In the normal case for a heterogeneous
formation, as consider by the double porosity
model, the fluid flows from the fracture network
to the well. Upon depletion, the fissures are fed
by fluid from the matrix. This transition period is
identified by a deflection of the pressure
derivative curve and possesses a characteristic
“V” shape. In many cases the transition period
occurs during radial flow. In other words, the
radial flow is interrupted by the transition period.

However, there are cases where the transition
period occurs before or after the radial flow
regime. For instance, [8] pointed out the
occurrence of the transition period during

bilinear and linear flow regime periods in
naturally fracture formations intercepted by a
hydraulically fractured well. For these cases, the
interporosity flow parameter, A, is higher than
1x107. In other cases, like the one dealt in this
paper for elongated systems, the transition
period occurs during the dual-linear flow regime,
of course, later than the radial-flow regime. A
modern technique known as the Tiab’s Direct
Synthesis technique (7DS technique), [9]
employs the log-log plot of pressure and
pressure derivative curves to interpret pressure
buildup and drawdown tests without using type-
curve matching by using analytical equations
derived for specific “fingerprints” found on the
mentioned plot. Because of its simplicity and
practicality, this technique is becoming more
popular, and therefore, has been extended here to
analyze pressure behavior in channelized
heterogeneous oil formations.

2. SIMULATION RUNS

Fig. 1 illustrates the unique features for a long
heterogeneous reservoir drained by a centered
well in the reservoir. Table 1 contains the input
data used for the simulations. It is first observed
in this plot the occurrence of the radial flow
regime. Then, the dual-linear flow shows up but
it is interrupted by the transition period when
fissures are fed by flux from the matrix. Finally,
the late pseudosteady state flow regime is
developed.

The other scenario considers the well off-
centered inside the reservoir. Two possibilities
can be presented, though. For the first one, the
transition occurs before the single-linear flow,
see Fig. 4. It implies that the chronological
appearance of flow regimes is: radial, dual
linear, transition period, single linear and
pseudosteady state. The second one involves the
interruption of the single-linear period by the
transition period as depicted in Fig. 6. The
chronological occurrence of the flow regimes
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are: radial, dual-linear, single-linear, transition
period and pseudosteady state. No modeling for
the occurrence of the transition period during
pseudosteady state was considered in this study.
In real life, it may be presented in rate-transient
analysis.

3. MATHEMATICAL MODELING

It is assumed that a constant viscosity and
slightly compressible fluid flows in a naturally
fractured formation which matrix and fissures
have constant porosity, permeability and
compressibility. The formation is fully
penetrated by a vertical well. The governing
equation of pressure and pressure derivative for
dual-linear flow regime in a naturally fractured
formation is proposed here as:
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The dimensionless quantities are defined as:
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The naturally fractured reservoir parameters
introduced by [10] were defined by:

b cr (3.a)
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Table 1. Data used for the simulation runs and

examples
Simula- Exam- Exam- | Field
tion runs ple 1 ple2 case
Para-
meter Value
g, BPD 300 300 500 457
k md 3334 25 50 2700
t, hr 10000 j j j
s 0 0 B B
C" - - -
bbl/psi 0
b, ft 30 50 30 84
3x10° | 3x10° |9.899
c 3x10° x10°°
s fit 0.3 0.35 0.5 0.5
4 % 10 15 10 7.34
P, psi 5000 5000 4000 -
B, 1.2 1 1.49
rb/STB 1
Y, fi 1000 1800 1500 -
14, cp 1 1.26 1 9.4
A2 20x10° | 28-8x10° | 40.5x10°
1 . 1x10° 1x107 -
i} 0.08 0.03 -
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Figure 1. Dimensionless pressure and pressure
derivative behavior for an elongated naturally
fractured reservoir for @= 0.05 and 1= 2x10"* — Well
centered in the reservoir
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2 Pm

"k (3.b)

3.1  Dual-linear flow regimes

All the characteristic points and lines are shown
in Fig. 1 when the well is centered in the
reservoir. For this case single-linear flow does
not exist. After replacing Eqgs. 2.b, 2.c and 2.e
into Eq. 1.b, an expression to estimate reservoir
width is obtained:

. t
\/1(7{)2 _ 4.064 qB oL M (4'3)
h(t*AP),, \(dc o

If the pressure derivative, (f*AP’)p, is read at the
time, #p; = 1 hr, Eq. 4.a becomes:
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The geometric skin factor caused by the
convergence from radial to dual-linear flow
regime is obtained by dividing Eq. 1.a by Eq.
1.b, and then, replacing the dimensionless
parameters, Egs. 2.a, 2.b, 2.c and 2.6,

s — APDL _2 1 kftDL
Pl exapy), 19.601 Y, g uc o

)
where APp; and (F*AP)p, are the pressure and
pressure derivative points read at any arbitrary
time during dual-linear flow regime, #p;. @ can
be obtained from any arbitrary point from the
dual-linear flow regime on the pressure
derivative curve. After plugging Egs. 2.b, 2.c
and 2. e into Eq. 1.b and solving for @, it yields:

2
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32 Maximum point

The maximum point observed once the dual-
linear flow vanishes is used for estimation of the
interporosity flow parameter. It is observed in
Fig. 2 that the pressure derivative always
displays a unique maximum pressure derivative

value. Then, the following relationship is
obtained:

Ja(t,* P, =0.000227 )

Figure 2. Dimensionless pressure derivative-A"" vs.
dimensionless time for a long naturally fractured
reservoir with different interporosity flow parameter
values — Well centered in the reservoir

/Z and ID”PD'

Figure 3. Effect of the dimensionless storativity
coefficient, @, on the pressure and pressure derivative
for A =2x10" — Well centered in the reservoir

Replacing Eq. 2.b into Eq. 7, an approximation
to estimate A is given below:

2
| 00320524 guB ®
kb (t5AP)

3.3 Minimum point

Fig. 3 presents the pressure and pressure
derivative behavior for different values of w and
A =2x10". We observe that o is function of the
minimum pressure derivative, the time at which
this point takes place and the A value. Then, we
correlated these variables to obtain:
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Correlation 1:

a)_a+cx+e/l+g)f+1}12+k/lx 9)
1+ bx+dA+ K + b + jAx

X= (tD*PD’)lnin
a=-0.001453744345531936
b=-0.4034531139231534
¢c=0.004969243560711644
d=9384837.434697306
e=-25245.96831604798
1=0.03947187690326912
£=-0.00884465599095826
h=-6557972683918.12
1=-371412686858.0194
J=-10246537.3284442
k=2190827.21495808

This correlation is recommended since has an
error of 0.12 %.

Correlation 2:

w=a+b(t,),, +clnx+d(t,)), +
eln X + £(t,),,. In x+ g (t,)}, + (10)
hn X +1(ty), . InxX + j(£,). ilnx

X= (tD*PD’)lnin
a=0.311245913434052
b=-2.370850857204912x10-8
c =0.2991375371411262
d=-1.21694647249764x10-15
e= 0.09804801848276096
£=1.74956959326334x10-8

g = 9.994911652511862x10-23
h= 0.01139557746643557
1=1.299349660522994x10-8
J=-2.525663039488802x10-15

This correlation has an error of 0.396 %.
3.4. Intersection points

The pressure derivative during late pseudosteady
state flow regime is governed by:

(tD*PD’)PsszzﬁtDA (11)
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Figure 4. Dimensionless pressure and pressure
derivative behavior for an elongated naturally
fractured reservoir for @= 0.05, 1= 1x10" and Xz =
29000 ft — Well off-centered in the reservoir — Dual-

linear flow is interrupted by the transition
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= 3 { }
-~ 22107 ——’\
[ 1x10”
~Q 100

1071

Dual-Linear Flow

1.E+05 1.E+06 1E+07 1.E+08 1.E+09

tp

Figure 5. Dimensionless pressure derivative-A"" vs.
dimensionless time for a naturally fractured reservoir
with different interporosity flow parameter values and
®=0.05 - — Well off-centered in the reservoir

The intersection of this line with the dual-linear
flow regime pressure derivative line, Eq. 1.b,
allows us to obtain an expression to estimate
reservoir area once the dimensionless quantities
are replaced:

A=0.05829 M
V Puc, (12)

The intercept of the radial flow line with the
dual-linear flow line leads to confirm:

T s

(t,%P,")= W \/5: )

(13)

Replacing Egs. 2.b, 2.c and 2.e in the above
equations and solving for reservoir with, we
obtain:
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00575652 | Kleoui

Ha @ (14)

3.5. Early Pseudosteady State and Radial Flow
Regime

Reference [9] presented the following
relationship for the estimation of the wellbore
storage coefficient,

=(f}L=(qBJ ; (15)
24 ) (*aP), \ 24 )aP

Engler and Tiab (1996) presented the
relationships for estimation of the permeability
and mechanical skin factor as:

_ 70.6 guB (16)
" h(rxAPY).

