PRODUCTION SCHEDULING WITH SEQUENCE-DEPENDENT
SETUPS AND JOB RELEASE TIMES

PROGRAMACION DE LA PRODUCCION CON TIEMPOS DE
PREPARACION DEPENDIENTES DE LA SECUENCIAY
FECHAS DE LLEGADA DE TRABAJOS

JAIRO R. MONTOYA-TORRES

Universidad de La Sabana, Chia, Colombia, jairo.montoya@unisabana.edu.co

MILTON SOTO-FERRARI
Universidad del Norte, Barranquilla, Colombia

FERNANDO GONZALEZ-SOLANO
Universidad del Norte, Barranquilla, Colombia

Received for review July 3 ™ 2009, accepted March 4™, 2010, final version April, 4™, 2010

ABSTRACT: This paper studies a short-term production scheduling problem inspired from real-life manufacturing
systems consisting on the scheduling a set of jobs (production orders) on both a single machine and identical parallel
machines with the objective of minimizing the makespan or maximum completion time of all jobs. Jobs are subject
to release dates and there are sequence-dependent machine setup times. Since this problem is known to be strongly
NP-hard even for the single machine case, this paper proposes a heuristic algorithm to solve it. The algorithm uses a
strategy of random generation of various execution sequences, and then selects the best of such schedules.
Experiments are performed using random-generated data and show that the heuristic performs very well compared
against the optimal solution and lower bounds, and requiring short computational time.

KEYWORDS: Scheduling, sequence-dependent setup times, release dates, randomness, heuristic.

RESUMEN: Este articulo estudia un problema de programacion de la produccion en el corto plazo inspirado de
sistemas de fabricacion reales en los cuales se tiene un conjunto de tareas (6rdenes de produccion) tanto en una
configuracion de una maquina como en maquinas paralelas idénticas con el objetivo de minimizar el lapso de
fabricacion o tiempo maximo de terminacion de todos los trabajos. Las tareas estan sujetas a fechas de disponibilidad
diferentes y existen tiempos de preparacion de las maquinas dependientes de la secuencia de procesamiento. Puesto
que este problema es conocido como fuertemente NP-completo, incluso para el caso de una maquina simple, este
articulo propone un algoritmo heuristico para resolverlo. El algoritmo emplea una estrategia de generacion aleatoria
de varias secuencias de procesamiento de los trabajos y luego selecciona el mejor de estos programas. Se
desarrollaron experimentos computacionales empleando datos generados aleatoriamente. Los resultados muestran
que el procedimiento propuesto se desempeila muy bien comparado con la solucién optima o con cotas inferiores,
requiriendo un menor tiempo de célculo.

PALABRAS CLAVE: Programacion de la produccion, tiempos de preparacion dependientes de la secuencia, fechas
de disponibilidad, aleatoriedad, heuristica.

Dyna, year 77, Nro. 163, pp. 260-269. Medellin, September, 2010. ISSN 0012-7353

261 Dyna 163, 2010

1. INTRODUCTION

Scheduling is a decision-making process that is
used on a regular basis in many
manufacturing and

services industries. It deals with the allocation of
resources (often simply called machines) to tasks
(jobs) over given time periods and its goal is to
optimize one or more objectives [1].

Efficient production schedules can result in
substantial improvements in productivity and
cost reductions. Generating a feasible schedule
that best meets management’s objectives is a
difficult task that manufacturing firms face
every day [2].

In many industries, the decision to manufacture
multiple products on common resources results
in the need for changeover and setup activities,
representing costly disruptions to production
processes. Therefore, setup reduction is an
important feature of the continuous improvement
program of any manufacturing, and even service,
organization. It is even more critical if an
organization expects to respond to changes like
shortened lead times, smaller lot sizes, and
higher quality standards. Every scheduler should
understand the principles of setup reduction and
be able to recognize the potential improvements.

