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ABSTRACT: Under the presence of multivariate outliers, in a Phase I analysis of historical set of data, the T
control chart based on the usual sample mean vector and sample variance - covariance matrix performs poorly.
Several alternative estimators have been proposed. Among them, estimators based on the minimum volume ellipsoid
(MVE) and the minimum covariance determinant (MCD) are powerful in detecting a reasonable number of outliers.
In this paper we propose a T control chart using the biweight S estimators for the location and dispersion parameters
when monitoring multivariate individual observations. Simulation studies show that this method outperforms the T*
control chart based on MVE estimators for a small number of observations.

KEYWORDS: Multivariate Control Charts, MVE Estimators, Outliers, S Estimators.

RESUMEN: En presencia de outliers multivariados, durante la Fase I de analisis de datos historicos, la carta de
control T? , basada en los estimadores usuales del vector de medias y de la matriz de varianzas — covarianzas, se
comporta de manera deficiente. Varias alternativas se han propuesto. Entre otras, estimadores basados en el elipsoide
de minimo volumen (MVE) y en el determinante de minima covarianza (MCD) son potentes para detectar un nimero
razonable de outliers. En este articulo proponemos una carta de control T* usando los estimadores S biponderados
para los parametros de localizacion y dispersion cuando se monitorean observaciones multivariadas individuales.
Estudios de simulacién muestran que este método supera las cartas T basadas en los estimadores MVE para un
numero pequefio de observaciones.

PALABRAS CLAVES: Cartas de Control Multivariadas, Estimadores MVE, Outliers, Estimadores S.

1. INTRODUCTION

and to estimate the in-control parameters of the
Hotelling’s T control chart is a widely used tool process. Sometimes is not possible to group
for monitoring simultaneously several related these data into rational subgroups [6, 7], so
quality characteristics of a process. See for charts are based on individual multivariate
example [1, 2]. Recently, it has been used for observations.
monitoring quality profiles (3, 4].

Following the terminology of [5], in the Stage 1
of Phase I, historical data are studied for
determining whether the process was in control

In a Phase I analysis of historical data set, the
usual estimates of the process parameters are the
sample mean vector and the sample variance-
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covariance matrix. It is well known that these
estimators are sensitive to outlying observations.
As a result, statistics plotted on T control charts,
based on these estimators, perform poorly when
there are several outliers [7, 8, 9]. Alternative
estimation methods have been proposed in the
literature. One approach consists of calculating
the T* statistic based on successive differences
variance-covariance matrix estimator. See for
example, [7, 10, 11]. Though this method is
effective in detecting sustained shifts in the
mean vector, it fails to detect outliers as is shown
in [7, 9]. Another approach uses robust
estimators of the process parameters. In [9] is
proposed the use of high breakdown estimation
methods based on the minimum volume ellipsoid
(MVE) estimators of [12] and the minimum
covariance determinant (MCD) method of [13].
He showed that a T control chart using MVE
estimators was the most effective method to
detect out of control signals due to several
outliers. In a large simulation study, [14] showed
that a T? control chart based on MVE estimators
performs better than a chart based on MCD
estimators when the number of observations is
small, but the opposite occurs when the number
of observations increases. In [15] three
multivariate control charts are compared: the S
chart, the MVE chart and the Usual chart. They
did it just for the case p=2 and m=30. In this
paper we generalize these results by extending
our simulations to several values of p and m. We
also extend the types of contamination of
parameters. It is our purpose to give conclusions
under a more general framework.

2. ROBUST ESTIMATORS

Let X, ...,X,be a set of m observations

selected from a p-multivariate normal
distribution. The MVE estimator of location and
variance-covariance matrix is the pair (t, C) that
minimizes the determinant of C, subject to

#{If (X,-—t)’C‘l(X,-—t) < (OAS’p)} Z[nﬁTpﬂ-l}
(1)

where the symbol # means the number of points
which satisfies the condition, and ;((20_5 ») is the

0.5-quantil of the chi-square distribution with p
degrees of freedom. The values, t and C estimate
the center of the smallest ellipsoid containing at
least half of the observations and the inverse of
the shape matrix of the ellipse, respectively. The
cov.mve function of S-PLUS calculates these
estimators based on a genetic algorithm.

