
Dyna, Year 78, Nro. 166, pp. 118-132.  Medellin, April, 2011.  ISSN 0012-7353

THE STRUCTURE OF THE COMPUTATIONAL SIGNAL ALGEBRA 
AND ITS APPLICATION IN DIGITAL IMAGE PROCESSING

LA ESTRUCTURA DEL ÁLGEBRA DE SEÑALES 
COMPUTACIONAL Y SUS APLICACIONES EN PROCESAMIENTO 

DE IMÁGENES DIGITALES

MARLIO PAREDES
Professor, School of Science and Technology, Universidad del Turabo, Puerto Rico, USA, maparedes@suagm.edu

JORGE VILLAMIZAR MORALES
Escuela de Matemáticas, Universidad Industrial de Santander, jorge@uis.edu.co

LOLA XIOMARA BAUTISTA ROZO
Automated Information Processing Laboratory, University of Puerto Rico at Mayaguez, lola.bautista@ece.uprm.edu

DOMINGO RODRIGUEZ
Professor, ECE Department University of Puerto Rico at Mayaguez, Puerto Rico, USA, domingo@ece.uprm.edu

Received for review August 10 th, 2009, accepted October 13th, 2010, fi nal version October, 22 th, 2010

ABSTRACT: This work starts from the knowledge of the mathematical structure of the signals space used in signal processing and provides 
the development of a computational theoretical framework of signal algebra for modeling and processing applications using digital images. 
The mathematical structures were implemented over computational structures using the Java programming language as a tool for the coding 
of the algorithms. The implemented tool was called JCID (Java Computational Image Developer), which allows for one to implement 
several of the operators from the signal algebra for one-dimensional and two-dimensional signals, and the creation of new entrants through 
the composition of the basic operators.
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RESUMEN: Este trabajo se inicia a partir del conocimiento de la estructura matemática del espacio de señales usado en el procesamiento 
de señales y provee el desarrollo de un marco teórico computacional de álgebra de señales para el modelamiento y procesamiento de 
aplicaciones usando imágenes digitales. Las estructuras matemáticas fueron implementadas sobre estructuras computacionales usando el 
lenguaje de programación Java como una herramienta para la codifi cación de los algoritmos. La herramienta implementada fue llamada 
JCID (Java Computational Image Developer), la cual permite implementar varios de los operadores del algebra de señales para señales de 
dimensión uno y dimensión dos, y la creación de nuevas entradas a través de la composición de los operadores básicos.

PALABRAS CLAVE: Espacio de señales, imágenes digitales, algebra de señales, estructura matemática, procesamiento de 
señales digitales.

1.   INTRODUCTION

Digital signal processing and image processing are 
techniques used in different fi elds such as hydrology 
and medicine. Although the conditions of acquisition 
of data are completely different, most of the fi nal 
outputs displayed to a user are relatively seamless. 
Also, most of the techniques used to do processing 
in one of them is also used in the other. For example, 
applying fi lters for image enhancement is a common 
tool that is available in specialized software for either 
hydrology or medicine.

The advantage of creating a Computational Signal 
Processing System that deals with the algorithmic 
treatment of signal-based data is that, independent 
of the kind of data or its source, the data can be 
processed by standard methods established by a formal 
mathematical notation which can be translated to any 
programming language. In this work, Digital Signal 
Processing (DSP) techniques are used to represent the 
signals mathematically and get the information carried 
by them. The mathematical basis of DSP algorithms 
lies in the set theory, group theory, and algebraic 
structures concepts which can be applied to the fi elds 
of real numbers ( ) and complex numbers ( ).
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Signal algebra is constructed by using binary two-
dimensional cyclic convolution as the product 
operation that turns a linear space of two-dimensional 
finite discrete images into linear algebra. Matrix 
representations of two-dimensional cyclic convolution 
operations are represented as block circulant matrices 
with circulant blocks [1]. This is accomplished when 
fi nite discrete image object arrays, serving as inputs in 
the matrix-vector computation of the two-dimensional 
cyclic convolution operation, are transformed into 
one-dimensional column vectors by using both 
lexicographic and anti-lexicographic ordering. Special 
attention is given to the algebra of cyclic correlations 
which is related to the algebra of cyclic convolutions 
through the index reversal or refl ection operator. 
Some basic DSP concepts such as the defi nition of 
one-dimensional signal space, its algebraic structure, 
and the operators that act over this space are presented 
[2]. All these concepts are generalized later to two-
dimensional signal space.

