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ABSTRACT: This paper’s aim is to present the performance of a B-spline neural network controller to regulate the
reactive power provision from synchronous machines. Due to the fact that power systems work with non-stationary
parameters and changing settings, adaptive control schemes are preferred. Control technology must ensure its
performance in terms of power system’s operation to address the diversity of loads and the optimal utilization of the
available resources. The B-spline neural network is an efficient tool to implement the adaptive control voltage, with
the possibility of carrying out this task on-line taking into account the systems' non-linearities. The reactive power
dispatch is based on the premise that each machine must provide a proportion according to its nominal operating
capacity. The applicability of the proposal is demonstrated by simulation on a 9-buses 3-machines power system.

KEYWORDS: Neural networks, adaptive PI parameters, on-line training.

RESUMEN: Este trabajo tiene como objetivo presentar el desempefio de un controlador basado en redes neuronales
B-spline que regula el aporte de potencia reactiva de las maquinas sincronas. Debido a que los sistemas de potencia
operan con parametros no estacionarios y configuracion cambiante, es preferible utilizar esquemas de control
adaptativos. La tecnologia de control debe asegurar su desempefio en términos de condiciones operativas practicas de
los sistemas de potencia, que considere la diversidad de cargas conectadas a la red y maximice la disponibilidad de
recursos. La red neuronal B-spline es una herramienta conveniente para implementar el control adaptativo de voltaje,
con la posibilidad de llevar a cabo ésta tarea en-linea considerando las no linealidades del sistema. El despacho de
potencia reactiva se basa en la premisa de que cada maquina debe aportar en proporcion a su capacidad nominal de
operacion. La aplicabilidad de la propuesta se demuestra mediante simulacion en un sistema de potencia
multimaquinas.

PALABRAS CLAVE: Redes neuronales, parametros PI adaptativos, entrenamiento en-linea.

1. INTRODUCTION continuous growth in load. In order for
consumers to receive reliable electrical power,
the system’s operators must ensure that bus
voltages are kept within allowable limits.

Modern electrical power systems may be
subjected to stressing conditions due to the

Dyna, year 77, Nro. 163, pp. 194-200. Medellin, September, 2010. ISSN 0012-7353



195 Dyna 163, 2010

Power transfer from generating plants to
consumption centers affects the load bus
voltages; therefore, it may be necessary to add
elements into the network to provide safer
operation [1-2].

Nowadays, in several countries the transmission
system’s voltage control practice is performed
manually. This conventional way of addressing
the voltage control problems often exhibits
unsatisfactory performances, such as [3]: (1)
reactive power generation, (77) the high side
voltage controls, (z77) switching control of banks
of capacitors or shunt reactors.

One of the voltage control objectives is to
minimize the transmission lines’ losses at any
time, protecting the system from voltage
instability. To meet this goal, an adequate
voltage profile under normal operating
conditions is required. At the same time, it must
be ensured that, under contingencies, all
generators dispose of enough reactive power
reserves in order to remain at the appropriate
settings. Likewise, with the increase in reactive
power margins, undesirable reactive power flows
are avoided.

Conventionally, voltage and reactive power
control in transmission systems have been
divided into three levels: (i) primary, (77)
secondary, and (z77) tertiary [3-6].

The primary control is accomplished by the
excitation systems.

The objective of the secondary control level is to
control the voltage profile in an area or region
according to a reference voltage profile. In
practice, the secondary voltage control (SVC)
does not directly monitor the voltage amplitude
at all nodes. The SVC achieves its objective by
keeping the pilot nodes at assigned values, and
those nodes are in some way representative of
the voltage profile of an area or region. On the
basis of the voltage variations at the pilot nodes,
the SVC generates reference signals for the
primary control level as well as for some other
voltage control devices, such as on-load tap
changers (OLTC) of transformers, which are too
slow for use in primary control action [4, 5].