The biweight S estimator of location and shape

is defined as the pair (t, C) that minimizes the
determinant [kK’C|, subject to

m‘lép(\/(x[—t)l(FC)_I(X[—t)]:bo @

where p is Tukey’s biweight function. An
algorithm proposed by [16] to calculate these
estimators is outlined in the Appendix.

MVE and S estimators are good candidates to
estimate process parameters because they are
affine equivariant and have high breakdown
points [16, 17]. The breakdown point is the
smallest fraction of contamination that causes an
estimator to take on values arbitrarily far away
[17]. S estimators properties has been widely
studied as a high-efficiency robust estimators.
See for example, [16, 18, 19, 20, 21].

3. THE T? CONTROL CHART

We assume that the data set from Phase I
analysis consists of m statistically independent
observations x;, 7= /,2,..,m such that x;~Ny(L,
%), where p represents the number of quality
characteristics being monitored. The usual
estimators of pL and X are

D' x, (3)

and,

respectively. The T? statistics based on the usual
estimators are
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T,=(x-%)'S'(x,-%) . i=L2, ...m (5
Those based on MVE and S estimators are

Yfﬁ@:(xl.—xm)lS;lM(x[—xW) , =12, ..,m

(6)
and
7;2’1.:()(1.—)(5)’8;1 (xl.—xs) ,1=1,2,...,m (7)

respectively.

Upper control limits (UCL) for the three charts
were calculated from 5000 simulations with an
overall false alarm probability of 0.05. Once
control limits were calculated, the 7:2’1. (the o

should be replaced by U, MVE, or S) were
plotted on the chart.

4. SIMULATION SCHEMES

Sets of m=30, 40 and 50 observations were
generated from multivariate normal
distributions. Without loss of generality, we
assume that the in-control distribution is
multivariate normal with mean =0 and
covariance matrix Z=I, the identity matrix. Let
8 =(p, - uo)tEgl (m,—p,) denote the non-
centrality parameter, which measures the shift
from p, to an out-of-control mean vector ;. To
generate outliers that contaminated the in-control

distribution, k < m observations were randomly
generated as follows:

1. Shift the mean vector: k observations were
generated from Ny(,, Zo) distributions, for §°=5,
10, 15, 20, 25, p=2,3, 5,10, and k=1, 2, ..., 7.

2. Change in the variance-covariance matrix or
symmetric contamination: k observations were
generated from N(uo, AZo) distributions, for
A=1.5,2,2.5,3.5,45,8,10,12, 16 , p=2, 3,
5, 10, and k=1,2,...,7

3. Crossed contamination: k observations were
generated from Ny(n;, AX,) distributions, for

§’=5, 10, 15, 20, 25, A=1.5, 4.5, 8.5, 12.5, p=2,
3,5,10,and k=1, 2, ..., 7.

To evaluate control chart performance, N=1000
replicates were generated for each combination

of the above schemes. The control charts, 7/,

7., and T were then compared by estimating

the average proportion of outliers detected
(APOD). The APOD is a comparison criterion
suggested by [22], which is defined as follows

APOD= ]—lvzjv:[%(zk: (o= 1)} ®)

=1

where [(0j=1) is 1if o,=1 and 0 otherwise,

and 0,=1 if sz > UCL . Thus, for example, if a

data set of size m has 4 outliers and APOD=0.5,
then it is expected, on the long run, that the
control chart will detect an average of two
outliers.

Though the signal probability is the usual
criterion for comparing multivariate control
charts in Phase I analysis [7, 9], we used the
APOD because the expected proportion of the
exact number of outliers simultaneously detected
seems to be more informative than a signal
probability, mainly under the presence of
multiple outliers. Moreover, limited simulations,
not presented here, showed that plots of APOD
and signal probabilities exhibit similar patterns
when comparing T control charts.