The mechanical skin factor is estimated from:
k.t
5,=0.5 AL | 2 = |+7.43
(*AP), | oguce,

Reference [1] also shown that the intercept
between the radial flow and the pseudosteady
state lines leads to an equation to estimate
Teservoir area:

(17)

_ kit (18)
301.77 ¢ u c,

3.6 Linear-flow regime occurs after the
transition period

Before the transition period the reservoir
behaves as homogeneous; then, it appears the
single-linear flow regime which governing
equations for pressure and pressure derivative
presented by reference [1]:

2”J_ (19.2)

D

(6% P, = ”J_ (19.b)

The intersection points of the different flow
regime lines are shown in Fig. 5. The equations
for reservoir width, reservoir area and linear
flow skin factors are obtained in a similar way as
for the dual-linear case:

7.20349B |t,u (20)
kY, =217 /L

Viy; h(t*AP"),
=0.1020 / (21)
LPSS E (22)

948 O47¢,uc
AP, 1 kt, (23)

(rxaP'), 34.743); duc,

3.7 Linear-flow regime occurs before the
transition period

This case, sketched in Fig. 6, has the following
governing equations:

107r\/7

(24.
P = 6W\/7 a)
(t,* Py, =N (25.b)

Following a procedure similar to that in section
3.1 the following equations are obtained:

Joy =98 [ak (26)
h(t*AP"), \ gco

s, = AL -2 ! kit (27)
ERNGIVAR 23.522Y. \ ducw

D

P and t P
D

D

Figure 6. Dimensionless pressure and pressure
derivative behavior for an elongated naturally
fractured reservoir for @= 0.05, 1= 1x10" and Xz =
29000 ft — Well off-centered in the reservoir —
Single-linear flow is interrupted by the transition
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2
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As shown in Fig. 6, the maximum point
presented once the single-linear flow has been
interrupted by the transition period results to be
useful for the estimation the interporosity flow
parameter. It is observed in Fig. 2 that the
pressure derivative always displays a unique
maximum pressure derivative value. Then, the
following relationship is obtained:

Ja(t,* P, =0.00044 (31)

Replacing Eq. 2.b into Eq. 31, an approximation
to estimate A is given below:

2
kh(t*AP)

max

For this case, there is a need of estimating @
from correlations. The following correlation has
an error of 0.085 %.

mo=a+bJAnAi+eJi+d/In i+

(33
ex+ f\/;( In x+ gx/;(+ hln x+1/ \/;( :
X= (tD*PD’)min
a=-503.3662694927747
b=67719.22178724448
c=1023359.583295485
d=-2121.757955433415
e=20.68488201371427
1=-121.8994586826316
2=1525.9038673208586
h=-229.1239182054168
1=-139.4598412994527

w=a+b/(ty),,, +cx+d/ (L), +ex + &/ (L),
+ &/ (Lp)oe + B X + DX [ (L) nin + JX/ (L)
(34)

The former correlation has an error of 0.45 %.

X= (tD*PD’)min
a=0.1837684859433586
b=-3609841.89782271
¢=-0.03275900065412334
d=4446584925703.334
e=-0.002829369841584908
1=-4327402.251581305
£=-1.993990486202685E+20
h=0.000192725544328788
1=1206668.159952826
J=78159580419438.81

Needless to say that the total skin factor is
estimated as the summation of the mechanical
and geometric skin factors, such as:

§5,=8+5,+5, (35)

3.8. Unit-Slope Lines During the Transition
Period

When the transition period takes place during the
dual-linear flow regime, the fissures are fed by
the matrix under pseudosteady state flow regime
according to the model proposed in reference
[10]. The expression governing this is given by:

In(t,*P,"),s =a+bln tD’US+c\/z (36)

The former expression has a standard error of
0.707 % and a correlation coefficient of 0.99997
and should be used for dimensionless time
values between 300000 and 3.69x10’. The
coefficients are:

a=-16.59119753322665
b=0.9781590347464464
¢=3621.020392286202

As expressed by [11], during radial flow regime,
the pressure derivative is governed by:

(t,*P,"), =0.5 (37)

At the intersection point between the radial flow
regime and the unit-slope line formed during the
transition period an expression to estimate 4 is
obtained:
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(38)

i {—0.693 15— a—blnt,,, }2
C

When the transition occurs place after the single-
linear flow regime is perfectly seen, the
governing expression for the unit-slope
transition line is also given by Eq. 36, which
possesses a correlation coefficient of 0.99956
and should be used for dimensionless time
values less than 4x10’. The coefficients are now:

a=-17.25279260276791
b=0.951844771427132
c=23920.20465159351

4. STEP-BY-STEP PROCEDURES

4.1 Case 1 - transition occurs during the
dual-linear flow period

Step 1 — Build a log-log plot of pressure and
pressure derivative, identify and draw the early
pseudosteady-state (if present), radial, dual-
linear, single-linear (if exists) and late
pseudosteady-state lines.

Step 2 - If the early-unit slope line exists,
indicating wellbore storage, read any convenient
point, £ and either AP; or (¢*AFP’), and find the
wellbore storage coefficient with Eq. 15. Read
the value of the pressure derivative during radial
flow, (¢*AFP), and calculate the bulk
permeability using Eq. 16.

Step 3 — Find A4 with Eq. 8 using the maximum
point derivative during the transition period.

Step 4 — If the linear or single-linear flow regime
is observed, read the pressure and pressure
derivative values, AP, and (¢*AFP);, at any
convenient point on the linear flow regime, #,
and find reservoir width, Yz using Eq. 20 and
21, and single-linear skin factor with Eq. 23.
Otherwise estimate @ with correlations 9 and/or
10 using the coordinates of minimum point,

Step 5 — If the single-linear flow regime is
observed, read the intercepts of this line with the
radial flow, £;; and the pseudosteady state, #rps;

lines. Find reservoir area with Eq. 22 and
reservoir width with Eq. 21.

Step 6 - Read the pressure and pressure
derivative values, APp, and (t*AP’)p;, at any
convenient point on the dual-linear flow regime,
tps, and find @ using Eq. 6. Alternatively, either
Yz or @ can be estimated with Eqgs. 4.a or 14.
Other values of w may be estimated from the
correlations given by Egs. 9 and 10. For this
purpose the coordinates of the minimum point,
Lo and (£*AP )min, during the transition period
have to be used. An average value of @ may be
obtained.

Step 7 - Find the geometric skin factor, sp; using
Eq. 5 and compute reservoir width using Eq. 14.
Read the point of intersection of the radial and
dual-linear flow lines, fp;, and re-estimate
reservoir width with Egs. 4.a and 14.

Step 8 — Read the intersection point between the
late pseudosteady state line with the dual-linear,
torppsi, and radial, #.pss;, lines. Calculate reservoir
area with Egs. 12 and 18.

Step 9 — Read the intersection point between the
pseudosteady state transition line with the radial
line, #ys; and estimate the interporosity flow
parameter with Eq. 38.

Step 10 — Estimate the total skin factor with Eq.
35.

4.2 Case 2 - linear-flow regime occurs before
the transition period

Step 1 — 2 — Same as case 1.

Step 3 — Find A4 with Eq. 8 using the maximum
point derivative during the transition period.

Step 4 — Estimate @ with correlations 33 and 34.
Read the pressure and pressure derivative values,
AP, and (¢*AP’),, at any convenient point on the
linear flow regime, £, and find » from Eq. 28.
This new value may be averaged with the value
obtained from the dual-linear flow. Then, find
reservoir width, Yz using Eq. 26, and single-
linear skin factor with Eq. 27.
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Step 5 — Read the intercepts of this line with the
radial flow, £;; and the pseudosteady state, #pps;
lines. Find reservoir area with Eq. 29 and
reservoir width with Eq. 30.

Step 6 - Read the pressure and pressure
derivative values, APp, and (t*AP’)p;, at any
convenient point on the dual-linear flow regime,
tps, and find @ using Eq. 6. Alternatively, either
Yz or @wcan be estimated with Egs. 4.a or 14.