Setup time, in general, can be defined as the time
required to prepare the necessary resource (e.g.,
machines, people) to perform a task (e.g., job,
operation). Setup times can be of two types:
sequence-independent and sequence-dependent.
If setup time depends solely on the task to be
processed, regardless of its preceding task, it is
called sequence-independent. On the other hand,
in the sequence-dependent type, setup time
depends on both the task and its
preceding task [3].

Scheduling problems with sequence-dependent
setup times can be found in various production,
service, and information processing
environments [3]. For example, in a computer
system application, a job requires a setup time to
load a different compiler if the current compiler
is not suitable. In a printing industry, a setup
time is required to prepare the machine (e.g.,
cleaning) which depends on the color of the

current and immediately following jobs. In a
textile industry, setup time for weaving and
dying operations depends on the jobs sequence.
In a container/bottle industry, setup time
relies on the sizes and shapes of the
container/bottle, while in a plastic industry
different types and colors of products require
setup times. Similar situations arise in chemical,
pharmaceutical, = food processing, metal
processing, paper industries, and many other
industries/areas.

As stated by Allahverdi and Soroush [3], in
today’s manufacturing scheduling problems it is
of significance to efficiently utilize various
resources. Treating setup times separately from
processing times allows operations to be
performed simultaneously and hence improves
resource utilization. This is particularly
important in modern production management
systems such as Just-in-Time (JIT), Optimized
Production = Technology (OPT), Group
Technology (GT), cellular manufacturing, and
time-based competition. The benefits of reducing
setup times include [3]: reduced expenses,
increased production speed, increased output,
reduced lead times, faster changeovers, increased
competitiveness, increased profitability and
satisfaction, enabling lean manufacturing,
smoother flows, broader range of lot sizes, lower
total cost curve, fewer stock-outs, lower
inventory, lower minimum order sizes, higher
margins on orders above minimum, faster
deliveries, and increased customer satisfaction.
The importance and benefits of incorporating
setup times in scheduling research has been
investigated by many researchers (see for
instance [4,5,6,7,8].

This paper studies the problem of job scheduling
on both a single machine and identical parallel
machines with sequence-dependent setup times
and release dates. The single-machine
environment does represent a building block for
more complex configurations. Many researchers
have dealt with job scheduling problems on a
single-machine under different constraints. A
fundamental issue is the inherent difficulty of
one machine scheduling problems that involve
sequence-dependent setup times. Pinedo [1]
showed that the makespan minimization on a
single machine with sequence-dependent setup

Montoya et al 262

times is strongly NP-hard, which means that is
not possible to find optimal solutions in
reasonable computational time for large-sized
instances. For the parallel machine case,
computational results are not encouraging. In
this paper, we are interested in studying such
scheduling problems adding the constraint of
jobs having unequal release times.

This paper is organized as follows. Section 2 is
devoted to analyze the problem under a single
resource (single-machine) environment. Section
3 extends the study for the multiple parallel
machines context. Related relevant literature and
computational ~ experiments are presented
respectively within both sections. The paper ends
in section 4 by presenting the conclusions.

2. ANALYSIS OF THE
MACHINE CASE

SINGLE-

Formally, we first consider the problem of
scheduling a set of 7 jobs on one machine. Job J,
with /~1,...,n, is characterized by its integer
processing time p; and an non-negative integer

release date r;. Sequence-dependent machine

setup times are also considered. That is, if job &
is executed on the machine immediately after job
J» a setup time s, is needed during which the

machine cannot process any job. We consider
the objective of minimizing the makespan of the
schedule or total completion time of all jobs.
Using the classical notation in Scheduling
Theory, this problem is noted as 1|7, | Gy -

When all jobs have equal release dates (1, =0,

V), the one machine scheduling problem, noted
as 1|s; | Guy, 18 equivalent to the Traveling

Salesman Problem (TSP), which is known to be
NP-hard [1]. This means that no efficient
(polynomial-time) algorithm can be found to
solve large-sized instances. Hence, the problem
considered in this paper is at least that difficult.

