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ABSTRACT: Currently, thanks to global positioning systems technologies and mobile devices equipped with sensors, a lot of data about moving 
objects can be collected, e.g., data related with the trajectories which are followed by these devices. On the other hand, Data Warehouses (DWs), 
usually modeled by using a multidimensional view of data, are specialized databases used to support decision-making processes. Unfortunately, 
conventional DWs offer little support for managing trajectories. Although there are some proposals that deal with trajectory DWs, none of them 
are devoted to conceptual multidimensional modeling. In this paper, we extend a conceptual spatial multidimensional model by incorporating a 
trajectory as a fi rst-class concept. In order to show the expediency of our proposal, we illustrate it with an example related to public transportation.
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RESUMEN: Actualmente, gracias a tecnologías como los sistemas de posicionamiento global y dispositivos móviles provistos de sensores, 
se puede recopilar una gran cantidad de datos sobre objetos móviles, e.g., datos relacionados con la trayectoria seguida por estos objetos. Por 
otra parte, las Bodegas de Datos (BDs), usualmente modeladas mediante una vista multidimensional de los datos, son bases de datos espe-
cializadas para ayudar en la toma de decisiones. Desafortunadamente, las BDs convencionales ofrecen poco soporte para la gestión de tra-
yectorias. Aunque existen algunas propuestas que tratan con BDs de trayectorias, ninguna de ellas se enfoca en su modelamiento conceptual 
multidimensional. En este artículo se extiende un modelo conceptual multidimensional espacial donde se incorporan las trayectorias como 
conceptos de primera clase. Con el fi n de mostrar la conveniencia de la propuesta, se presenta un ejemplo relacionado con transporte público.

PALABRAS CLAVE: Bodegas de datos, modelos multidimensionales, modelamiento conceptual, objetos móviles, trayectorias.
1.    INTRODUCTION

In the last decade, Data Warehouses (DWs) [1], 
[2] have proven their usefulness as systems for 
integrating information and supporting the decision-
making process. DWs are usually modeled using 
a multidimensional view of data [3], [4], [5]. A 
dimension represents a business perspective useful 
for analyzing factual data. For example, in a taxi 
company, dimensions such as Time and Taxi can 
be used to analyze taxi journeys. A dimension is 
organized in a hierarchy of levels to enable the data 
analysis at various levels of detail [6], [7], e.g., 
in our Time dimension, there exists a hierarchical 
relationship among days, months, and years; and in 
our Taxi dimension, taxis and fuel types also exhibit 
a   hierarchical relationship, see Figure 1.

Conventional DWs mainly manage alphanumeric data; 
Figure 1. A  conventional multidimensional model for 

analyzing taxi journeys
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however, in recent years DWs have been enriched, e.g., 
with spatial data that can be useful to discover patterns 
that otherwise would be diffi cult to recognize [8], [9], 
[10], [11], [12], [13]. Support for temporal data has 
also been incorporated in DWs, for a recent survey see 
[14] (although DWs include a Time dimension, this 
dimension is not oriented to keep track of changes in 
other dimensions [13]; therefore, additional temporal 
support is required).

On the other hand, with the advance of technologies 
such as sensors and global positioning systems, 
other types of data are becoming available in huge 
quantities, e.g., trajectory data about the movements 
of people, animals, vehicles, ships, and airplanes. 
“The concept of trajectory is rooted in the evolving 
position of some object travelling in some space during 
a given time interval” [15]. This defi nition entails 
the spatiotemporal nature of a trajectory. We believe 
that the incorporation of this new type of data into a 
DW can help decision makers to discover interesting 
spatiotemporal behaviors. 

In this paper, we extend a conceptual spatial 
multidimensional model by incorporating a trajectory 
as a fi rst-class concept. To the best of our knowledge, 
our proposal is the fi rst one devoted   to   this issue.   
Although   there    are specialized   works related with 
trajectory DWs [16], [17], [18], [19]   none  of    them  
is devoted to conceptual modeling. They focus on 
operators   for   analyzing    trajectory data. Some   of    
them [16], [17], [19] also    address ETL   (Extract,   
Transform,   and   Load)  issues.

On the other hand, there are a few proposals [15], [20]  
that  address  conceptual  modeling of  trajectories 
but in a non-multidimensional context. In [15], 
two non-multidimensional conceptual modeling 
approaches for trajectories of moving points are 
proposed. The fi rst one uses a design pattern, i.e., 
a predefi ned schema that can be adjusted to meet 
specifi c trajectory requirements. The second one uses 
dedicated trajectory data types equipped with a set 
of methods to manipulate trajectories. Methods can 
be added to the data types to meet specifi c trajectory 
requirements. In [20], the authors present a specialized 
non-multidimensional model for a traffi c management 
system, focusing on trajectories, vehicles, and roads.

