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ABSTRACT: This article presents a new method for detecting moving objects in fixed cameras that undergo unexpected motion due to 
vibration. In our approach, the vibration is automatically compensated for using a dynamically-selected set of trackable features, computing 
frame-to-frame homographies while preventing numerical degeneracy. One of the most noteworthy characteristics of our method is its ability 
to withstand occlusions. The robustness of the method is demonstrated in situations where a monitoring camera is subject to vibrations 
due to inclement weather conditions, such as rain or wind, or other outdoor operating conditions, including vehicles passing nearby. 
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RESUMEN: Este trabajo se presenta un nuevo método para detectar a los objetos en movimiento cuando la cámara es afectada por 
vibraciones. En la propuesta, las vibraciones son compensadas mediante una selección dinámica de características seguibles. Dichas 
características son utilizadas para estimar una transformación homográfica entre cada par consecutivo de imágenes, mientras que 
no exista degeneración numérica en el sistema. Una de las mayores contribuciones del método propuesto consiste en el manejo de 
oclusiones. La eficiencia del método es probado en escenarios donde la cámara está afectada vibraciones causadas por las condiciones 
climáticas (como lluvia o viento) o por las exteriores condiciones de operación (como el paso de vehículos cercanos a la cámara).

PALABRAS CLAVE: Selección dinámica de características, vibraciones, detección de movimiento

1. INTRODUCTION

Most automatic image analysis algorithms in 
surveillance and monitoring applications operate 
under the assumption that the cameras remain fixed. 
However, this is difficult to enforce in realistic long-
term applications where environmental conditions such 
as gusty winds, rain, or passing vehicles challenge 
this assumption. These vibrations cause the visual 
impression that everything is moving in the camera’s 
field of view. The objective of this research is to 
provide a method for distinguishing between static and 
non-static objects in scenarios observed with cameras 
subject to the effects of vibrations. In [24], Tomasi 
introduced a method for extracting the tridimensional 
structure of a scene from a set of prominent features. 
These features were the result of the analysis of the 
structural tensor done by Shi and Tomasi [19] and a 

tracking method first introduced by Lucas and Kanade 
[21]. Recently, other scale-invariant descriptors have 
been developed by Lowe [18]. Based on this concept 
of saliency, we introduce a method for removing the 
effects of vibration from a set of trackable features, even 
when some of these features may be occasionally or 
permanently occluded, or their geometrical properties 
may be evolving as the image stream progresses.

The dynamic use of features leverages certain 
algorithms, specifically those depending on scene 
references, in order to improve robustness for a wide 
spectrum of changes. Consider, for instance, the use of 
features in tasks such as the characterization of moving 
objects [8], image registration using a particle filter [6], 
characterization of the objects’ topology [23], optical 
flow [19], segmentation [16], and tracking [4,12]. 
Overall, these methods illustrate how the dynamic 
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selection of features empowers algorithms to obtain 
better descriptors. Nevertheless, they assume vibration-
free scenarios in which the camera remains fixed.

There are several methods to register images based 
on the dynamic selection of features. One of the 
most widespread is the random sample consensus 
(RANSAC) [11]. Recently, Lacey et al. [17], and Chum 
and Matas [7], introduced the sequential probability 
ratio test (SPRT) [26] into the RANSAC framework. 
Their method seems to perform better when the 
scenario contains only static objects. 

In this paper, we present an algorithm to detect motion 
in the scene based on a set of distinctive features as 
seen from a camera subject to vibration. Our approach 
uses a dynamic selection of features and a classification 
process that divides them between static and non-
static. Our method uses the features that minimize 
the error of the homography between each pair of 
consecutives images. We classify the characteristics 
by the magnitude and direction of their motion. Only 
the most prominent trend of motion was retained, 
while all the others were discarded as outliers. Our 
basic assumption is that the resulting set of features 
represents the motion of the camera. 

2. INTERFRAME TRANSFORMATION

In this section, we introduce a method for computing 
the homography transformation between consecutive 
frames using a set of trackable features.  

2.1  Displacement estimation

A large number of factors such as luminance 
variation, object occlusion, and reflection, may affect 
the estimation of image motion [27]. Shi and Tomasi 
[21] found that estimating full affine transformations 
between two sets of image features may be numerically 
unstable and error prone. In this research, we use 
a set of descriptors that consistently matches the 
predominant displacement. For a particular feature, 
located at x, in the image Ik, its displacement in the 
next image Ik+1, is modeled as a translation x’ = x + d, 
where d is the displacement of this feature, computed 
using the Lucas and Kanade tracker [19].

2.2  Automatic Detection of Features

As Shi and Tomasi [21] found, good features to track 
are those whose minimum singular value is above a 
certain predefined threshold. We build upon this finding 
to create a discrete surface M resulting from obtaining 
the minimum singular value for all possible image 
positions. The features for our method are located at 
the maxima of this surface. To identify these points, 
we apply the extended maxima transformation [22]. 
For the time being, let us denote F = {xi = (xi, yi) | k = 
1, 2,…, n} to  the set features’ positions. 