The problem of job scheduling with sequence-
dependent machine setup times have been
largely studied in the literature. State of the art
surveys are presented in [9,10,11]. For the one
machine case, even though complexity analysis

is not encouraging, researchers have developed
exact approaches based on branch and bound,
dynamic programming or integer linear
programming. The objective function under
study in this paper is the makespan and can
be expressed as:

qnax :ipj+ zsﬂ(
J=1

J—k

When setup times are dependent on the
sequence, minimizing makespan becomes
equivalent to minimizing the total setup time.
That is because the sum of processing times
remains a constant through the whole scheduling
when all information about jobs is deterministic
and known at the initial time of scheduling. This
problem corresponds to what is usually called
the Traveling Salesman Problem (TSP). In a
TSP, each city corresponds to a job and the
distance between cities corresponds to the time
required to change from one job to another. If
the setup times for all pairs of jobs are
indifferent to their sequencing order when
scheduled consecutively, the scheduling problem
is equivalent to a symmetrical TSP, otherwise, it
is equivalent to an asymmetrical TSP [9].

One of the pioneering works on the sequence-
dependent setup time problem was presented by
Gilmore and Gomory [12] who modeled and
solved the problem as a TSP. Presby and
Wolfson [13] provided an optimization
algorithm that is suitable only for small
problems. Bianco et al. [14] formulated the
problem 1[r;, 5, | G,y as a mixed integer linear

program and developed a heuristic algorithm
using lower bounds and dominance criteria. For
the problem 1| prec,s; | C He and Kusiak

max >
[15] proposed a simpler mixed-integer
formulation and a fast heuristic algorithm of low
computational time complexity. Ozgur and
Brown [2] developed a two-stage traveling
salesman heuristic procedure for the problem
where similar products produced on the machine
can be partitioned into families.

There are several works presented in the
literature that consider other objective functions.
Barnes and Vanston [16] combined branch and
bound with dynamic programming to solve the

263 Dyna 163, 2010

problem noted as 1| s | Z w,C;+ Z sy - For the

case of precedence constraints with a special
structure (chains), Uzsoy et al. [8] developed
branch and bound algorithm for 1| prec, s | L,

and Uzsoy et al. [17] developed dynamic
programming algorithms for 1| prec, s | Ly,

and 1| prec,s; | U;, where the objective

function corresponds to the minimization of the
number of tardy jobs. Tan and Narasimhan [18]
proposed a simulated annealing algorithm to

minimize total tardiness (1]s | Z T;). Tan et al.

[19] later compared the performance of branch
and bound, genetic search, simulated annealing
and random-start pairwise interchange heuristics
for the same problem. Different versions of
genetic algorithms have also been proposed (e.g.
[19,20]. Franga et al. [21] proposed a memetic
algorithm while Gagne et al. [22] proposed an
Ant Colony Optimization (ACO) algorithm for
the same problem. Chang et al. [23] proposed a
mathematical programming model with logical

constraints for the problem 1|rj,Sﬂ(|ZWj7}.

They also proposed heuristics and conducted
computational experiments which revealed that
the heuristics can efficiently solve the problem.
Wang [24] studied the single-machine
scheduling problem with time-dependent
learning effect and considerations of setup times
with various objective functions based on
completion times of jobs.

2.1 The proposed algorithm

This paper first analyzes the problem on a single
machine noted as 1|r;,5,|C,, . The proposed

randomized heuristic algorithm is presented in
this section. The basics of the procedure are
presented next. To schedule a set of 7 on a single
machine, we can observe that, from a total of n
positions in the schedule, we have to select one
position for each job.

The heuristic proposed here is based on a
random insertion strategy, in which random
numbers are generated from an equilikely
distribution between 1 and n, in order to define
the position of a job in the schedule. A certain
number of iterations are required so as to

improve the initial solution (schedule). The
algorithm is described in detail in
figure 1.