2.   SIGNAL ALGEBRA

The mathematical concepts and results presented in 
sections 2, 3, and 4, were studied in detail in [3].

Defi nition 1: A function whose domain is a discrete set 
will be called a discrete function. Here, every discrete 
function will be called a discrete signal.

Defi nition 2: A function whose codomain is a discrete 
fi nite set is called a digital signal. If the codomain is 
the set of complex numbers, it is said that the signal 
is a complex discrete of dimension . 

Defi nition 3: Let  be a fi eld and let  and  be 
two algebras over . An isomorphism between the 
algebras  and  is a bijective function  
such that

1. ,

2. ,

for all  and all . Notice that 
the fi rst condition establishes that an isomorphism of 
algebras is an isomorphism of vector spaces which, 
in addition, preserves the products.

Defi nition 4: A circulant matrix of order  is a square 
matrix of order  of the form

 

The elements of each column (row) of  are identical 
to those of the previous column (row), but they are 
moved one position up (left) and wrapped around. So 
the whole matrix is determined by the fi rst column (or 
row). Also, it may occur that the entries move going 
down, and in this case the matrix has the form

Let  be square matrices 
each of the order . By a block circulant matrix of 
type  (and of the order ) is meant an array 
of order  which has the form

 ,

where each entry  is a circulant matrix.

Defi nition 5: The simplest relation between a fi nite-
length sequence , defi ned for 
, and its discrete-time Fourier transform (DTFT) 

 is obtained by uniformly sampling  
on the -axis between  at 
,  and it is usually written:

 ,

where . Note that  is also a fi nite-
length sequence in the frequency domain of length 
. The sequence  is called the discrete Fourier 
transform (DFT) of the sequence . According to 
the commonly used notation , we can 
rewrite the DFT of  as

.
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The inverse discrete Fourier transform (IDFT) of  
is given by

.

3.   THE SPACE OF ONE-DIMENSIONAL        
      SIGNALS

Defi nition 6: A one-dimensional signal is a function

 

An equivalent form to denote a signal is as a sequence 
of complex numbers . It is 
common to write a signal as a column vector

 

The space of one-dimensional signals is denoted by 
. This space has a vector space structure over 

the complex numbers with the sum of functions and 
the multiplication by a scalar [3]. A basis for this signal 
space is the set
,where the functions  are defi ned by 

This is the standard basis for . 

Defi nition 7: The cyclic convolution operation over 
the space of one-dimensional signals is defi ned as 
follows:

 ,

where  is defi ned by

 

The cyclic convolution has the following properties 
for  and :

1. .

2. .

3. 

4. .

With all the previous properties, the following result 
can be obtained.

Theorem 1: The space of one-dimensional signals 
 is a commutative algebra using the cyclic 

convolution as multiplication.

Now, let's represent the cyclic convolution as 
an operator over the signal space . Let 

 and , then we obtain the 
following system

,

where . This system can be written 
as , where

     and

Fixing , the cyclic convolution operation becomes a 
linear operator acting over the signals space which is 
called the cyclic convolution operator. This operator 
is denoted by  and defi ned as

 

The matrix of this operator is  which is a circulant 
matrix.

Defi nition 8: The cyclic correlation operation over 
the space of one-dimensional signals is defi ned as

 ,
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where

  is defi ned by

 .            

The following properties of the cyclic correlation 
can be proved easily. For every  
and ,

1. .

2. .

3. .

These properties provide the following result:

Theorem 2: The space of the one-dimensional signals 
 is a non-commutative algebra when the cyclic 

correlation is considered to be the multiplication 
operation.

The cyclic correlation can be expressed as an operator 
over the space of one-dimensional signals . 
Indeed, fi xing the signal  we defi ne the 
cyclic correlation operator as

 .Using 
the standard basis of  it is easy to calculate 
the matrix of the cyclic correlation 

 

Notice that, like the cyclic convolution operator, the 
matrix of the cyclic correlation operator is also a 
circulant matrix.