The paper is organized as follows: In Section 2, we 
present a motivating example. In Section 3, we discuss 
trajectories and their components, and introduce our 

multidimensional trajectory modeling approaches. 
Finally, in Section 4, we conclude  the  paper  and  
outline future research.

2.   MOTIVATING EXAMPLE

Consider a taxi company that needs to analyze its daily 
taxi journeys. Taxis are classifi ed according to fuel 
type, e.g., gasoline, compressed natural gas (known 
as CNG), or E85 (85% bioethanol and 15% petrol). 
Data about the total number of passengers, the total 
number of gallons of fuel consumed, and the total fares 
collected by a taxi during a working day, are recorded. 
A multidimensional model to represent this scenario is 
shown in Figure 1. To represent our multidimensional 
models, we use basic notations from [13] based on the 
entity-relationship graphical notations. Note that, since 
the cardinality of every level (rectangles) participating 
in a fact relationship (grey diamond) is zero-to-many 
(crowfoot connector), such cardinalities are omitted 
[13]. A sample data of Taxi_journeys   fact relationship   
is   shown  in  Table 1.

Table 1. Sample data of Taxi_journeys fact relationship
Dimensions Measures

Taxi Day #Passen-
gers

#Gallons_
consumed

Fare 
($)

Tx1 2008-Jan-01 25 12 500
Tx1 2008-Jan-02 20 11 600
Tx2 2008-Jan-01 31 12 450
Tx2 2008-Jan-02 30 13 400

The Taxi_journeys fact relationship facilitates data 
analysis. For example, analysts can formulate queries 
such as: What is the total number of gallons consumed 
monthly by fuel type? What are the days of the week, 
when, on average, more passengers were transported 
in 2008? What are the top three most profi table taxis 
in each month, where could profi tability be computed 
based on fuel consumption and taxi fares? These 
queries can be solved using current OLAP tools.

However, suppose that the taxi company also records 
information about the routes followed by the   taxis   
during  a  day, i.e.,  their  trajectories. 

In order to track a taxi’s trajectory, a sensor sends 
several data packages. Each data package contains 
information about the position of the taxi at a specifi c 
moment, along with other information, e.g., weather 
conditions, the speed and fuel level (if the taxi is 
moving), the number of gallons of fuel purchased 
(if the taxi stopped to fi ll up), the fare (if the taxi 
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completed a ride).

This information enables trajectory data analysis. For 
example, given a set of taxi trajectories, analysts  could  
formulate  the following queries:

i) Find the common points of the taxi trajectories 
that occurred in the previous month. For that 
purpose, spatial and temporal thresholds could 
be considered: two taxi trajectories could have 
points separated just for one or two blocks and 
their trajectories could be separated in time for at 
most two hours. In practice, such points could be 
considered common, see Figure 2,

ii) Give a quantitative indicator of similarity [21] of 
the taxi trajectories that occurred on business days 
and that use gasoline, e.g., how similar in shape is a 
set of trajectories, see Figure 3, direction, average 
speed, or profi t (where the trajectories’ profi ts 
could be calculated based on gallons of gasoline 
purchased and taxi fares), 

F igure 2. Two trajectories considered common within 
specifi c temporal and spatial thresholds

iii) Compose a larger trajectory, see Figure 4. For 
example, we could put together all of the trajectories 
of a taxi during January 2008 and generate a single 
trajectory for this same month, and

F igure 3. Two trajectories similar in shape

 Figure 4. Assembling two trajectories. We assume that 
the object moves along a straight line from End1 to 

Begin2 at a constant speed

iv) Find the number of taxi trajectories that intersect 
a given region, e.g., the downtown area, during 
the day. This number is called presence [16], [17], 
see Figure 5.

F igure 5. Three trajectories, two of them passed through 
region R during the same day

The answer to these questions could help to identify, 
e.g., profi table routes, regions of intense traffi c,  points  
to  place speed controls and taxi stations.

3.   TRAJECTORIES

A trajectory is the record of the evolution of the 
location of an object that is moving in space during 
a specifi c interval [t1, tn] [15]. This interval can be 
defi ned by the user or be application-dependent, e.g., 
we could consider daily or weekly trajectories for a 
taxi. The defi nition of trajectory allows for an object 
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a simple or a complex geometry, see Figure 8. For 
example, Figure 7 (b) represents the trajectory of a 
moving point (e.g., a taxi); Figure 7 (c), the trajectory 
of a moving line (e.g., a train); Figure 7 (d), the 
trajectory of a moving region (e.g., a hurricane, an 
oil spill); and Figure 7 (e), the trajectory of a moving 
group of regions (e.g., a group of clouds). 