Algorithm Random-Insertion One-machine
Initialization

1. Enter the number 7 of jobs.

2. For each job, enter its processing time p;

and its release date 7. Order jobs in a list by

increasing order of their release times. Break

ties by increasing order of processing times.
3. Read setup times s ; for each pair of jobs /

and & with j# k.
4. Define the number of iterations (niter).
Algorithm
5. Set h=1, the first iteration. Set j=1.
6. Generate an integer random number R from
an equilikely distribution between 1 and n.
7. Schedule job jon position defined by R If
this position is already assigned, go to step 6.
8. Do j= j+1 and repeat from step 6 while
J < n (that is, until all jobs are scheduled).
9. Ensuring that release dates are respected,

compute C, h

nax » the makespan for the
schedule of iteration 4.

10. Do A= h+1 and repeat from step 6 while
h < niter (that is, until the number of

iterations is reached).

11. Select the schedule with min C _ (that s,
h

max

select the schedule with minimum makespan
over all the iterations).

Figure 1. Random-insertion algorithm for the single-
machine problem

2.2 Experiments

In order to analyze computational performance
of proposed algorithm, experimental studies
were conducted on a PC Pentium bi-processor
Dual-Core 1.73 GHz. Exact solution methods
were programmed using X-press IVE while the
proposed heuristic was programmed using
Visual Basic for Applications (VBA) in MS
Excel® spreadsheets. Data was generated using
a similar structure as proposed by Chu [25] and
later extended by Nessah et al. [26] to consider
setup times.

Montoya et al 264

Integer processing times were generated from a
uniform distribution [1, 100]. Integer release
dates were generated wusing a uniform
distribution [0, xz], where n is the number of

jobs to be scheduled and « is a real with values
0.6, 1.5 and 3.0. Integer setup times were
generated from a uniform distribution
[0,min p,]. Five instances for each of value of

a were generated. Problems with 10, 20, 50 or
100 jobs were considered.

Experiments were run with equal and unequal
release dates. A full factorial experimental
design gave a total of 120 testing scenarios.
Because of the random behavior of the proposed
algorithm, 10 replications for each instance
scenario were run and the best sequence (i.e., the
sequence with minimum value of the makespan)
was registered and compared against the
optimum makespan. The first sets of experiments
were performed assuming that all jobs are
released to the machine at the same time. That is,

we are supposing that r,=0 for all jobs.

The second set of experiments, the same values
of both processing and setup times were taken
but in addition considering unequal integer non-
negative release dates for jobs, that is with
r;20.

For the performance analysis, let ¢ and c%°7

max max
be respectively the makespan obtained using the
proposed Random-Insertion heuristic and the
optimum makespan. The performance of
proposed heuristic was computed using the
deviation from the optimal solution as:
_ OPT
%devrma"—P}na" x100%
i
Tables 1 and 2 summarize the results obtained
from the experiments for the single-machine
environment when all jobs have equal release

dates (i.e. respectively when r;=0, V/) and

r;>0, Vj. In both tables, Con represents the

average values of the optimal makespan and
CR[
makespan applying the proposed heuristic. The
last column of both tables corresponds to the
average value of the deviation from the

optimal solution for each set of jobs.

represents the average value of the

Table 1. Average makespan for experiments with
r;=0 and m=1

Average values
jobs

: Craw | G | %oV
10 535.1 552.0 3.2%
20 1137.3 1195.9 52%
50 2600.6 2685.2 3.3%
100 5241.5 5346.0 2.0%

Average 3.4%

Table 2. Average makespan for experiments with
r;20 and m=1

_ Average values
e g T R edev
10 535.1 564.2 5.4%
20 1137.3 1206.7 6.1%
50 2600.6 2691.1 3.5%
100 5227.5 5350.3 2.3%
Average 4.4%

For the case of equal release dates, our algorithm
the average deviation from the optimal solution
is 3.4%. When unequal release date are present
(r;>0), the average deviation is 4.4% of the

optimal solution. Analyzing the individual
instances, in 4% of the cases the heuristic
obtained the optimal makespan, while in 29% of
the cases the value of the makespan was within a
2% of the optimal value.