Defi nition 9: The refl exive operator over the space 
of one-dimensional signals is defi ned by

 where

.

It is easy to see that the matrix of the refl exive operator 
is given by

 ,

which is again a circulant matrix. The following 
theorem establishes an interesting property between 
the cyclic convolution operator, the cyclic correlation 
operator, and the refl exive operator.

Theorem 3: Let . Then 

 .

Defi nition 10: The cyclic shift operator over the 
space of one-dimensional signals is defi ned by 

 ,

where . 

The matrix representation of this operator with respect 
to the standard basis is

 

Defi nition 11: The Hadamard product over the space 
 of one-dimensional signals is defi ned as

 ,

where . 

The Hadamard product satisfies the following 
properties, for all  and ,

1. 

2. 

3. 

4. 
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Theorem 4: The space  of one-dimensional 
signals is a commutative algebra with the Hadamard 
product as multiplication.

The following theorem relates the cyclic convolution 
and the Hadamard product through the Discrete 
Fourier Transform (see Defi nition 5).

Theorem 5: If  and  are one-dimensional signals, 
then 

.

C o r o l l a r y  1 :  I f   t h e n 
.

Notice that the DFT is a homomorphism of vector 
spaces, or equivalently, a linear transformation 
between the one-dimensional space and itself,

 .

This operator has the following properties. Let 
 and . Then,

1. .

2. .

In addition, the DFT is an injective function 
because every signal has its own transform, i.e., 

.  Because of   
is a fi nite dimensional space, we can conclude the 
DFT is a bijective function. The previous theorem 
shows the DFT is a homomorphism of algebras 
between , the space of one-dimensional 
signals with the cyclic convolution operation, and 

, the space of one-dimensional signals 
with the Hadamard product operation. With all of this 
established, we can now say that:

Theorem 6: The space of one-dimensional signals 
with the cyclic convolution operation, 
, is isomorphic as an algebra for the same space of 
one-dimensional signals with the Hadamard product 

.

Theorem 7:  If  then 

.

4. THE SPACE OF TWO-DIMENSIONAL   
     SIGNALS

The space of two-dimensional signals contains all the 
functions of the form

 .

This space will be denoted by . 

A two-dimensional signal  in  can be 
represented as a matrix of size ,

 

Also, this space of signals is a vector space over the 
complex numbers with the sum of functions and the 
usual product by a scalar number. The standard basis 
for this space is denoted by

and its elements are defi ned by

A. The Algebra of Cyclic Convolutions of the order 
 over 

The vector space or signals space  is 
turned into a linear algebra, which we call a Signal 
Algebra, by introducing the vector multiplication or 
signal multiplication operation, denoted by  where 

, defi ned as

,

where 

As in the one-dimensional case, the cyclic convolution 
operation is commutative in the two-dimensional case, 
so that we have the following result:

Theorem 8:  The  space  is  a 
commutative algebra with the cyclic convolution as 
the multiplication operation. 
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In the two-dimensional case, there is also a cyclic 
convolution operator. Indeed, fixing a signal 

, we defi ne the cyclic convolution 
operator as

 .

By using the anti-lexicographic order with respect to 
the standard basis , the matrix representation of 
this operator is obtained as

,

where .  This matrix can be written as the 
circulant block matrix

,

where the blocks  are circulant matrices which 
have the form

and  

B. The Cyclic Correlation

The cyclic correlation operation, denoted by 
, over the space of two-dimensional 

signals  is defi ned as

where  is defi ned by

The cyclic correlation is not commutative but 
it satisfies the following properties: For every 

 and  we have

1. .

2. .

3. .

Similar to the space of one-dimensional signals,   
the space of two-dimensional   signals is a non-
commutative    algebra with the    operation      of    the   
cyclic  correlation.

The cyclic correlation operator is defi ned by fi xing a 
signal 

The matrix representation of this operator, using an 
anti-lexicographic order with respect to the standard 
basis, is the following circulant matrix of circulant 
blocks:

,

where the blocks  are the circulant matrices

and . 

C. The Hadamard Product

The Hadamard product over the space  
is defi ned by

where . 