Step 7 - Find the geometric skin factor, sp; using
Eq. 5 and compute reservoir width using Eq. 14.
Read the point of intersection of the radial and
dual-linear flow lines, fp;, and re-estimate
reservoir width with Egs. 4.a and 14.

Step 8 — Read the points of intersection of the
single-linear flow line with the radial flow, #,;
and the pseudosteady state, #pps, lines. Find
reservoir width using Eq. 29 and reservoir area
with Eq. 30.

Step 9 — 10 - Same as steps 9 and 10 of case 1.

5. EXAMPLES
5.1 Synthetic example 1

The log-log plot of pressure and pressure
derivative for an example generated with
information from table 1 is given in Fig. 7.
Characterize this hypothetic reservoir using the
methodology presented here.

Solution

From Fig. 7, the following data were read:
(FAP),=25.556 psi  AP.=337.556 psi
Z}: 0.2 hr trDL': 1.85 hr
(FAP)p.=33.386 psi APp;,=411.1960 psi
tDL =3.177 hr fDLPSSi: 20000 hr
(Z*AP’)max: 76.66 pSl t.pssi= 195 hr
tUS,i:175 hr

Permeability is estimated from Eq. 16:

P 70.6 quB 70.6*300*1.26*1.2

- - 50*25.556

=25.061 md
h(*AP),

The dimensionless storativity coefficient is
estimated with Eq. 6,

(AP, = 2730 ps]

g 1
Q AP, = 411.19 psi
5 )
- 2 s aaasat
2 |
o =02hi
Q
< g2 (£*AP),, =76.66psi
- T T e
(*AP) , =33386 psi g | fowe =50.35 W
4

wwwww

P (=150

nnnnnnnnnn

thr
Figure 7. Pressure and pressure derivative plot for
synthetic example |

w_16.5186*1.26*3.177 300*1.2 ’
0.15*3x107°*25.061 | 1800 * 50 * 33.386

»=0.085
Reservoir width is estimated from the

intersection of the radial line with the dual-linear
line, using Eq. 14,

25.061*1.85
0.15%1.26*3x107°*0.08417

Y, =0.0575652 \/

Y, =1794.21 ft

Reservoir drainage area is estimated with Egs.
12 and 18,

1800 * *0.08417 * 25.8061* 20000
0.15*1.26*3x107°

A= 0.05828558\/

A=28618578 ft’
— ktI‘PSSi
301.77 ¢ u c,
25.061*195

T 301.77%0.15%1.26%3x 10

A=28561031.4 ft*

The interporosity flow parameter, A, is
approximated with Eq. 8, so that:
_10.0320524 *300*1.26 *1.2 ’

- =2.295x10*
25.061*50*76.6619682

Permeability is verified from Eq. 4.b (Note:
Reservoir width may be verified instead):



4.2 Synthetic example 2

A synthetic pressure test for a well off-centered
in a reservoir was also generated with
information from table 1. The pressure and
pressure derivative plot is provided in Fig. 8. It
is required to estimate permeability, skin factors,
reservoir width and area and the naturally
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¥AP),. =436 psi - s
- Laogo
 sou0ec0000055° icd
TG il e Pk
g5 1es0g L AP 8167 psi = 4 "
e 1 [{‘A
EL (AP),, =399.6psi | ; - £
g — oo s, J(=aP), =304.61 psi
" 0
2 (AP), =317.8 psi 4 L £
S ] o =
ot AP _—162
Y e A @ ar_ e |
[z,=002h] ] 4y =50 (*APY),, =42.17 psi
I u’ |
+ Gang™ | [(FAP) 23538 psi
“ NV, =04 1]
1,,=0.057 hi
= (= 0121
1E02 1E01 1.E400 01 [ Ly =T30r | 1e0s 1E404

t hr
Figure 8. Pressure and pressure derivative plot for
synthetic example 2

2
1 4.06416*300*1.2 3.177*1.26
1800 *50*33.386  0.15*3x10 " *0.08417
k=25.06 md

The dimensionless time at the point of intercept
between the radial-flow line and unit-slope
transition line is determined with Eq. 2.c as:

0.0002637*175

£ o= =16609977.32
PUSE0.15%1.26%3x107° *#(.35?