Finally, it is important to note that the running
time of the algorithm for small instances (10-job
and 20-job instances) was less than 3 seconds,
while the time required to run the experiments
for large instances was between 20 and 30
seconds for 50-job instances and about 55
seconds for instances with 100 jobs. In
comparison with the optimal solution approach,
the mathematical model required about 30
minutes and 1 hour to solve small and large
instances, respectively.

3. ANALYSIS OF THE CASE OF WM™
IDENTICAL MACHINES IN PARALLEL

In real life, usually discrete manufacturing
processes have several ;7 machines in parallel. In
this section we extend the algorithm previously
proposed to solve the problem. Using the
classical notation in Scheduling Theory, the
problem under study in noted as
Pm | Ij/-,Sﬂ(| Cmax :

265 Dyna 163, 2010

In the literature the problem under study has
been very little studied in the literature. Some
related works are cited next. Guinet [27]
proposed a mathematical formulation to
minimize the makespan and the total completion
time of jobs with identical release times (i.e.,
r;=0) for all jobs. Heuristics and meta-

heuristics procedures have been proposed for
several objective functions, such as due-date
related objectives (e.g. [28,29,30] or flowtime
related objectives (e.g. [31,32,33]. Guinet [27]
also suggested that makespan minimization
problem when all jobs have equal release dates
(r;=0, Vj), the problem is equivalent to the

Vehicle Routing Problem (VRP) with service
time requirements.

The problem with jobs arriving at different
release dates has been very little studied in the
literature, to the best of our knowledge. Nessah
et al. [26] considered the objective of
minimizing total completion time of jobs

(problem Pm|r;,s; | Z C,.

The problem wunder study in this paper,
Pm| 1,8 4 | iy » has only been studied by Kurz and

Askin [34] who proposed several heuristics
algorithms, including multiple insertion and a genetic
algorithm. These authors also derived a data-
dependent lower bound for the makespan criterion.
Their compared their heuristics between them, but
they neither computed the optimal makespan nor
compare the performance of their heuristics against
the optimum nor the lower bound.

3.1. Proposed algorithm modified

Our algorithm described in section 2 for the
single-machine case can be easily modified for
application in the parallel machine environment.
The first modification consists on computing the
number of jobs that can scheduled on each
machine. Then, jobs are randomly selected and
assigned to machines respecting the workload
balance defined. The modified algorithm is
described in detail in figure 2.

3.2.Experiments and results

A computational study was also performed using
the same random-generated data as described in

section 2.2. We considered here configurations
with m=3 and m=5 identical machines in
parallel. As for the single-machine case, because
of the random behavior of the proposed
algorithm, 10 replications for each instance
scenario were run and the best sequence (i.e., the
sequence with minimum value of the makespan)
was registered and compared against the
optimum makespan.

As explained previously, the NP-completeness
of this problem unable us to obtain optimal
solutions without excessive computational costs
even for small instances [34]. A lower bound on
the makespan can be found by looking at the
minimum preemptive schedule makespan [35].
This lower bound, however, can be very poor,
especially in cases with a high range of
processing times [34].

Algorithm Random-Insertion Parallel Machines
Initialization

1. Enter the number 7 of jobs.

2. Enter the number m of identical parallel machines.

3. For each job, enter its processing time by and its

release date I;. Order jobs in a list by increasing

order of their release times. Break ties by increasing
order of processing times.

4. Read setup times S ik for each pair of jobs jand &

with j# k.
5. Define the number of iterations (niter).
Algorithm

6. Compute the number of jobs to be scheduled on the
machines. For the first /77— 1 machines. This bound

is computed as |_I]/IHJ The mth machine has

assigned the other jobs.