Fixing a signal , we defi ne the 
Hadamard operator as

D. The Refl exive Operator

The reflexive operator over the space of two-
dimensional signals is defi ned by
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where

The matrix representation of the cyclic reflexive 
operator , using anti-lexicographic order with 
respect to the canonic basis  is the circulant matrix 
of circulant blocks: 

,

where the blocks  are circulant matrices of the form

  

   

 

and .

E. The Cyclic Shifting Operator

The cyclic shifting operator  over the 
space of two-dimensional signals  is 
defi ned as

where .

The matrix representation of this operator using an 
anti-lexicographic order with respect to the standard 
basis  of the space  is a matrix of 
circulant blocks with circulant blocks:

,

where each block  is a circulant matrix of the form

Figure 1. Matrix representation of the cyclic convolution 
operator

,

when  and , and

.

Using an anti-lexicographic order, it is possible to 
get the matrix-graphical representation of the cyclic 
convolution operator [4] as is indicated in Figure 1. 
This representation helps to visualize the matrix of 
circulant blocks with circulant blocks.

Figure 2. Matrix representation of the cyclic correlation 
operator
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In a similar way, it is possible to get the matrix-
graphical representation of the cyclic correlation 
operator, as is shown in the following fi gure:

F. Multidimensional Signal Processing

Multidimensional Signal Processing deals with the 
formulation of theoretical methods for the treatment 
of multidimensional signals in order to extract 
important information for a user. The treatment of the 
multidimensional signals is mostly of an algorithmic 
nature, which means that the treatment is for creating 
well-defi ned procedures for solving a problem in a 
fi nite number of steps. A multidimensional signal is 
any signal which admits a mathematical representation 
as a numeric function of several independent variables. 
It is important to distinguish between these signals 
and a true physical signal, which may be conveying 
information about multiple observable quantities of 
physical entities at the same time. For example, a 
true physical signal may be conveying information 
about the temperature and pressure of a physical 
entity. However, this information might not be easily 
translated into a mathematical formulation. A numeric 
function of several independent variables can be 
denoted as .

5.   DIGITAL IMAGE PROCESSING

Interest in Digital Image Processing (DIP) methods 
stems from two principal application areas such as 
the improvement of pictorial information for human 
interpretation, and the processing of image data 
for storage, transmission, and representation for 
autonomous machine interception [6].

DIP refers to processing digital images by means of 
a digital computer. A digital image may be defi ned 
as a 2-D function  where  and  are spatial 
(plane) coordinates, fi nite and discrete, as well as the 
amplitude of  at any pair of coordinates , called 
the intensity or gray level of the image at that point.

A digital image is composed of a fi nite number of 
elements, each of which has a particular location 
and value. These elements are referred to as picture 
elements, image elements, and pixels.

The number of gray levels typically is an integer power 
of 2, say  where  is the number of bits of 
quantization. When an image can have  gray levels, 

Figure 3. Spatial Representation of Images

it is common to refer to the image as a “ -bit image.” 
For example, an image with 256 possible gray-level 
values is called an 8-bit image.

The information contained in images can be 
represented in different ways, with the spatial and the 
frequency representation being the best known. Spatial 
representation refers to the representation of images as 
two dimensional (2D) arrays, in which each element 
of the matrix is called a pixel. For this representation, 
the matrix notation is commonly used. Figure 3 shows 
an example of a spatial representation of a very 
simple image of a unitary impulse. Black pixels are 
represented by zeros  and  the   white pixels by ones. 
In  the  lower  left  side  appears  the 3D representation 
of the unitary  impulse. If the image contains  
pixels, it is represented by an  matrix. The 
representation in the frequency domain of a digital 
image is obtained by applying the Discrete Fourier 
Transform (DFT) to the matrix representing the image.

Gray scale images were used in this research. In this 
type of images, intensities of pixels are shades of 
gray ranging from black to white. This can be viewed 
clearly in Figure 4. One of the problems confronted 
is to fi nd the appropriated range of gray values to 
graphically represent the output from the signal 
operators, especially if those outputs are negative 
numbers. Jahne [5] gives an approach to solve this 
problem as follows: Each pixel in images of 256 gray 
values occupies 8 bits, which causes negative pixels to 
take large positive values.  “In an 8-bit representation, 
it is possible to convert unsigned numbers into signed 
numbers by subtracting 128:

.
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Figure 4. Grayscale Image

Essentially, gray values are regarded in this 
representation as a deviation from a mean value. 
In order to have a better display on the screen, 
the gray values must be converted again to 
unsigned values by the inverse point operation”: 

.