5. RESULTS

Figure 1 shows APODs under shifts in the mean
vector for different non-centrality parameters,
p=2, m=30, and k=1, 4, 7 respectively. For these
values of p and m, upper control limits were
10.5123, 249336 and 20.2441 for the Usual,
MVE and S methods respectively. The Usual T*
control chart performed poorly except when
there was just one outlier. For 2 < k < 7,

estimated APODs for 7; control charts were

consistently superior to those for 7, and Usual
charts. For instance, in the presence of k=4
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outliers and 8°=15, the APODs for the 77, 7o

and 73 charts were 0.2515, 0.1835 and 0.0275,
respectively.
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Figure 1. Average proportion of outliers detected
under shifts in the mean vector for p=2, m=30, with
k=1, 4 and 7 outliers

Table 1 shows estimated APODs for MVE and S
methods for p=3, 5, 10, m=30, 40, 50 and k=2, 4,
7. Similar patterns are observed for p=3 and
p=2. Otherwise, MVE and S methods had a
similar performance.

Table 1. Estimated Average proportions of outliers
detected by 7, :,VE and 7:92 under shifts in the mean
vector, for p=3, 5, 10, m=30, 40, 50 with k=2, 4 and 7
outliers and several values of the non-centrality
parameter &
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Figure 2
symmetric contamination for different values of
A, p=2 and m=30, and k=1, 4, 7 respectively. In
the presence of a single outlier 7, control charts

are most powerful, but their estimated APODs
are smallest when there are several outliers. For

multiple outliers, estimated APODs for 7: are

shows

consistently higher than those for

charts.

estimated APODs

T2
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e control
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Table 2. Estimated average proportions of outliers
detected under symmetric contamination, for p=3, 5,
10, m=30, 40, 50 with k=2, 4 and 7 outliers and

several values of A

p=5
k=2 4 7

p=10
k=2 4 7

st |24 T
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Figure 2. Average proportion of outliers detected
under symmetric contamination for p=2, m=30, with
k=1, 4 and 7 outliers

Table

2 exhibits
symmetric contamination for 7.,

estimated APODs

under
and T;

12IMVE|.5220|.4895(.4407|.6650|.6565| .517 |.7140|.6703(.5709

S |.5885(.5805|.5100|.7320|.7433|.7276|.9130(.8383|.6469

m=40

1.5MVE|.0040(.0075[.0071]|.0075|.0095(.0087|.0125/|.0143|.0096

S {.0080{.0098|.0079(.0095[.0113|.0109|.014 {.014 |.0113

2.5MVE|.0440|.0438(.0343|.0500| .055 .0461|.081 |.081 |.0693

S |.0685].0473|.0436(.0695|.0673|.0556| .124 .1025|.0824|

4.5MVE|.1740(.1645|.1409|.2345|.2335 .1957|.4045|.3673(.3304

S |.2175].1968|.1741|.3075|.284 |.2676| .509 |.4448|.3516)

control charts and p=3, 5, 10, m=30, 40, 50 and
k=2, 4, and 7. Interestingly, estimated APODs
increased with p. For instance, for m=50, k=4,
and A=8 APODs for the MVE method were
0.433 for p=3, 0.598 for p=5 and 0.794 for p=10.
For the S method the values were 0.454, 0.639
and 0.879, respectively. Under this type of
contamination the S performs slightly better than
the MVE method. Notice that for m=30,

regardless of p, estimated APODs for 7; are

consistently higher than those for 7, control
charts.
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Under cross contamination, for different
combinations of non-centrality parameters and
As, was observed a similar pattern that in Figures
1 and 2 for & and A fixed, respectively.
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Simulation results, not shown here, produce
similar results for the combinations of p= 3, 5,
10, n= 30, 40, 50 and &= 2, 4, 7.

6. EXAMPLE

Next we illustrate the comparison of the three
types of T? control charts. We consider the
example presented by [23]. The original data set
contains 11 quality variables measured on 30
products. Here we consider only the first three
variables, whose values are reproduced in the
table 3.