At the tertiary level, coordination between the
primary and secondary levels is sought with the
purpose of attaining a safer operation [5].
Altogether, the most important task is to
maintain the security requirements.

Voltage and reactive power control have been
approached using different strategies, such as the
pilot node concept for the reactive power
regulation [5]. Techniques using optimal power
flow have also been proposed [6]. Application of
intelligent adaptive control techniques that allow
the reactive power provision for different
devices installed in the system are presented in
[7-9].

This paper focuses to the secondary voltage
control. It is assumed that every generator in a
central station provides reactive power according
to its rating,

The secondary voltage control (SVC) manages
multiple power resources by using measurements
of one or several prlot nodes. The SVC modifies
the reference settings in automatic voltage
regulators (AVR), load-tap changers (LTC), or
synchronous condensers. The SVC’s time
response is within 30-100 s.

This way, the SVC consists of pilot nodes’
voltage monitoring. It takes charge of the voltage
regulation by means of increasing/decreasing the
reactive power contribution coming from
generating and compensating units.

In this paper, a modern strategy based on neural
networks is proposed to carry out secondary
voltage control.

2.  MODELING

2.1 Power system

In this paper, a 3-machines 9-buses, Fig. 1, is
employed in order to illustrate the proposition.
The development of systematic methodologies to
pilot nodes allocation is a problem that requires
special treatment. Once determined that a power
system requires reactive power support, the
fundamental problem is the power source
location and composition (static or dynamic).
The reactive power deficiency may be solved by



Tapia et al 196

different means such as the construction of new
transmission lines, the installation of new
generating units, by FACTS devices installation,
and by an appropriate reactive power resources’
management. In this paper, bus-5 is chosen as a
pilot node, which was selected based on its
greatest short circuit capacity.
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Figure 1. Schematic diagram of the 9-buses 3-
machines power system

The generating units are modeled by its fourth
order dynamic model, including a static
excitation system [1]. The set of equations for
each generator becomes:
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where ¢ (rad) and @ (rad/s) represent the rotor
angular position and angular velocity; £, (pu)
and £ ’q (pu) are the internal transient voltages of
the synchronous generator; Ep (pu) is the
excitation voltage; 7y (pu) and 7, (pu) are the d-
and g-axis currents; 7 4 (s) and 7, 40 (s) are the d-
and q-open-circuit transient time constants; X4
(pu) and x, (pu) are the d- and g- transient
reactances; X (pu) and x, (pu) are the d- and g-
synchronous reactances; 7, (pu) and 7. (pu) are
the mechanical and -electromagnetic nominal
torque; M is the inertia constant; D is the

damping factor; K4 and 7, (s) are the system
excitation gain and time constant; V. is the
voltage reference; V/ is the terminal voltage
magnitude.

2.2 Secondary voltage control strategy

This paper employs the concept of secondary
voltage control proposed in [5]. The proposition
allows regulating the vars provision for each
generator according to its rating. This strategy
helps to accomplish an efficient vars injection
into the network, handling the reactive flows
depending on the load variation. Likewise, the
pilot nodes’ regulation improves the voltage
profile around critical areas.

Four proportional-integral (PI) controllers will
be utilized: one for each generator plus a central
controller, which estimates the reactive power
that each generator delivers, Fig 2. The required
measurements are: a) reactive power coming
from each generator; b) generators’ terminal
voltage; ¢) the pilot node voltage magnitude.

Figure 2. Secondary voltage control scheme

This paper proposes the use of adaptive PI
controllers to maintain the reactive power
control in each generator, in order to avoid
stressing conditions under load variations
throughout the day. This can be achieved adding
a B-spline neural network to update gains K, and
K in the three PI controllers, Fig. 2, where each
PI transfer function is given by
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Thus, K, and K; are updated from a B-spline
neural network at every sampled time. With this
purpose, six artificial neural networks (ANN) are
assembled in the control scheme, keeping
constant the PI gains associated to the pilot node.
In Fig. 2, o), 0,, and o3 are weighting factors to
share the total reactive power; they are selected
according to the generator’s rating, Table I [2].