At this point, we will present a list of the implemented 
operators in JCID (Java Computational Image 
Developer). The classifi cation was done according to 
the functionality of the operators.

1) Point Operators: These operators are used to 
modify the gray values at specifi c pixels. They can be 
applied to correct the  image illumination and contrast 
enhancement: Absolute Value, Clamp, Color Convert.

2) Arithmetic Operators: The basic operations that 
could be done over images include sum, subtraction, 
multiplication, and division.

3) Spatial Operators: The function of these operators 
is to modify the position of the pixels:

• Crop. The operator cuts a portion of the image given 
the width and height of the section to be cropped.

• Resizing. The operator transforms the image by 
adding or subtracting pixels.

• Flipping. The operator makes a mirror of the image 
in a vertical or a horizontal direction.

4) Convolution Operators: These operators are based 
on the convolution operation of image processing: 
Sharpening, Blurring, Embossing, and Edge Detection.

5) Filtering Operations: These operators are also 
based on the convolution operation and are mostly 
used for image enhancement, highlighting, or hiding 

features of the image: Low-pass, High-pass, Laplacian, 
Gaussian, and 2-D Fourier Transform.

6) Complex Operators: These operators have been 
implemented especially for those images whose pixels 
are complex numbers: Cyclic Convolution, Cyclic 
Correlation, Conjugate, Phase, Hadamard Product, 
and Shifting.

6.  WEB-BASED COMPUTATIONAL IMAGE  
     PROCESSING

A.  Software Tools used for Implementation

The implementation of all the components of the system 
was done using the programming language Java. It was 
chosen because of the following features [6]:

It is object-oriented, which means that the programming 
of the state and behavior of a system is done by 
programming the state and behavior   of   the   objects  
that  compound  the system.

It is platform-independent, or capable for running 
on different platforms such as Windows, Linux, or 
Macintosh.

It is the most common programming language for 
web applications because it is the foundation of many 
developing frameworks.

Between the several development projects of the 
Java community, there are two important API’s 
specialized for the treatment of images. The fi rst 
one is the Java Advanced Imaging API, a set of 
interfaces for manipulating images, and Java Image 
I/O API which provides the management of image 
fi les stored in a local fi le system or distributed across 
the network [6]. Considering that it was assumed 
that the input data are complex signals, meaning that 
each sample is a complex number (formed by a real 
number and an imaginary number), an open source 
library of operations that supports complex numbers 
was acquired. This library is called Flanagan's Java 
Library (fl anagan.jar), created by Dr. Michael Thomas 
Flanagan from the University College London. It 
includes basic arithmetic operations of complex 
numbers (addition, subtraction, multiplication, and 
division), trigonometric operations, and special 
mathematical functions.

For the implementation of the web environment, 
Java Server Faces, commonly known as JSF, was 
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chosen. JSF is a project from the Java Community 
Process [7] whose applications are standard Java Web 
Applications, for which JSF defi nes three layers: a 
component architecture which defi nes a common way 
to build user interface (UI) widgets, a standard set 
of UI widgets (such as text boxes, list boxes, tabbed 
panes, and data grids), and an application infrastructure 
which uses an HTTP protocol for communication via 
the Servlet API, it uses JavaServer Pages (JSP) as its 
display technology, and it uses JavaBeans for exposing 
properties and event handling [8].

Many distributions of JSF from different companies  
such as Oracle, IBM, and Apache Project, exist.  
In  this  paper,  the open source implementation of 
JSF developed by Apache Project, called MyFaces, 
was used. Apache Tomcat was used as the servlet 
container which is used in the “offi cial Reference 
Implementation for the Java Servlet and JavaServer 
Pages technologies, providing an environment for Java 
code to run in cooperation with a web server.” Tomcat 
is cross-platform, running on any operating system 
that has a Java Runtime Environment.

