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ABSTRACT: The conjugate heat transfer process of cooling a horizontal plate at the leading edge, in steady state
condition, was solved considering the fluid flowing in laminar condition and hydro dynamically developed before
interacting with a heated plate. The fluid was considered deep enough to allow the growth of a thermal boundary
layer with no restrictions. The conservation of mass, momentum and energy equations at the solid and fluid were
converted into a non dimensional form. The heated body presents a constant heat flux at the bottom side, and
convective heat transfer at the top side. The interface temperature was obtained using the Chebyshev polynomial
approximation. In order to verify the results obtained using the Chebyshev polynomial approximation, the results
obtained from the analytical solution for the solid, were compared with the results attained with commercial CFD
software, FIDAP®. The solution considered the calculation of the local and average heat transfer coefficient, the
local and average Nusselt number, the local and average Biot number, and different temperature distributions at the
interface.
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RESUMEN: El proceso de transferencia de calor conjugada para enfriamiento de una placa en estado estable ha sido
resuelto considerando el fluido laminar e hidrodindmicamente desarrollado antes de entrar en contacto con la placa.
El fluido es lo suficientemente profundo y permite el crecimiento de la capa limite térmica sin restricciones. Las
ecuaciones de continuidad, cantidad de movimiento y energia, en el solido y en fluido fueron adimensionalizadas. La
temperatura en la interface se obtiene por medio del polinomio de Chebishev, y los resultados obtenidos fueron
verificados con la solucion obtenida por medio de software CFD comercial, FIDAP ®. La solucion ncluyo el calculo
del coeficiente de transferencia de calor, el nimero de Nusselt, el nimero de Biot, todos tanto local como promedio.
La distribucion de temperatura en la interface también fue obtenida.

PALABRAS CLAVE: Polinomio de Chebyshev, transferencia de calor conjugada.

1. INTRODUCTION and the convection heat transfer situation for the
fluid. This can be accomplished by a linear
combination  of  orthogonal = Chebyshev
polynomials that guarantees the solution of the
partial differential equation at the solid, and
helps to find the non dimensional parameters that
control the convection heat transfer problem.
Analytical and numerical solutions for cooling
electronic components have allowed proposing

The conjugate heat transfer problem is present
when heat is exchanged between a solid and a
fluid. The common approximation considers a
boundary condition between the solid and the
fluid that uncouples the phenomena, to solve the
conduction heat transfer situation for the solid,
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some geometrical configurations that enhance
the heat transfer process, in order to obtain the
temperature  distribution  inside electronics
boards [1, 2, 3]. The analytical part helped to
optimize the selection of materials, configuration
and location to the components in order to
reduce the maximum temperature in the
substrate, and allowed estimation of heat
released by the source and its effect on the
temperature distribution. In 1998 [4] presented
experimental results correlated through empirical
expressions for flat plates with constant heat
sources. The conjugate heat transfer process has
been studied numerically [5, 6] presenting
numerical solutions for jets impinging over flat
surfaces under laminar flow. Numerical results
were compared to experimental data gathered by
[7]. A work by [8] used a Chebyshev
approximation in order to solve a two
dimensional, incompressible, viscous flow of a
biomagnetic fluid over a heated plate. The
numerical solution obtained for the coupled non
linear boundary value problem achieved high
accuracy, and it was compared to a finite
difference method solution showing the
efficiency of the Chebyshev approximation.
Complex problems [9], such as the modeling of
magneto hydrodynamic flow of micro polar,
viscous, incompressible and electric conducting
fluid from an isothermal stretching with suction
and blowing in a porous media has also used the
Chebyshev approximation. [10] developed a
hybrid finite difference code for the simulation
of unsteady incompressible pipe flow, using the
Chebyshev  approximation for the radial
coordinate. The effectiveness of the Chebyshev
approximation was studied by [11], he presented
a new approximation in order to achieve better
results when using this technique, especially in
the modeling of hydrodynamic problems that
include Bénard convection problem, and Orr-
Sommerfeld for parallel flow. The heat transfer
process between a flat plate and a fluid is a
thermal model with many applications, and in
order to have a solution for the leading edge
area, the Chebyshev approximation will be used
to introduce an interface boundary condition
depending on the fluid and flow characteristics.