F igure 8. Notations for: a) simple geometries and b) 
complex geometries. Source: [13], [27]

F  igure 7. Notations for a trajectory of a moving: a) 
generic geometry, b) point, c) line, d) region, and e) 

group of regions

In order to specify types of observation and their 
corresponding semantic fi elds, we propose the notation 
shown in Figure 9. Note that each observation type 
implicitly includes the object’s location (in accordance 
with the geometry associated with the trajectory) 
and its corresponding timestamp. For example, 
consider the icon of Figure 7 (b), an instance of an 
observation type of this trajectory is represented as 
((x, y), t, semantic fi elds). Now consider Figure 7 (c), 
an instance of an observation type of this trajectory is 
represented as ((p1, p2), semantic fi elds) where p1 and 
p2 are points that defi ne, e.g., a straight line.

to make several trajectories during its lifespan, each 
with its specifi c interval. The trajectories of an object 
are disjoint and are not necessarily consecutive in time. 

We represent a trajectory T  as a sequence of 
observations (generated by a sensor), i.e., time-
stamped locations that can include complementary 
semantic data about the trajectory. T = <o1, o2, …, on> 
where each oi = (li, ti, si), i.e., the travelling object is at 
location li at time ti (ti < ti+1) and semantic data si can 
be associated with each observation. 

Note that for a moving region, the projection on the 
plane of its trajectory locations gives us its traversed 
area [22]. On the other hand, for a moving  point, the  
projection  on the plane of its 

trajectory locations gives us its route [23], [24]. For 
simplicity, we restrict the discussion hereafter on 
moving points. Unless more information becomes 
available, the object is assumed to move along a 
straight line from location (xi, yi) to location (xi+1, yi+1) 
[22]. Figure 6 shows the trajectory of a moving point 
with four  observations  and  its  corresponding  route.

Note that we attach semantic information to trajectories, 
which is of fundamental importance for their analysis 
[25], [26]. However, not necessarily the same type of 
semantic data is included in all of the observations. For 
example, let us consider a taxi trajectory: when the taxi 
stops to fi ll up, we could collect data about the number 
of gallons of fuel purchased, when the taxi stops to 
pick up passengers we could collect data about the 
fare, and when the taxi is moving we could collect data 
about its speed and fuel level. Therefore, depending 
on the requirements of a particular application, 

F igure 6. Trajectory of a moving point

trajectory observations can be classifi ed into types. 
In the previous example, we could defi ne three types 
of observation: fi ll-ups, pick-ups, and moves. There 
could be some semantic data common to all or just 
some of the types of observation defi ned. For example, 
data about weather conditions could be included in the 
three types of observation previously defi ned.

To represent a trajectory in our multidimensional 
model, we propose the icons of Figure 7. Figure 7 (a) 
represents the trajectory of a moving generic geometry 
Geo. A Geo can be replaced by 
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F igure 9. Representation of types of observation: a) a 
trajectory of a moving point with n types of observation, 
b) a taxi trajectory with three types of observation, and c) 

instances of types of observation of b)

Although this solution is natural and compact, it has 
some drawbacks: i) the aggregate functions must deal 
with multivalued measures which could prevent their 
use in current OLAP systems, ii) the handling of the 
relationship between the observations’ timestamps 
and the time dimension is required in order to enable 
time hierarchy navigation, because these implicit 
timestamps are not connected to a time level, e.g., 

In the following section, we incorporate a trajectory 
into a multidimensional model. To facilitate this 
task, we propose two modeling approaches: 
composed multivalued timestamped measures,     and        
composition  of  facts.

3.1  Composed multivalued timestamped measures

Continuing with the example of taxi trajectories, we 
classify taxi observations into three types: fi ll-ups, 
pick-ups, and moves. The following semantic data is 
associated with them: stopping time and number of 
gallons of fuel purchased with fi ll-ups, stopping time 
and fare with pick-ups, and fuel level and speed with 
moves. Note that we consider observations to be sensor 
snapshots. In this example, we assume a minute to be 
the temporal granularity of an observation.

We defi ne a Taxi_journeys fact relationship, see Figure 
10. Observations are represented by three composed 
multivalued time-stamped measures: Fill_up, Pick_up, 
and Move. Table 2 shows sample   data   of the Taxi_
journeys fact relationship.