The JFree Chart is a free Java chart library that makes 
it easy for developers to display professional quality 
charts in their applications. This library consists of an 
API that supports a wide range of chart types, a fl exible 
design that is easy to extend, and targets both server-
side and client-side applications.  It is distributed 
under the terms of the GNU Lesser General Public 
License (LGPL), which permits its use in proprietary 
applications.

B. Object-Oriented_based Signal Operator Approach

Object-Oriented programming (OOP) is a 
programming paradigm that uses “objects” to 
design applications.  “An object is a kind of self-
suffi cient entity that has an internal state (the data 
it contains) and that can respond to messages (calls 
to its subroutines). The OOP approach to software 
engineering is to start by identifying the objects 
involved in a problem and the messages that those 
objects should respond to.  The program that comes 
out of it is a collection of objects, each with its own 
data and its own set of responsibilities. “The objects 
interact by sending messages to each other” [9]. The 
Object-Oriented-Based Signal Operator Approach 
(OOSO) is a methodology used for modeling aspects 
of the Computational Information Processing (CIP) 
Framework, which comprises the set of inputs, the set 
of outputs, and the rules of composition.

1) Data Input Structures: The CSP system has two 
basic structures of data input. The one-dimensional 
(1-D) signals of dimension  and the two-dimensional 
(2-D) signals of dimension . A 1-D signal is 
represented mathematically as a sequence of samples 
like this:

.

Graphically, this sequence can be seen as a 1-D array, 
or as a vector data structure:

Figure 5. A 1-D signal represented as vector

A (2-D) signal is represented mathematically as an 
 matrix. Graphically, this can be seen as a 2-D 

array data structure, as presented in Figure 6.

Figure 6. A 2-D signal represented as matrix

Making an extension to OOP, both the 1-D and the 2-D 
signals each represent a class with its own attributes 
and methods. Figure 7 illustrates the attributes that 
identify each class.

Figure 7. Class Diagrams of 1-D and 2-D signals
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For 1-D signals, the class has been called Signal. The 
attribute complexSignal of Complex[ ] type is a vector 
that contains the complex samples read from the data 
fi le. If the data are just real numbers, the imaginary 
part of each sample of the complex array is set to be 
zero. Each element of the array is an object of the 
class Complex from Flanagan’s jar library. Figure 8 
shows the class diagram of the Complex class. For each 
loaded signal there is a List of all the transformations 
resulting from the action of the operators over the 
signal. This   list   is represented by the attribute   
transformedList   of the Signal class.

Figure 8. Class Diagrams of the Complex class

The class of 2-D signals has been called ImageJCID. 
The attribute of RenderedImage type represents the 
image as a grid of pixels. Images in .jpg, .gif, .bmp, and 
.tiff formats are easily loaded in this type of data. With 
this representation, it is possible to obtain the values 
of the pixels as 2-D arrays, with int data type or as a 
matrix of complex numbers of type Complex[ ][ ]. As 
in the 1-D case, each image has its corresponding List 
of images that come from the action of the operators.

2) Operator Structures: Operators are systems able to 
transform an input signal to produce an output signal. 
For the CIP, they were classifi ed in unary operators and 
binary operators. Unary operators take only one signal 
on the input and produce one signal on the output. 
Figure 9 shows an example of a unary operator such 
as the Discrete Fourier Transform, and an example of 
a binary operator such as addition. 

Such a distinction of the unary and binary operators 
apply to both 1-D signals and 2-D signals. Figure 10 is 
the class diagram for both kinds of operators. The set 
of implemented operators is divided into two groups: 
the OneDimOperators used to transform 1-D signals, 
and the TwoDimOperators used to transform 2-D 
signals. Each group is classifi ed as UnaryOperator or 
BinaryOperator, which in turn, are composed of all 
the different operators that fi t into to each category.

Figure 11. Class Diagram of the Action of Operators on 
Signals

Figure 9. Example of Unary and Binary Operators

Figure 10. Class Diagrams for Operators

So, the relationship of the transformation of the 
Operator classes on  the Signal classes can be seen 
in Figure 11.