The interporosity flow parameter can be

estimated from Eq. 38,

1= 0.69315+16.5912-0.978161n(16609977.32
3621.0204

2=1.013x10"*

The mechanical, geometric and total skin factors
are calculated with Egs. 17, 5 and 35,
respectively,

*
$ =05 337.8 _In 25.06 (0.2 : 743
! 25.56 0.15%1.26*3x107 *0.35*0.084

5. =0.04

s :[441.2_ J 1 \/ 25.06*3.18
23339 34.74*%1800 \ 0.15%1.26 *3x10™° *0.085
s, =6.74

s=5+5, =004+6.74=06.78

From this example we can affirm that the
proposed equations are correct since the
simulated data agree quite well with the results
of this exercise.

fractured reservoir parameters.

Solution
From Fig. §, the following data were read:
(FAP),=23.538psi  AP.=317.8 psi

t=0.1hr t.or=0.12 hr
(FFAP)p,=42.17psi  APp,=399.6 psi
tor= 0.4 hr tprpssi= 43000 hr
(F*AP)ax=436psi  £,=9hr
(FFAP),=304.61 psi AP, =816.7 psi
t.pssi= 73 hr (AP iy = 162.7 psi
t.0;/=0.057 hr trpss:= 100000 hr
tys:=50 hr
All the computations are summarized as follows:
Parameter Value Eq. used
k md 50 16
A 2.25x107 32
A 3.14x10° 38
(t5* P min 3.46 2b
(1) min 13.9x10° 2.c
® 0.03 34
Y ft 1511.5 14
Y ft 1513.1 29
Y ft 1540.2 4.a
Y ft 1468.2 26
® 0.03 6
® 0.029 28
A ft? 40.3x10° 18
A ft? 39.9x10° 12
A 41.3x10° 30
s -0.02 17
SpL 12.2 5
st 4.32 27
s 16.5 35
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4.3 Field example

This example was taken from a pressure test run
in a South American well. Reservoir, fluid and
well parameters are provided in table 1 and the
pressure and pressure derivative plot is provided
in Fig. 9. A reservoir permeability of 2700 md
was obtained from a previous test. Find reservoir
width, reservoir area, skin factor, interporosity
flow parameter and the dimensionless storativity
coefficient.

/\

M [aB, =1606 psi'é

a ‘n , — - =
it PEDG P
| G

o

[ .. =0.0877 hr|

Y] ‘(r‘AP‘)‘ =7.17 psi T

AP and fAP', psi
3

* il
. [L-ooinr
AP,

| /;'/]/,”:DIKM‘\
I IRV
. £, =0.018 hr —
£py; =0.01hr ‘7 j’o = | _ [t =140r]

[(*aP), =32psi] |
[(* AP, =2.93psi]

1E04 1E03 1ER 1E01 1E+00 1E+01

t hr
Figure 9. Pressure and pressure derivative plot for
field case example

Solution

The dual-linear flow is very noisy. The
following data were read from Fig. 9,
(FAP),=1.99 psi AP ,=11.98 psi

fr: 0.01 hr trDL': 0.01 hr
(F*AP)pr= 3.2 psi APp;=16.06 psi
Ipr = 0.03 hr (Z*AP’)maX: 5.2 pSl
AP;=28.2 psi t;=0.626 hr
(AP ) =T7.17 psi t.pr;= 0.018 hr
(FAP ) in=2.93 psi iy =0.2 psi
Iprpssi= 165 hr lrpssi= 42 hr

lpssi= 1.4 hr tysi= 0.13 hr

Lax = 0.0877 psi

The minimum dimensionless parameters are
estimated from Eq. 2.b and 2.c:

k h(t*AP") 2700%*84%*2.93
t,*P,'= = =0.74
1412guB  141.2%457%9.4%] 48
~0.0002637 k¢
? ¢;u(ct)f+mrw2
* *
0.0002637*2700*0.2 02768.12

7 0.0734%9.4%9.899x 10 *0.5°

Using these dimensionless values in correlation

9, ® = 0.056. The reservoir width is estimated
with Eq. 20,

* * *
y = 7.2034 %457 *1.49 0.627*9.4 64t
J2700%84*7.17 \| 0.0734%9.9x10°°
 is estimated with Eq. 4.a, 6 and 14,
* * * 2
o 16.5186%9.4%0.03 § 457*1.5 0.078
0.0734*2700*9.9x10™° | 441.4%84%3.2
* * *
o 4064 %457 1.5 0.03*9.4 00782
J2700#84 %32\ 0.0734%9.9%10
2
0.05756 2700%*0.01
®= ( —=0.068
441.4 ) 0.0734*%9.4%9.899x10