Table 1. Generator’s data

Data Generator
1 2 3 Total
Rated MVA 247.5 192.0 128.0
Percent 43.6123 | 33.8326 | 22.5551 100
Sigma, o; | 04361 | 03383 | 02255 1.0

Thus, the appropriate reactive power regulation
will provide enough reserve under stressing
conditions.

3. NEURAL NETWORK CONTROLLER
DESIGN

The controller’s design simplicity is one of the
major advantages of the artificial neural
networks (ANN). The B-spline neural networks
(BSNN) are a particular case of neural networks
useful for on-line controlling and modeling,
taking into account the system’s non-linearities.
Some control parameters must be specified, such
as the shape of the basis finctions, Fig. 3, and
the learning rate. Despite the fact that the BSNN
structure is specified, it can be adapted to
achieve a satisfactory performance over a wide
range of operating conditions, since its weighting
vector is updated on-line over each sampling
time. That is, the BSNN can adaptively be
updated for output’s tracking when the system’s
operating point is modified or an external
disturbance arises.

Through parameters K, and Kj, the major task of
the secondary voltage regulator is to manage the
generators’ reactive power control and the
reference bus voltage in the pilot node, Fig. 3.
Signal ez is employed to evaluate K, and K. ¢,
is the difference between the excitation system
reference voltage and the actual generator’s
terminal voltage. The BSNN’s output can be
described by [10],

y=a'w (7
A
a= [31 a, - ap]T

where w; and a; are the 7-th weighting factor and
the 7-th BSNN basis function output,
respectively; p is the number of weights.
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Figure 3. BSNN to adapt the PI parameters

The proposed neuro-controller is composed by
two BSNNs, one to update K, and another to
update K;. Thus, the networks are described as
follows:

KNpHI = WH (ep; %]) (8)
KNIm = WH ( ep; "VH) (9)

where NN, denotes the BSNN which is used to
calculate K, and K; m = 1, 2, 3 (number of
generators); in this case, function NN includes
one weight w.

In this paper, the neuro-controller is trained on-
line using the following error correction
instantaneous learning rule [10],

n (9

aco);

where 1 is the learning rate and ey?) is the
instantaneous output error.

In this paper, the neural network controllers, (8)-
(9), are designed by univariate basis functions of
order 3, considering that e, are bounded within [-
1.5, 1.5] pu[10].

Respect to the learning rate, it takes as initial
value one point within the interval [0, 2] due to
stability purposes [10]. This value is adjusted by
trial-and-error; with a value close to zero the
training becomes slow. However, if such value is
large, oscillations can occur; in this application it
settles down in 0.025.

The instantaneous training rules provide an
alternative so that the weights are continually
updated and reach the convergence to their

w () = w(t=1)+ 0 (1) (10)
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optimal values. The neural nets with on-line
training exhibit attractive characteristics with
respect to other nets [11].

4. RESULTS

The power system in Fig. 1 is studied in order to
prove the performance and robustness of the
proposed control scheme. To analyze the results,
simulations are developed under different
scenarios: a) with a conventional PI control
(CONV); b) with an adaptive PI parameters
scheme. Three operating conditions are taken
into account. The conventional PI parameters
remain without change for all cases studied,
while in the case of the adaptive parameters,
these are updated on-line.

4.1 Case 1

To validate the neuro-controller’s performance,
different disturbances are simulated. In this first
case, the system operates at its nominal
condition [2], while is subjected to a three-phase
fault in bus-8 lasting for 100 ms. After the fault
is cleared, the system get back to its initial
configuration. Figs. 4-6 display the evolution of
some significant signals. Table II presents the
generators’ reactive power respect to their
nominal capacity. Notice that, at steady state, the
delivered vars are quite close to the expected,
thanks to the secondary voltage scheme. Fig. 4
shows the dynamic performance of generator-3
reactive power; the voltage magnitude on the
faulted bus is presented in Fig. 5; Fig. 6 shows
the PI gains evolution attained through the
adaptive neural network  scheme.