C. Web Application Architecture

A web application could be defi ned as a web system 
where user input (navigation and data input) affects the 
state of the logic of the system. The basic architecture 
of a web application includes browsers, a network, and 
a web server. In [10] Conallen also states that “a web 
application uses a web site as the front end to a more 
typical application.” Figure 12 shows the relationship 
between the main components of a web application.
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Figure 12. Components of a Web Application

The connection between the client and server only 
exists during a page request. Once the request is 
complete, the connection is broken. All the activity on 
the server occurs during the page request [10].

The client/server architecture has been one of the most 
used network architectures to build web applications. 
In this architecture, the client is the requester of 
services and the server is the provider of such services. 
The client could be interpreted as a desktop application 
installed on several numbers of workstations, which 
make requests to a single application installed on the 
server. This kind of interaction is known as two-tiered 
architecture.

D. Multired Applications

Though many variations are possible, a web application 
is commonly structured as a three-tiered application, 
which is the most common example of multi-tier 
architecture. In its most common form, a web 
browser is the fi rst tier, an engine created using some 
dynamic web content technology (e.g., CGI, PHP, 
Java Servlets, or Active Server Pages) is the middle 
tier, and a database is the third tier. The web browser 
sends requests to the middle tier, which services 
them by making queries and updates on the database 
and generating a user interface. Figure 13 shows 
the interaction between the three elements of this 
architecture. 

Figure 13. Three-Tier Architecture

In three-tier applications, the Presentation tier never 
communicates directly with the Data tier. Additional 
to this confi guration, another component has been 
added by the Model-View-Controller (MVC) design 
pattern. This pattern inserts an intermediate component 
called the controller, which is located between the 
Presentation tier and the Logic tier. The function of 
the controller is to process and respond to events, 
typically user actions, and it invokes changes on the 
model [11]. Figure 14 illustrates the standard Model-
View-Controller Architecture.

Figure 14. Model-View-Controller Architecture

In section 5, it was explained that JavaServer Faces 
was chosen to implement this architecture for the 
web-based computational signal processing. This 
development framework also uses the J2EE (Java 
Platform, Enterprise Edition) framework of Java 
Sun Microsystems. “The J2EE platform offers a 
multi-red distributed application model, reusable 
components, a unified security model, flexible 
transaction control, and web services support 
through integrated data interchange on Extensible 
Markup Language (XML)-based open standards 
and protocols” [11]. In the context of the web-based 
computational signal processing system, the basic 
structures of the set of multidimensional signals and 
the set of implemented operators reside in the Model 
tier of the MVC model. They are invoked by the 
FacesServeletContext instance of the Controller tier. 
The next section explains in more detail how each 
one of the modules that compose the environment 
was developed.

7.   JCID: JAVA COMPUTATIONAL IMAGE  
      DEVELOPER

In order to demonstrate the functionality of the theory 
presented in section 1, it was necessary to implement 
an application that could help scientists that work 
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with multidimensional signals [12]. This application 
was named JCID:  Java Computational Image 
Developer. At fi rst, it was thought that this tool would 
only process 2-D signals, specifi cally signals that 
could be represented as images, but in an advanced 
stage of the development of the project, the alternative 
of also processing 1-D signals was considered, since 
some raw data in this dimension was available to the 
research group.

This application is part of the general project 
“WALSAIP:  Wide Area Large Scale Automated 
Information Processing” of the Institute for 
Computing and Informatics Studies of the Department 
of Electrical and Computer Engineering. The 
following research groups participate in this project:

The Advanced Data Management Group (ADMG)

The Automated Information Processing Group (AIPG)

The Human Computer Interfaces Group (HCIG)

The Hydro-Ecological Research Group (HERG)

The Network Communication Infrastructure Group 
(NCIG)

The Parallel and Distributed Computing Group 
(PDCG)

The technological infrastructure of this project is 
composed by a set of 7 servers, each one with 28 disks 
of 300 Gigabytes, and each research group has at least 
one of the servers. This infrastructure belongs to the 
network core of the INEL/ICOM department which 
acts as an intermediate between the internal network 
and the exterior world (the Internet and another 
dependencies of the UPRM). Figure 15 represents  a   
scheme   of   this  infrastructure.

Figure 15. Infrastructure of WALSAIP Project

Figure 16. Jobos Bay Reserve

The development of the JCID application was done 
in two phases. In the fi rst phase, a stand-alone version 
was developed in order to make a “proof of concept” 
of the implemented operators and the integration in 
a graphical user interface. The second phase was the 
implementation as a web application, making use of 
the network infrastructure described above.