2.3  Homography Estimation

The displacement between the images Ik  and Ik+1 is 
estimated for each feature in F, producing F’. The 
vibration of the camera changes the field of view in each 
image. We model this deformation as a homography 
induced on the image plane. Please note that we assume 
that the intrinsic parameters remain the same. For each 
pair of images, Ik and Ik+1, and a set of trackable features 
x ∈ Fk, the following relation holds true:

(1)

where H is a 3 × 3 homography.

We use the direct linear transformation (DLT) [27] and 
the least squares method to estimate the homography. 
Experimentally [1], it has been observed that this 
approach possesses an outstanding level of accuracy 
when compared with others. Then, using F and F’, we 
build the matrix A, of 2n × 8 as follows:

(2)

where the first eight values of H matrix are represented 
in  vector form as hT = (h11,h12,h13,h21,h22,h23,h31,h32) 
and it is assumed that h33 = 1. Using least squares, 
the optimal solution h* = (AAT)-1ATp is estimated by 
applying the pseudo-inverse using the new positions of 
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the feature vector pT = (x’1, y’1,…, x’n, y’n). Thus, h is 
the homography between the pair of images Ik and Ik+1. 
The error of the homography, for a particular feature, 
is the difference between the true feature positions and 
the positions predicted in image Ik+1. That is

ξ = x’i- x’*
i (3)

where x’i is the true feature position and  x’*
i is the 

predicted feature position for each displaced feature.

3.	 IDENTIFICATION OF BACKGROUND AND 
FOREGROUND FEATURES 

When the camera moves, everything in the image 
seems to move too. In our approach, we analyze the 
error function density f (ξ) in each pair of images. Then, 
given the set of features F, its corresponding set F’, 
the homography matrix H, and assuming that the error 
density distribution f (ξ) is Gaussian f (ξi) ~ G (ξi; μi, 
σi), (this fact is a consequence of the use of the least 
square method [15]), the classification process that 
detects static objects is defined as follows:

Let us consider a subset of features G ⊂ F, whose 
displacement is modeled by a homography H’. The 
error function ξ is affected by each element, where the 
error of the estimated homography h* is affected by

(4)
where the first term represents the features modeled 
by H and the second term, those modeled by H’. 
In the aforementioned assumption, each term has a 
normal distribution G(pj;x,σ). The error mean in (4) 
is zero, but the individual means of the distributions 
G(pj;x,σ) are displaced, which is a consequence of the 
mixture of the Gaussians. When the error distribution 
f (ξ) is multi-modal, the approaches based on mono-
modal distribution selection as seen in [3, 7, 17] are 
less appealing. If there is more than one predominant 
displacement in F, each movement H’k  is represented 
by a Gaussian in f(ξ). We observed that the error 
function density is well modeled with a mixture of 
Gaussians as: 

f(ξ)~∑n
i=1 αi Gi(ξ; μi,σi) , (5)

where αi depends on the amount of elements that 
conforms each Gaussian. The parameters depend on 
the number and proportion of eligible features in F. 

However, for discrete data, it may be convenient to 
approach it as an incomplete parameter estimation 
task that can be solved efficiently using the algorithm 
of expectation maximization (EM) [9]. We then select 
the homography H for which the probability is largest. 
That is:

C[f(ξ)] = E[f(ξ)], (6)
where C[f(ξ)] represents the classification function and 
E[f(ξ)] is the most probable Gaussian.  A new set of 
features F* is built with the features that belong to the 
most probable Gaussian for each component. These 
features correspond to the background. Additionally, 
one feature xi belongs to the Gaussian Gi, with a 
probability of 0.95, if it is closer to 2σi from the 
mean μi. New values of h* are obtained by repeating 
this procedure F←F* until there is a mono-modal 
distribution. Intuitively, this loop discards the possible 
outliers resulting from non-static objects, but also 
miscalculations or unreliable features.

The pseudo-code of this process is shown in Algorithm 
1.

Algorithm 1. Dynamic Selection (I1, I2)
Inputs: a pair of consecutives images I1and I2 
Outputs: the homography parameters vector h1, and two lists of 
features F1 and F2

1.	 Compute F1  =  { (x1
k, y

1
k) | k = 1, 2, 3, …, n} from I1, using 

the discrete surface M, which results from taking the second 
eigenvalue σ2 from the structural tensor T.