2. MATHEMATICAL MODEL

The orthogonal Chebyshev polynomials result
from the solution of the following equation

d*y dy
) LR SRV 1
1) s ey (1)

The nth grade polynomial is represented by:

Tn(x) = Cos(n arccos x) (2)

And the trigonometric expressions from (3) are
used for solving the polynomial,

Tyx) = 1
Tix) = x
Tyx) = 2x°-1

3
Tyx) = 4x°-3x 3

Tyx) = 8x*-8x +1
T i(®) = 2xT,(x) - T, 1(x)

The Chebyshev polynomials are orthogonals in
the interval [-1, 1], and the weight function is

(] -x° )% . For this case,

0 71=jJ
A
———————dx=1— 7= j#0 4)
‘[1 \/il—xz ’ 2
ri=j=0

The polynomial 7},(x) has n ceros, a maximum

and a minimum, located according to the
following equations,

e= codeli- 1)/

x= CO{”—"j k=01.23.n 6)

k=123.n (5)

n

Because of this property, the Chebyshev
polynomials are used for polynomial
approximations, and they also satisfy a discrete
orthogonal condition, if Xk(l(: 1,2,...m) are the m

ceros for 7,(x). Then,
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0, 71#jJ
m m . .
DT Ti(x) =3—, i= j#0 (7)
k=1 2 )
m,

The combination of (I — 7) helps to obtain an
approximation function under the following
conditions, f(x)is an arbitrary function in an

interval [-1,1], there are N coefficients c;,
J=0,N-1, defined by:

I CALIEN ®)
p=i
Replacing (6) into (8),

With this, the approximation becomes:

| Sant)-¢ a0

k=1

For any limits, [a, b], and changing variables,

X":[X—;(b+a)}/[;(b—a)} (11)

2.1 Governing equations and boundary
conditions

v] T
TEETFTIETTeTtsT
.

Figure 1. Schematic of a rectangular plate under
the influence of a laminar flow

Assuming an incompressible fluid, with constant
properties, moving according to Fig. 1, the
equations that describe the conjugate heat
transfer are:

Fluid,
LA (12)
ox Oy
2 2
Ua_U+Va_U: a_U+a_U (13)
ox oy o oy
oT,  oT *T, T
U—"+v fzaf - ! (14)
ox oy ox* oy
Solid
2 2
0 T5+8 7 =0 (15)
ox* 8)/2

Equations (12 — 15) are subjected to the
following boundary conditions,

Atx=0,y>b: U=U,, V=0 (16)

At0<x< L y—>w: U=Uy V=0 (17)

At0<x< L y=b: U=V=0 (18)
Atx=0,y>b: Tr=T, (19)
At0<x< Ly—>ow: Tr=T, (20)
oT, oT
0<x< L y=bi—k,—*=—k,—,T,=T, (21)
oy oy
Atx=0,0< y<p: 205 _ g 22)
ox
AtX:LOSySb:%zo (23)
ox
At0<x< L y=0: _ks%:% (24)
Y

Equations (12 — 15) and the boundary conditions
(16 — 24) were converted in a dimensionless
form, using the following non dimensional
terms,

=y 1) 25)
y*=(/b) (26)
= (b/1) 27)
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Ux=(U/u,) (28)
Ve =(V/Uy) (29)
Ti - T
g”:(qob/ks] G0
=k r/ks) (31)

Using the dimensionless variables presented in
(25 = 31), the equations turned into the following
dimensionless form:

Fluid
LOU* 2V 32)
ox* oy*
[ QU* VU
ox*  L* oy*
33
__ L |ur, 1 tur =
Re,| ox**  L*¥ gy*
00, 00,
Uvr— L
ox*  L* oy*
34
= 2 T2 A2
P@L Ox L 6y
Solid
2 2
L*2%+Z % -0 (35)
X Y
Where:
Rey = UwaL (36)
PeLJ%L (37)

The boundary conditions for (32 — 35) are,
x*=0, y*>1, U*=1, V*=0 (38)

0< x*<1, y*—>ow, U*=1, V*=0 (39)

0< x*<1, y*=1, U*=V*=0 (40)
¥*=0 y*>1 0,=0 (41)
0<x*<1 y*>0 Or=0 (42)