In the design of the application some rules of Usability 
Engineering and Human Computer Interaction were 
taken into account in order to provide a user friendly 
interface that facilitates the work of the scientists. 
Figure 17 is a screenshot of the graphical user interface 
of JCID.

Figure 17. Graphical User Interface of JCID

The WALSAIP project has an agreement with the 
Jobos Bay Reserve, a dependency of NOAA located 
in the municipality of Salinas in Puerto Rico, 
dedicated to the monitoring of the hydrological and 
ecological factors of the coastal zone. In that reserve 
some environmental sensors have been set which 
are collecting information which is being stored in a 
database. Figure 16 shows a picture of the resources 
shared by the Jobos Bay Reserve and the UPRM.
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In the menu bar of JCID appear the operators available 
to process the signals. The operators were classifi ed 
by the type of functionality, for instance, performing 
arithmetic operations over the signals. Also, there is a 
menu of arithmetic operators, like addition, subtraction, 
multiplication, division, exponential, and logarithmic. 
If a user is working with an image and wants to enhance 
it, there is a menu of fi ltering operators, like edges 
detection, low pass fi lter, high pass fi lter, etc. The user 
can apply a sequence of operators over the signal, and 
once an optimal result is obtained, the sequence can 
be encapsulated in a new operator in order to avoid 
the repetition of steps in another session which helps 
the user to make a repository of his/her own operators. 
Figure 18 illustrates how the sequence of actions is 
presented to the user.

Figure 18. Encapsulation of Operators

In the right panel of the figure the sequence of 
operators appears represented as thumbnails of the 
obtained results. At the end of the sequence, there is 
a command button to execute the encapsulation of 
the sequence.

In Figure 19 the dialog windows where the list 
of operators appears which a user may want to 
encapsulate, and a small editor can be seen, if the user 
wants to add more functionalities to the new operator. 
The operators Dilation and Erosion that appear in the 
Morphological Operators menu were implemented 
using the connection between MatLab and Java using 
the JLab library, described in section 3.2. The operator 
of the Short Time Fourier Transform (STFT) was also 
deployed with the Javabuilder toolbox, and it was 
made by using a trial version of the toolbox.

Between other functionalities of JCID, there is an 
interface to connect to the database that collects the 
data from the sensors. This interface helps to make 
queries according to the time interval the user wants to 
analyze. Results of the queries are stored in fi les of data 

Figure 19. Edition and Compilation of new Operators

and metadata. Data fi les contain the measurements of 
the sensors, and metadata fi les contain the information 
related to the sensor, its location, and the settings for 
the sampling of the data. Figure 20 shows a screenshot 
of the interface.

Figure 20. Connection with the sensors Database

Since it was considered that a user could have data fi les 
in other servers o workstations in the network, an open 
source application was integrated into JCID that allows 
one to open an FTP connection. This application is   
called J-FTP, developed by JMethods Inc. Figure 21     
is a screenshot of J-FTP.

Figure 21. FTP connection using J-FTP
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The web version of JCID has been deployed in the 
WALSAIP server of the project. It contains the same 
functionalities that were developed in the stand-alone 
version. In order to conserve the same graphical 
confi guration of the stand-alone, the user interface 
of the web version was coded with JavaServer Faces 
using the tag libraries released in the MyFaces 
distribution of Apache Project. Figure 22 is a display 
of the web version.

Figure 22. Graphical User Interface of Web-JCID

8.   CONCLUSIONS

This research fits into the development of a 
computational signal algebra framework for modeling, 
simulation, and processing applications using digital 
images. The Computational Signal Processing 
Environment has been designed to be a useful tool for 
geologists, hydrologists, and scientists in related areas. 
It provides a friendly access to basic and advance 
operators, with encapsulation capabilities. One of 
the most important features of the environment is the 
portability offered by Java implementation, which 
also facilitates the availability of deploying the source 
code for potential users and developers. Finally, the 
integration of Java with scripting languages like 
MatLab diminishes the time consumed in coding and 
provides a better tool for scientists who do not have   
experience    in programming languages.
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