Table II. Reactive power proportions.
Data Data Generator
1 2 3 Total
Generat | Rated | 247.5 | 192.0 | 128.0 |567.5
or data | MVA
Percen | 43.612 | 33.83 | 22.555 | 100

t 3 2
Casel | MVA | 914 | 71.3 | 481 |210.8
R

Percen | 43.358 | 33.82 | 22.817 | 100
t 6 3

Figure4.  Generator-3 reactive power

performance, case /

Results exhibit a satisfactory performance of the
BSNN PI  parameters, showing better
characteristics that the conventional (CONV)
control technique, especially those related with
overshoots and settling times. Likewise, the bus-
8 voltage goes back to the reference value.
According to the grid evolution, the PI
parameters are updated, Fig. 6. When the power
system reaches the steady state these parameters
remain without change.

s
time (sac)

Bus-8 voltage response, case /

L L L L I L L L L !
0 1 2 3 4 5 6 7 8 9 0

Figure 6. Adaptative PI parameters evolution for
case 1
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4.2 Case 2

This case illustrates the system evolution when
at t = 0.5 s a three-phase fault on bus-§ is
simulated lasting for 83 ms. Line 8-9 is tripped
to clear the fault. Figs. 7-9 depict the reactive
power and bus-8 voltage magnitude, and angular
difference 9;; behavior, where satisfactory
coordinated performance can be appreciated.

The BSNN has the ability to adapt itself to this
new operating condition, improving the
conventional PI performance. These controllers
give rise to reactive power oscillations, Fig. 7.
On the other hand, by updating the PI parameters
the oscillations are diminished.

Fig. 5 presents satisfactory performance for both
control schemes. However, in Fig. 8 it is obvious
that the performance of the conventional PI
controller is poorer than that of the BSNN. The
voltage profile in the neighboring buses is
improved by secondary voltage control
exhibiting better dynamic performance when
BSNN is included. Fig. 9 displays the angular
difference  3-1, which exhibits positive
interaction between the BSNN and system’s
evolution.

L L L L L L !
B 7 0 B o

Generator-3 reactive power
performance, case 2

Figure 7.

L L L L L L L L L !
3 s ® 7 0 s o

Figure 8. Bus-8 voltage response, case 2

Figure 9. Angular difference &, case 2

4.3 Case 3

This case illustrates the system evolution when
at t = 0.3 s the pilot node reference is increased
to 1.02 pu. Figs. 10-11 display the system
behavior.

Fig. 10 depicts the dynamic performance of
generator-1 reactive power; the pilot node
voltage magnitude is presented in Fig. 11. The
response with BSNN is better than that utilizing
conventional PI, since in the latter case a slower
response and a steady state error is noticeable.
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Figure 10.

Generator-1 reactive power
performance, case 3

Votage magritud (1)

s
time (sec)

Figure 11. Bus-5 pilot node response, case 3
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The performance of both control techniques is in
accordance with case / and 2. The BSNN
exhibits better performance adapting itself easily
to the new circumstances. This helps to maintain
the operation within safer regions, preventing
from an instability scenario.

5.  CONCLUSIONS

This paper proposes the inclusion of B-Spline
neural networks to update the PI controller
parameters in charge of the secondary voltage
control in power plants. The performance and
applicability of the proposition are proved by
digital simulation on a 9-buses 3-machines
power system. This strategy allows controlling
appropriately the pilot node voltage magnitude,
but also it not affects oscillations and overshoots
in relevant signals. The feedback signals utilized
for the BSNN are pertinent for suitable
secondary voltage control exhibiting a positive
interaction with the system.

The BSNN controllers are compared to
conventional PI controllers. While the neural
controller is able to adapt itself to different
operating  conditions, the  conventional
controllers’ performance tends to be poorer
under such circumstances.
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