00 00 ¢
0< x* <], pr=1:——2 = —f* ,0,=0, (43)
oy* oy*
=0 0<y*<1 %=0 (44)
X*
x¥=1 0< y*<1 %zo (45)
X*
0<x*<1 y*=0 _aeszl (46)
oy*

2.2 Two dimensional heat conduction at the
solid in Chebyshev form

In order to obtain an analytic solution to the heat
conduction problem in the solid, the temperature
at the interface must be known. This temperature
can be represented as a linear combination of
Chebyshev polynomials according to (47)

_ 1 _ m
o |- )T S )
407 =0
kg =
Where:

Ty (x) : Temperature at the solid — fluid interface.
B, Coefficients of the linear combination.
7,.: order k, Chebyshev polynomial.

This equation represents the solution for the
problem presented in Fig. (2)

9s :91( = Zﬂﬂ}
k=0

y*a
00, 00,
Ox* Ox*
o0 A

S

Oy*
Figure 2. Two dimensional heat conduction
problem at the plate

Due to non homogeneous boundary conditions at
the y*coordinate, a substitution is used to take
care of one the non homogeneity. The
substitution is as follows:
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HS(X*,y*)zesv(X*,y* )— v +1 (48)

The boundary conditions for the substitution
variables are:

X=0,0< y*<1
06,0, y*) _ 06, (0.5%) _, (49
ox* ox*
0<x*<l y*=0
_00,(x0) 20, (x0) 06,'(x,0) 0 (50)
oy* ayx T oy

0<x*<l yr=1
0,(x1)= ek(xj o (wy) OV

x*=1 0< y*<1
00,1, y*) 20, (Ly") o (52)

ox* ox* -

The Sturm-Liouville problem is present in the

X" axis, due to the homogeneous conditions.
The solution is as follows:

X(x%)= ¢ CodA,x*) A=nm, n=012.. (53)

The solution for the differential equation ¥(y*)
is the following,

Hy*)= ¢, Cosh(A, L* y*) (54)
The general solution is,

0

95'(;(*, y*)= > ey Co ﬂnx*)Cosb(/lnL* y*) (55)
Where: 0
ca=a-q (56)

To obtain ¢, , the boundary condition at the solid
fluid interface is evaluated.

0,'(x*,))
= i ¢, - Cos(1,x*)Cosh(A, L*)= Hk(xj S

n=0

Where,

x=2-x%*-1 (58)
This is due to the orthogonal properties of the

Chebyshev polynomials at the [-1, 1] interval.
Using this condition:

1
c, Cosb(ﬂ,,L*)I Cos* (/1,1 X*)dx*
' (59)

_ i Hk(xj Cos( A, x*)dx*

A=0, .[ Cos* (A, x*)dx*= NA)=1  (60)
0

A#0, .[ Cos* (A, x*)dx* = N(1) = (61)
0

N | =

Accordingly,

1
co=]
0

-
o =% I@k(x]dX=%
-1 -1

m 1 _
¢ %Zﬂo[ITodXJ (64)

k=0 -1

Hk(xjdx* (62)

—_—

{Z ﬂm{de (63)
k=0

From the orthogonal condition of the Chebyshev
polynomials,
1

k=0, o[ Todx=2p, (65)
-1
1 [0 k odd
k%0, ﬂkIdex= ~2os (66)
-1 (24+1)24-1)
And,
co-Po- YL (@]
£ 2k+1)2k-1)
For n#0

i 0 ,{XJ Cos{ A, x*)dx*

Costi,1%) Mi,) 68)

Chp =
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‘I[Hk(x]Cos(ﬂnx*)dx*

CH:2'O

Cosh(A,L*) 69)

The solution of (48) is as follows

0 kK
n=1

0. (x*, y*)= 2.
S( ,y) G Cosb(/inL*)

j@k[X]Cos(/lnx*)dX*] (70)

0

j Hk(xj Cos(A, x*)dx* =

) (71)

1 _
ljek x|cod 2, 2L | x
2] 2

The non dimensional temperature solution for
the solid,

x % ok
0,(x, y*)=2- z'—COSb(ﬂ”L »)