The value of w from correlation 9 is close to the
ones found from the analytical equations. The
interporosity flow parameter, A, is approximated
with Eq. 8, so that:

. [0.03205 *457*9.4*1.5

=3.8x10"°
2700*84%*5.2
The dimensionless time at the point of intercept
between the radial-flow line and unit-slope
transition line is determined with Eq. 2.c as:

0.0002637*0.13

tooo= =54207.83
PUST0.0734%9.4%9.899x107° * (.57

Eq. 38 should not be wused since the
dimensionless time is less than 500000.
Reservoir area is estimated by Eqs. 12, 18 and
22, as follows:

441.4**0.078*2700*165

0.0734%9.4%9.899x10°°

A=1835227.6 ft*

e 2700*1.4
301.77%0.0734%9.4%9.899x10°°

A=1834004.93 ft’

A= 0.05829\/
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\/ 2700%42* 441 .4
948.047*0.0734%9.4%9.899x 10
A=1847210.2 ft*

The skin factors are estimated with Egs. 17, 5,
23 and 35, respectively,

1198
o 199
5= 2700*0.01
In SR +743
0.0734*9.4%9.899x10° *0.5°*0.078

s, =—2.84

o [ 1606 1
o 3.2 19.601* 441.4
2700*0.03 g6
0.0734%9.4%9.899x10° *0.078

o282 1
AV, 34.743% 441.6
2700 * 0.626 ~
0.0734%9.4%9.899x10°°
5,=5+5,,+5 =-2.84+86+3.96=9.7

5. COMMENTS ON THE RESULTS

The synthetic examples are shown to verify the
proposed equations. A good agreement is
observed between the input data with the
resulted values. Needless to say the several of
the parameters are obtained from more than one
source giving more strength to the results. The
naturally fractured parameters, A and o, are very
sensitive. It is customary accepted to have one
order of magnitude in error for the interporosity
flow parameter when comparing to other
methods, and even with the same 7DStechnique.
However, for this case the results are very close.

6. CONCLUSION

New equations for interpretation of pressure and
pressure derivative data are introduced for
naturally fractured formations when the
transition period due to the depletion in the
fissures occurs during either dual-linear or
single-linear flow regimes. Also, correlations for

estimation the interporosity flow parameter was
introduced when the dual-linear flow is
interrupted by the mentioned transition. The
validity of the equations was carried out by
successfully comparing with simulated  results.

7. RECOMMENDATIONS

This work can be extended for the case when the
transition period occurs during the late
pseudosteady state flow regime which may be
present when dealing with rate transient analysis.
We also recommend correlating the minimum to
obtain expressions similar to Eqgs. 9 and 10.
Also, the governing equation for the
pseudosteady state flow during the transition
may be generated so more equations to
determine the naturally fracture reservoir
parameters can be introduced.
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NOMENCLATURE

A Area, ft°

B Oil formation factor, rb/STB

C Compressibility, 1/psi

Fu Correction factor to account for the
h Formation thickness, ft

K Permeability, md

P Pressure, psi

Py Dimensionless pressure derivative
Pp Dimensionless pressure

P; Initial reservoir pressure, psi

Pyr Well flowing pressure, psi

q Flow rate, bbl/D. For gas reservoirs
p Dimensionless radius

Ie Drainage radius, ft

L'y Well radius, ft
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s Skin factor

S Total skin factor

t Time, hr

t*Am(P)’ Pseudopressure derivative function,
t Difllensionless time

Greek

A Change, drop

At Flow time, hr

¢ Porosity, fraction

U Viscosity, cp

A Interporosity flow parameter

w Dimensionless storativity ratio
Suffices

D Dimensionless

DA Dimensionless referred to reservoir
DL Dual-linear

DL Dual-linear at 1 hr

DLPSS; Intersection of dual-linear line with
Ia Fracture network, fissures

m Total system (fracture network +

i Intersection or initial conditions

L Single-linear

LPSS; Intersection of single-linear line with
m Matrix
PSS Pseudosteady

r radial flow

rPSS; Intersection of pseudosteady-state line
rDL; Intersection of radial line with dual-
rL; Intersection of radial line with single-
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