Table 3. Variables 1, 2 and 3 of [23] data set

ProductNo.| X; | X; |X;
1 0.567(60.558(20.7
2 0.538(56.303(20.8
3 0.530[59.524(21.4]
4 0.562(61.102(21.2
5 0.483(59.834(21.0|
6 0.525(60.228(20.7
7 0.556(60.756(21.5
8 0.586[59.823(20.8
9 0.547|60.153(20.9
10 0.531(60.640(21.2
11 0.581(59.785(21.1
12 0.585[59.675(20.7
13 0.540(60.489(21.2
14 0.458(61.067(21.3
15 0.554(59.788(21.3
16 0.469(58.640[21.5
17 0.471(59.574{20.6|
18 0.457|59.718|21.1
19 0.565(60.901(20.8
20 0.664( 60.18 (20.9
21 0.600[60.493(21.2
22 0.586(58.370[20.9
23 0.567(60.216{20.9
24 0.496(60.214{20.6|
25 0.485[59.500[21.7
26 0.573(60.052(20.7
27 0.520[59.501(21.1
28 0.556(58.476(21.4]
29 0.539(58.666(21.2
30 0.554(60.239(21.0|

Figure 3 shows the obtained charts. The UCLs
for the 73, 7.,, and 7] charts were 12.275,

30.660, and 25.552, respectively. The Usual and
S methods signaled the second observation as
out-of-control. In contrast, the MVE method did
not.

By Usual estimators

15

b2

UCL= 1.7

Ohzervation number, i

By MVE estimators By § estimators

UCL= 3048 & obiEl
41 it ICL= 25552

Chservation number, i

Chservation number, i

Figure 3. T control charts for the first three variables
of [23] data set, using Usual, MVE and S estimators

Next, we replaced the 10" and 25™ observations
by two outlying observations generated
artificially, (0.280, 55.640, 21.2) and (0.485,
55.600, 21.7) respectively. Figure 4 presents the
three control charts for the modified data set.
The Usual method detected only the 10"
observation, whereas the MVE method detected
the 10™ and 25™ observations and the S method
detected the 2™, 10™ and 25™ observations as
out-of-control.
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By Uzual estimatars
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3n 40 50 &0

n 20
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] i n Wow #oon ] i wnonoow H

Ohseryation number, i Obzervation number, i

Figure 4. T control charts for the modified data
using Usual, MVE and S estimators

7. CONCLUSIONS

During a Phase I analysis of a historical data set,
T? control charts based on the Usual estimators
of the mean vector and covariance matrix of the
in-control distribution perform poorly under the
occurrence of multiple outliers. We have
proposed a T? control chart that relies on S
estimators. Three control charts were compared
via simulation: The usual T? control chart, the T?
control chart with MVE estimators and T>
control chart with S estimators. Our results show
that for a small number of observations, control
charts with S estimators perform uniformly
better than the other two charts. As the number
of observations increases, T control charts based
on S and MVE estimators perform similarly. In
any case, under the presence of outliers, robust
control charts should be used instead of the
Usual T? control chart.
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APPENDIX

Following [16], this appendix describes an
algorithm that computes S estimators. S
estimators correspond to the global minimum of
the objective function using MCD estimators as
initial solutions, t@ and CO. The intermediate
steps of the algorithm are as follows:

(a) Set j=j+1.

(b)Compute

d =[x~ ) (€Y (x, ).

(c) Find K as a solution of

1 & S
E;p(df’)/k(’))= b, , where

d2-d /N28)+d° N6c') 0<d<c
p(d’c)={02/6 ( ) ( )d>c

is the Tukey’s biweight function.

(d) Compute ;z’l(j) = d,(j)/k(j) .
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where
2
(1—(d/c)2) , 0<d<c
w=
d>c
and
2
_la(1-(dsey) , 0<dse

The constants by and c¢ are set such that the
breakdown point of S estimators is close to 0.5
[17].

At the end of the iterative process (after j steps,
according to some convergence criterion) the
pair t9 C? is obtained. Following [24], the
following reweighting is done:

A\ A\~ 5

(a) Compute d’ = (x,.—t(f)) (C(f)) (x,—t(f)).
(b) Compare each d with
u=(1+15(m= D))’ X(yo5, med{d; Y X(ys
where ;((20_95’11) and y, ,are the 0.95 and 0.5
quantiles of a chi-square distribution with p
degrees of freedom and med{ df} is the median
of the d’ distances.

(c) If d <u then we assign it a weight w =1.

Otherwise, @, = 0.
(e) The final estimators are calculated as

and