Cosb(/inL*)

n=1

1 (72)
Cos(4, X*)J. Hk(xj Cos(4, X*)dX*] +e,—y +1
0

2.3 Local convective heat transfer coefficient
and local Nusselt number

From an energy balance at the interface,

h=1a" [(T(x8)-T,)] (73)
From the boundary conditions:
0T,
qj'"'= _ks_s (74)
oy xb
Introducing the non dimensional variables,
0 95‘]6% +To
0Ty ks
-k =k (75)
oy xb 0 (.V * b)

‘X“,l

ot

S@y

06,
‘]0%

x,b

(76)
1

From the Chebyshev polynomial solution:
o o|-[(nor- (w0, )]
Ty(xb)~ T, = (@{x]qob /k} (78)

Replacing in (76),

i CMCO

s ) e

Derivation of 90s , and evaluating at(X“,l),
OY*| e

and replacing in (80),

Bi.= (- 2f*) {i 2,Cos(A, x*)-
"(X] " 81)

Tanb(ﬂHL*)j Hk(xj Cos(/lnx*)dx*]

The local Nusselt number can be obtained from:
Ny =hyx/k r) (82)
Manipulating the equation,
Nuy =\Biy kox/k £b) (83)
Using the non dimensional variables,
Nuy =(Bi: x*/k* L*) (84)

Replacing (85) in (88),
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Nu.=—|1-20% Y 2, Cos(2, x*).
Y Bk[}jk*L* [ {Z o )

n=1

(85)

Tanb(,zuL*)j[ ek(}j Cos(2, X*)dx*”x*

2.4  Average convective heat transfer
coefficient and average Nusselt number

The average convective heat transfer coefficient
can be obtained according to Bula 1999, [7],

{rs(x BT ]Jh

Evaluating each term of (85), from (47) and (77),

b)-T,] dx (86)

(X b = qk_ Z ﬂkT[((X] (87)

k=
1 L m —
Ts (x,6)- =—I Zﬂka(X]dX (88)
L 0 S k=0
Derivation of (25),
(1 L)dx= dx* (89)

Replacing (88) in (72),

Ts(x6)- 15, = 227 jZﬂsz{ ]dx* (90)

501{0

Derivation of (58),

—(1/2)d x 1)

Replacing (91) in (90),

Ts(x ) Zﬂj ] (92)

51(0 -1

From (65),

T(x.6)= Too =90/ k5)o (93)

From the local Biot number definition,

()~ 7] ae= [ S5 [n(0)- o 04
0 0
From (86)
J' h, ) dx=
(95)
kL qo x

Replacing Biot number from (81) into (95),

Ib )~ T, Jdx= g,L
Il—zL*{

> 2,Co(A,x*)- Tank(2,L*) (96)

n=1

1 —
j e,{xj Cos(A,x*)dx* |} dx*
0

From the Chebyshev polynomials properties,

L

_[bX(TS(Xa b)_

0

T )dx=q,L 97)

Replacing (88) and (97) in (86),

pe |- | P2 e 08
h [k/{bkz::o(zhl)(zk_l)ﬂ (98)

The average Biot number can be calculated
according to the following equation,

Bie b Pk
kg [ sz+1)(2k 1)] ©9)

The average Nusselt number can be
calculated according to the following equation,
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Nu:(bl/ka (100)

Nu:[—/(k*L*g(zkjfék_l)J] (101)

Different temperature distributions can be
considered, and for each one of them, Biot and
Nusselt number, as well as expressions for the
average values of the heat transfer coefficient,
can be developed. In this case, only cubic
temperature profile will be considered.

2.5 Cubic temperature profile

The temperature at the interface is represented
by the following expression,

T=T, +c| X*+0y X*2 +01 x5 102
© 1 2 3

In a non dimensional form,

191{] = ﬁ (qx* +02X*2 +C3X*3)
900 (103)

= O!IX* +0{2X*2 +0{3X*3

The Chebyshev polynomials parameters and the
equation are: for this case are,

o 3 5
=14+ Za, +—
ﬂo 2 3 2 16 3
ﬂl_% % 1_20%
8 3 (104)
ﬂz_ﬁ'*‘i%
8 16
_9%
B 32

gk[)‘j =p, +ﬂ17f[xj+ﬂ273[xj+ﬂ37g[xj (105)