7. Set A=1, the first iteration.

8. Generate an integer random number R from an
equilikely distribution between 1 and 2.

9. Schedule job R on the first machine with available
positions. If this job has already been assigned, repeat
from step 8.

10. Repeat from step 8 wuntil all jobs have been
scheduled.

11. Ensuring that release dates are respected, compute

C]I

max » the makespan for the schedule of iteration /.

12. Do A= h+1 and repeat from step 8 while

h < niter (that is, until the number of iterations is
reached).

13. Select the schedule with min C (that is, select
h

max

the schedule with minimum makespan over all
the iterations).

Figure 2. Random-insertion algorithm for the
identical parallel machines problem

Montoya et al 266

As explained previously, Kurz and Askin [34]
derived a preemptive-type lower bound on the
makespan for each of the individual data sets
using the actual data. These authors showed that
their lower bound performs well. This lower
bound is thus computed as:

LB(PII]| rjasﬂ(| qnax) = maX{LBlaL&}
where LBl and LB2 are, respectively:

BN .
LBI:Z{Z{pﬂ— min Sﬂ(:l}

= Jeil,...,n}

LB2=max:{r:+ p:.+ min s,
A P kellom X

Results of our experimental study are hence
compared against this lower bound. Let CX be

max

the makespan obtained using the proposed
heuristic and let %2 be the value of the lower

max

bound. Hence, the performance of the proposed

heuristic was computed as the deviation from
such lower bound as:

CRI _ CLB
% dev= % x100%

max

Tables 3 and 4 present the summary of results,
respectively, with equal and unequal jobs release
dates. From these results, we can observe that
the algorithm performs well, with reference to
the percentage deviation from the lower bound
of the makespan: the average deviation,
regardless of the number of jobs, is 9.9% with
equal release dates and 12.2% for the case with
unequal release dates. These results are the first
results in literature that show the performance of
a heuristic in comparison against a known lower
bound.

In terms of the computational costs, the higher
the number of jobs, the higher the time to find a
solution. For the large instance in our tests (100
jobs), the computational time was never higher
than 12 seconds. For 10-jobs and 20-jobs
instances, the CPU time was less than 1 second.

Table 3. Results for parallel machines experiments with r, =0

machines m=3 =5

S

jobs 10 20 50 100 10 20 50 100

Avg. C 178.3 379.1 866.9 1747.2 105.0 198.8 520.1 1048.3

max

Avg cX 192.1 406.3 908.9 1792.0 122.5 252.8 560.1 1096.9

Avg. %dev | 1.7% 7.2% 4.9% 2.9% 16.7% 27.2% 7.7% 5.0%

Avg. 5.7% 14.1%
Table 4. Results for parallel machine experiments with r;> 0
machines m=3 m=15

jobs 10 20 50 100 10 20 50 100

Avg. C 217.0 433.5 866.9 1747.2 160.5 258.4 520.1 1048.3

max

Avg cX 2184 512.9 916.3 1796.2 172.2 314.2 596.5 1114.2

Avg. %dev 0.7% 18.3% 5.7% 3.2% 7.3% 21.6% 9.5% 6.7%

Avg. 27.9% 11.3%

4. CONCLUSIONS

fined in general as the time required to
prepare the necessary resource to perform a job,
add complexity for the analysis of scheduling
problems. Since the problem is NP-hard, a
heuristic algorithm was proposed.

This paper considered the problem of scheduling
jobs on both a single-machine and identical
parallel machines environments subject to
release dates and setup times. Setup times , de

267 Dyna 163, 2010

The strategy for scheduling is based on a random
insertion of jobs in the schedule.