Table 2. Sample data of Taxi_journeys fact re
Dimensions Measures 

Taxi Day Taxi_trajectory #Passen- 
gers 

#Gallons_ 
consumed 

Tx1 2008-Jan-01              { 
              ((10, 95), 2008-Jan-01  
                7:10, 2 gal, 50 kmh), 
              ((10, 80), 2008-Jan-01  
                 7:20, 8 min, 3 gal), 
              ((12, 70), 2008-Jan-01  
                 8:30, 2 min, 30 $), 
                … 
              } 

25 12 

Tx1 2008-Jan-02              { 
              ((30, 75), 2008-Jan-02  
                7:20, 2 gal, 80 kmh), 
              ((25, 65), 2008-Jan-02  
                8:30, 1 gal, 40 kmh), 
              ((20, 50), 2008-Jan-02  
                8:50, 10 min, 4 gal), 
               … 
             } 

20 11 

 

A fill-up 

A pick-up 

A move 

A move 

A fill-up 

A move 

minute (dimension levels can be connected to fact 
relationships, but not to measures), and iii) time 
consistency checks are required, e.g., the observations’ 
timestamps must “rollup” to the same day associated 
with their taxi journey, and the timestamp of an 
observation cannot intersect the interval made up by 
the timestamp of any fi ll-up (or pick-up) observation 
plus its stopping time. In order to overcome some of 
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Figure 11. A multidimensional model for analyzing taxi 
trajectories using the composition of facts

Table 3. Comparison of our trajectory modeling approaches
Trajectory Composed multivalued 

timestamped measures
Composition of facts

Representation Trajectories are explicitly represented and play the role of a 
measure.

Trajectories are explicitly represented and play the role of a 
derived measure. 
A type of drill-across operation is required to combine the obser-
vations of a trajectory. 

Aggregation Operators for trajectory aggregation could be used. 
Parts of the trajectory (observations) can also be aggregated. 
Aggregate functions must deal with multivalued measures. 

Operators for trajectory aggregation could be used. 
Parts of the trajectory (observations) can also be aggregated.

Observations Types of observation are represented in a compact and natu-
ral way in just one fact relationship. 
The observations’ timestamps cannot be connected to a 
time level, implying additional time consistency checks and 
navigational capabilities.

A fact relationship is created for each observation type. If the 
number of types of observation is high, it results in a proliferation 
of fact relationships.
The observations’ timestamps are connected to a time level, 
enabling time hierarchy navigation.

these diffi culties, we propose an alternative modeling   
approach in the following subsection.

3.2 Composition of facts

We defi ne four fact relationships: Taxi_journeys, 
Fill_ups, Pick_ups, and Moves; see Figure 11. In this 
approach, the Taxi_trajectory measure is derived from 
the fact relationships Fill_ups, Pick_ups, and Moves, 
that represent the trajectory observations. A derived 
measure is generated from other measures and is 
indicated by preceding its name with a slash (/). 

Each taxi journey includes a set of observations; to 
represent such a composition we propose a dotted 
relationship, see Figure 11. A composition such as this 
implies that if a taxi makes a journey on a day (e.g., 

Figure 10. A multidimensional model for analyzing taxi 
trajectories using composed mu ltivalued timestamped measures

2008-Jan-01), there   must    be a  non-empty set of 
observations associated with this journey. In addition, 
the minute values of those observations must   rollup   
to  the   same   day  (2008-Jan-01).

This approach, unlike the previous one, does not 
require the handling of multivalued measures, and the 
observations’ timestamps are explicitly connected to a 
time level, enabling time hierarchy navigation. 

However, this solution also has some drawbacks: i) an 
operation that relates fact relationships is required in 
order to combine a taxi journey with its observations, 
i.e., a type of drill-across operation [28], and ii) the 
handling of several fact   relationships   can become 
complex, e.g., for the formulation of queries. Because 
a fact relationship is created   for each observation 
type,   if   the   number   of types of observation is high, 
we would have to deal with a proliferation   of   fact  
relationships. In Table 3, we compare our trajectory 
modeling approaches.



Moreno and Arango148

4.   CONCLUSIONS AND FUTURE WORK

We proposed a notation for representing trajectories 
as a first-class concept in a conceptual spatial 
multidimensional model. We stressed the semantic 
nature of a trajectory by classifying its observations 
in accordance with their semantic data. Two modeling 
approaches were   presented.   The   fi rst   one is based 
on composed   multivalued measures. The second one  
is based on the composition of facts relationships. 

A preliminary judgment suggests that the fi rst approach 
could be more suitable than the second one when the 
number of types of observation is high. However, 
other criteria, such as the handling of aggregation, 
implementation issues, performance, and storage, 
among others, must be considered in order to evaluate 
both approaches.

For future work, we plan on transforming our 
conceptual model into a logical one. From a physical 
point-of-view, a related issue is how to store and 
effi ciently retrieve a trajectory in a multidimensional 
context. Data structures and indexing schemes must 
be designed for this purpose. We also plan to develop 
a query language in order to express analytical 
trajectory queries, such as the ones of Section 2. 
Operators related to trajectory aggregation should also 
be addressed. The works of [16], [17], [18], [19] are 
starting points for these issues.
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