2 3
=a; X +a, x* +a;x*

The temperature in the plate,
Hs(x*,y*)z +B,— y*¥+1
3

- Cosh(A (106)
+2)" Cos(2,x%): o 11 {z 1
n=1

k=

Where,

I = I 7}[ jCos/i X*)dX*zﬂ—[Cos(/l )-1](107)

n

I, = j' 7 [XjCos(/l”X*)dX*
0 (108)

=5 _[cod2,)+1]
A

n

L= E(XjCos(/l,,X*)dX*

, (109)
- leotan)-thsa 100

n

The local Biot number, Biot number, average
heat transfer coefficient, local Nusselt number,
and average Nusselt number, are presented in the
following equations,

=[34,/638,- 5,)] (110)
Bi, =[3/38,-5,)] (111)
Bi, =— ! —-2L*
Zﬂ]ﬂ}{x)

iﬂ,,Cos(/l X*) Tanb,i L*)|:Zﬂk[k:| (112)

k=1
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Niui s« = ! —2L*

x k*~L*~(a1 +O{2X*+a3X*2)

iﬂ”COS(ﬂﬂx*)- Tan[z(ﬂ”l/*{i ﬂk[k:| o

k=1
k*-L* ~(a1 + o, x* +a3x*2)

n=1

Nu=[3/(3p, - B, )k L¥] (114)

3. RESULTS AND DISCUSSION

A computational program was developed to
solve the general heat conduction equation in
the solid, taking into consideration the boundary
condition at the interface represented by the a
Chebyshev polynomial. In order to validate the
model, the non dimensional conjugate heat
transfer problem was solved using commercial
CFD software, FIDAP®. The domain design
considered the growth of the hydrodynamic and
thermal boundary layer, and the height was
calculated considering the maximum Reynolds
number, Prandtl number, and the thickness to
plate length ratio to be used. In order to
determine the number of elements for accurate
numerical solution, computation was performed
for several combinations of grid distribution in
the radial and vertical directions covering the
solid and fluid regions. It was noticed that the
solution became grid independent when the
number of divisions in the horizontal direction
was increased to 20 and at least 36 in the vertical
direction. The comparison considered three
different Reynolds numbers, with different order
of magnitude, 5x10°, 5x10*, and 1x10°
representing  constant  temperature, linear
temperature, and cubic temperature profiles
respectively. Figures 3 and 4, present the non
dimensional isothermal lines inside the solid,
using FIDAP and the solution of the semi
analytical model, for a Reynolds number of
5x10°. It can be observed that there is an
excellent agreement between the two solutions
presented, and the assumption of a constant
temperature at the interface is valid due to the
one dimensional temperature distribution.
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Figure 3. Solid temperature distribution.
Numerical simulation in FIDAP
(Oil MIL 7808 - Constantan, Re = 5x105, L*=0.5)
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Figure 4. Solid temperature distribution.
Solution of the semi analytical model
(Oil MIL 7808 - Constantan, Re = 5x105, L*=0.5)
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Figure 5. Temperature at the interface and error
from the mathematical model and FIDAP solution
(Oil MIL 7808 - Constantan, Re = 5x105, L*=0.5)

Figure 5 presents the temperature at the
interface, calculated using FIDAP and the semi
analytical model, as well as the error between the
solutions. It can be seen that the error ranges
between cero and 0.5%, presenting the
maximum deviation in the right hand side, where
the fluid gets in contact with the solid. The
temperature at the interface is quite constant,
ranging from cero to 6x10°.
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Figures 6 and 7 present the temperature
distribution inside the solid for the numerical
solution and the semi analytical model for a
Reynolds number in the fluid of 5x10* It is
noticed a good agreement between the two
solutions. In this case, there is almost a one
dimensional distribution with a tendency of the
isothermal lines to concentrate around the point
where the fluid gets in contact with the solid.
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Figure 6. Solid temperature distribution.
Numerical simulation in FIDAP
(Oil MIL 7808 - Constantan, Re = 5x10*, L*=0.5)
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Figure 7. Solid temperature distribution.
Solution of the semi analytical model
(Oil MIL 7808 - Constantan, Re = 5x10*, L*=0.5)