Computational experiments were performed
using random-generated data following similar
procedures as in literature. Two main cases were
considered. The first test was carried out with
jobs having equal release dates. The second set
of tests considered non negative release dates
(r;>0). Compared against the optimal solution,

the proposed heuristic performed very well
giving schedules with a makespan value no
greater than the 10% of the optimum. In average,
the proposed procedure was between about 2%
and 6% of the optimal solution.

The computational time was less than 2 seconds
for small instances, and never higher than 1
minute for large instances (100 jobs). An
extension to the identical parallel machine
environment was also considered. Results of the
computational experiments showed that our
algorithm performs well in comparison with the
lower bound of the makespan value. The average
deviation from this bound was 9.9% with r;=0

and 12.2% for the case with r, >0, regardless of

the number of jobs.

ACKNOWLEDGEMENTS

This work was performed under research project
CEA-24-2008 supported by Research Funds
from Universidad de La Sabana, Chia,
Colombia. Authors wish to acknowledge the
anonymous reviewers for their comments that
allow improving the presentation of the paper.

REFERENCES

[1] PINEDO, M. 2008. Scheduling: Theory,
Algorithms, and Systems. Springer.

[2] OZGUR, C.O., BROWN, JR. 1995. A
two-stage traveling salesman procedure for the
single machine sequence-dependent scheduling
problem. Omega, 23, 205-219.

[3] ALLAHVERDI, A., SOROUSH, H.M.
2008. The significance of reducing setup
times/setup costs. European Journal of
Operational Research, 187, 978-984.

[4] FLYNN, B.B. 1987. The effects of setup
time on output capacity in cellular
manufacturing. International Journal of
Production Research, 25, 1761-1772.

[S] KOGAN, K., LEVNER, E. 1998. A
polynomial algorithm for scheduling small-scale
manufacturing cells served by multiple robots.
Computers & Operations Research, 25, 53-62.

[6] KRAJEWSKI, L.J., KING, B.E,
RITZMAN, L.P., WONG, D.S. 1987. Kanban,
MRP and shaping the manufacturing
environment. Management Science, 33, 39-57.

[71 LIU, C.Y., CHANG, S.C. 2000.
Scheduling flexible flow shops with sequence-
dependent setup effects. IEEE Transactions on
Robotics and Automation, 16, 408-419.

[8] TROVINGER, S.C., BOHN, R.E. 2005.
Setup time reduction for electronics assembly:
Combining simple (SMED) and IT-based
methods. Production and Operations
Management, 14, 205-217.

[9] ALLAHVERDI, A., GUPTA, JN.D.,
ALDOWAISAN, T. 1999. A review of
scheduling research involving setup
considerations. Omega, 27, 219-239.

[10] ALLAHVERDI, A., NG, C.T., CHENG,
T.C.E., KOVALYOV, M.Y. 2008. A survey of
scheduling problems with setup times or costs.

European Journal of Operational Research, 187,
985-1032.

[11] ZHU, X., WILHELM, W.E. 2006.
Scheduling and lot sizing with sequence-
dependent setup: A literature review. IIE
Transactions, 38, 987-1007.

[12] GILMORE, P.C., GOMORY, R.E. 1964.
Sequencing a one-state variable machine: a
solvable case of the traveling salesman problem.
Operations Research, 12, 655-679.

Montoya et al 268

[13] PRESBY, J.T., WOLFSON, M.L. 1967.
An algorithm for solving job sequencing
problems. Management Science, 13, B454-B464.

[14] BIANCO, L., RICCIARDELLI, S,
RINALDI, G., SASSANO, A. 1988. Scheduling
tasks with sequence-dependent processing times.
Naval Research Logistics, 35, 177-184.

[15] HE, W., KUSIAK, A. 1992. Scheduling
manufacturing systems. Computers in Industry,
20, 163-175.

[16] BARNES, J.W., VANSTON, LK. 1981.
Scheduling jobs with linear delay penalties and
sequence dependent setup times and release
dates. Operations Research, 29, 146-154.

[17] UZSQOY, R., LEE, C.Y., MARTIN-VEGA,
L.A. 1992. Scheduling semiconductor test
operations: Minimizing maximum lateness and

number of tardy jobs on a single machine. Naval
Research Logistics, 39, 369-388.

[18] TAN, K.C., NARASIMHAN, R. 1997.
Minimizing tardiness on a single processor with
sequence-dependent setup times. Omega, 25,
619-634.

[19] TAN, K.C., NARASIMHAN, R., RUBIN,
P.A., RAGATZ, G.L. 2000. A comparison of
four methods for minimizing total tardiness on a

single processor with sequence dependent setup
times. Omega, 28, 313-326.

[20] ARMENTANO, V.A., MAZZINI, R.
2000. A genetic algorithm for scheduling on a
single machine with with set-up and due dates.
Production Planning and Control, 11, 713-720.

[21] FRANCA, P.M.,, MENDES, A,
MOSCATO, P. 2001. A memetic algorithm for
the total tardiness single machine scheduling

problem. European Journal of Operational
Research, 132, 224-242.

[22] GAGNE, C., PRICE, W.L., GRAVEL, M.
2002. Comparing an ACO algorithm with other
heuristics for the single machine scheduling
problem with sequence-dependent setup times.

Journal of the Operational Research Society, 53,
895-906.

[23] CHANG, T.Y., CHOU, F.D., LEE, C.E.
2004. A heuristic algorithm to minimize total
weighted tardiness on a single machine with
release dates and sequence-dependent setup
times. Journal of the Chinese Institute of
Industrial Engineering, 21, 289-300.

[24] WANG, J.B. 2008. Single-machine
scheduling with past-sequence-dependent setup
times and time-dependent learning effect.
Computers & Industrial Engineering, 55, 584-
591.

[25] CHU, C. 1992. Efficient heuristics to
minimize total flow time with release dates.
Operations Research Letters, 12, pp. 321-330.

[26] NESSAH, R., CHU, C., YALAOUIL F.
2007. An exact method for Pm| sds,r. | Z; C,

problem. Computers & Operations Research, 34,
2840-2848.

[27] GUINET, A. 1993. Scheduling sequence-
dependent jobs on identical parallel machines to
minimize completion time criteria. International
Journal of Production Research, 31, 1579-1594.

[28] BILGE, U., KIRAC, F., KURTULAN, M.,
PEKGUN, P. 2004. A tabu search algorithm for
parallel machine total tardiness problem.
Computers & Operations Research, 31, 397-414.

[29] PFUND, M., FOWLER, J.W., GADKARI,
A., CHEN, Y. 2008. Scheduling jobs on parallel
machines with setup times and ready times.
Computers & Industrial Engineering, 54, 764-
782.

[30] SIVRIKAYA-SERIFOGLU, F., ULUSOY,
G. 1999. Parallel machine scheduling with
earliness and tardiness penalties. Computers &
Operations Research, 26, 773-787.

[31] ABDEKHODAEE, A.H., WIRTH, A.
2002. Scheduling parallel machines with a single

269 Dyna 163, 2010

server: some solvable cases and heuristics,
Computers & Operations Research, 29, 295-315.

[32] ABDEKHODAEE, A.H., WIRTH, A,
GAN, H.S. 2004. Equal processing and equal
setup time cases of scheduling parallel machines
with a single server. Computers & Operations
Research, 31, 1867-1889.

[33] WEBSTER, S., AZIZOGLU, M. 2001.
Dynamic programming algorithms for
scheduling parallel machines with family setup

times. Computers & Operations Research, 28,
127-137.

[34] KURZ, M.E, ASKIN, R.G. 2001.
Heuristic scheduling of parallel machines with

sequence-dependent set-up times. International
Journal of Production Research, 39, 3747-3769.

[35] McNAUGHTON, R. 1959. Scheduling
with deadlines and loss functions. Management
Science, 6, 1-12.