Figure 8 presents the temperature at the
interface, calculated using FIDAP and the semi
analytical model, as well as the error between the
solutions. It can be seen that the error goes up to
3%, presenting the maximum deviation in the
right hand side, where the fluid gets in contact
with the solid. The non dimensional temperature
at the interface presents an almost linear
behavior, going from zero to 0.07.
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Figure 8. Temperature at the interface and error from
the mathematical model and FIDAP solution
(Oil MIL 7808 - Constantan, Re = 5x10*, L*=0.5)
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Figure 9. Solid temperature distribution.
Numerical simulation in FIDAP
(Oil MIL 7808 - Constantan, Re = 1x10°, L*=0.5)
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Figure 10. Solid temperature distribution.
Solution of the semi analytical model
(Oil MIL 7808 - Constantan, Re = 1x10°, L*=0.5)

Figures 9 and 10 present the temperature
distribution inside the solid for the numerical
solution and the semi analytical model for a
Reynolds number in the fluid of 1x10°. It is
observed there is a good agreement between the
two solutions. In this case, it is noticed that the
effect of the slow motion of the fluid turns the
temperature distribution in the solid completely
two dimensional, and the isothermal Ilines
become concentric around the point where the
fluid gets in contact with the solid.
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Figure 11 presents the temperature at the
interface, calculated using FIDAP and the semi
analytical model, as well as the error between the
solutions. It can be seen that the error goes up to
0.3%, presenting the maximum deviation in the
right hand side, where the fluid gets in contact
with the solid. The behavior of the non
dimensional temperature at the interface could
be approximated by a second order polynomial,
and it ranges from zero to 3.
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Figure 11. Temperature at the interface and error
from the mathematical model and FIDAP solution.

(Oil MIL 7808 - Constantan, Re = 1x10°, L*=0.5)
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1]

Figure 12. Comparison between the classic average
Nusselt number and average Nusselt number obtained
from FIDAP solution and the semi analytical model
(Oil MIL 7808 - Constantan, Re = 1x10°, L*=0.5)

Figure 12 shows the variation of average Nusselt
number with Reynolds number. In this figure is
compared the classic average Nusselt number
and the average Nusselt number obtained from
simulation in FIDAP and the semi analytical
model . The variation of average Nusselt number
is similar to FIDAP and the semi analytical
mathematical model, but in both cases, the

classic average Nusselt number is lower than the
one obtained by numerical methods. This shows
that the classic average Nusselt number is
conservative

4. CONCLUSIONS

According to these results, it can be concluded
that the Chebyshev polynomial approximation
can be used to uncouple the conjugate heat
transfer ~ problem, accommodating the
temperature  distribution at the interface
depending on the Reynolds number. Also, the
constant temperature and linear temperature
approximation for the interface temperature
could be discarded, considering a third order
polynomial, which accommodate for the
different temperature distributions.
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NOMENCLATURE

B Plate thickness
Biy Local Biot number, Bi, =(hb/k,)

Bi  Average Biot number, Bi= [b b/ ksj

hy  Local convective heat transfer coefficient.

h Convective heat transfer coefficient

k  Thermal conductivity,

k" Thermal conductivity ratio, (k £/ ks)

L Length of the plate

L' Dimensionless length, L =(5/ L)

Nu, Local Nusselt number, Nu, = (bxx/ k f‘)
Nu Average Nusselt number, Nu= (b l/ k fj
Pe, Local Peclet number x, Pe, = (U, xa /)
Pr  Prandtl number

¢'  Heat flow per unit area

g;" Heat flow at the solid-fluid interface
Re  Reynolds number in L, Re = (U, Llv )
T  Temperature

7., Fluid free stream temperature

T,(;() Chebyshev polynomial, i order.

U  Horizontal Velocity

U"  Dimensionless Horizontal Velocity

VvV Vertical Velocity

V' Dimensionless Vertical Velocity

x  Position in the horizontal axis

x  Dimensionless position, horizontal axis
x  Chebyshev variable

y  Position in the vertical axis

¥ Dimensionless position, vertical axis
Greek symbols

1% Kinematic viscosity

0 Dimensionless temperature

P Density
Subscripts

o Infinite

b Plate thickness

f  Fluid

int  Interface

L Length of the plate

s Solid

x  Along the x axis