2.	 Estimate the features’ displacement F2 from I1 to I2.
3.	 Repeat

3.1.	 Estimate h1
* = (AAT)-1ATp, for A and p. 

3.2.	 Compute the feature displacement error ξ = x’i- x’*
i.

3.3.	 Discard those features from F1 and F2 that do not belong 
to the most weighted Gaussian of ξ.

3.4.	 Until there is a mono-modal distribution in f(ξ) and the 
range is less than a predefined threshold λ.

4.	 Make h1← h2’.

The dynamic selection of feature requires the estimation 
of the homography elements. The prime condition for 
estimating the homography induced in the image plane 
is that AAT be invertible. This constraint is fulfilled if 
Rank(A) = 8; i.e., if  there are at least four non-collinear 
points. We measure colinearity by fitting a straight line, 
as in [25]. The residual error magnitude σ2 measures 
the degree of colinearity. For a set of features F in the 
image Ik, the straight line that best fits the raw data is 
estimated using Q = P - 1pT, where P is a matrix of 2 × 
n containing the feature position (xi, yi) for each feature, 
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p = 1/nP1 is the centroid, and 1 is a vector of 1 × n. The 
factorization of Q by SVD yields Q = S∑VT. Here, the 
second singular value σ2 is associated with the null space 
of QTQv = 0 with vT = (a, b). When σ2 is proportionally 
small, it means that a straight line could geometrically 
represent the distribution of F. Then, the data dispersion 
on both orthogonal components must be proportional to 
the image dimension for reaching a uniform distribution. 
In other words, if for an image of size n × m, the 
proportion σ2/σ1 < n/m holds, then the features are not 
uniformly distributed and the homography is not reliable.

4.	 AN APPLICATION:  DETECTION OF 
MOTION

Here we apply the algorithm described for the problem 
of detecting motion in a camera, motion which is due 
to vibration.

4.1  Algorithm definition

For each pair of consecutive images, Ij, Ij+1, a homography 
Hj is computed, while Ij+1 is mapped to the initial image 
I0, using the homographies H*

j = H0 × H1 ×…× Hj. The 
stabilization process is successful when there is a robust 
estimation of the projection. Using the homography Hj 
in a pair of images, Ij and Ij+1,  the set of features Fj+1, 
and the features F’j, resulting from the projection of the 
features Fj via Hj, we have a measure of the error in the 
estimation of the transformation. The idea is that after the 
transformation takes place, the feature displacements of 
fixed objects become approximately zero. We model the 
displacement distribution DFF’ = {xk - x’k | for xk ∈ F and 
x’I ∈ F’k k = 1, 2, …,n}, as  a mixture of Gaussians f(x) ~ 
∑n

l=1 αl Gl(μl,∑l), with mean μl and covariance ∑l. These 
parameters are estimated via EM [9]. We assume that the 
Gaussian Gl(μl,∑l), such that μi ≈ 01×2 corresponds to static 
areas, while the others correspond to significant trends of 
motion. Algorithm 2 summarizes this idea. 

Algorithm 2. Motion Detection Zones (Ii, Ii+1)
Input: the homography H and the trackable features list Fi and Fj 
Output: set of motion classes {G (μl, ∑l )}

1.	 Compute F1’← {x’|∀x∈ F1x’ = x × H}. 

2.	 Compute DFF’ = {xj-x’i+1| for xi ∈ F y x’i+1 ∈ F’,I  = 1, 2, 
…, n}.

3.	 Using expectation maximization, estimate C← {G(μi, ∑ 
i)}. 

4.	 Suppress statics elements C ← C - {G (0, ∑i)}. 

Finally, Algorithm 3 illustrates the pseudo-code for 
detecting the motion in cameras subject to vibration.

Algorithm 3. Motion Detection (Ii, Ii+1)
Inputs: consecutive images Ii and Ii+1 and the 
homography vector h between the first and second image 
Outputs: the homography hj+1, which describes the image 
transformation from Ii image to Ij+1 image

1.	 Map images Ii and Ii+1 using Hj, which correspond to hi in 
matrix form. 

2.	 With Ii, Ii+1 and hi, use the algorithm hi← Dynamic 
Selection (Ii, Ii+1).

3.	 With features lists Fi, Fi+1 and homography hi, we apply 
the algorithm v← Motion Detection Zones (Ii, Ii+1) 
based on the algorithm of expectation maximization.

4.2  Complexity analysis

The complexity of the dynamic feature selection 
strongly depends on the estimation of the structural 
tensor, which has a complexity of O(n2

1)O(n2
2) for a 

window of n2 × n2, where n2 = 2m + 1. The parameter 
n1 depends on the image dimensions; e.g., n1 × n1 
pixels. The estimation of the homography has a 
complexity of k1O(n2

3). The constant k1 depends on 
either reaching the maximum number of iterations or 
converging to a minimum error. Each iteration of the 
algorithm evaluates at least |F|* features, where |F|* is 
the expected number of these. Then the complexity 
for each iteration is k1O(n2

3)|F|*. The feature selection 
process iterates at the very most |F|*-4 times because 
of halt constraints. For each iteration, |F|* features 
are evaluated and the estimation of a homography 
is performed with a complexity of O(|F|*2). The 
complexity of the image stabilization process is 
thus the sum of the complexity of the dynamic 
selection of features and the complexity of the 
image projection. The image projection process adds 
k2O(n2) to the complexity, where k2 = 9. When data 
needs to be interpolated, the complexity increases 
to k2(O[n2])(O[m2]), which depends on  the window 
size m. The value of DFF’ in the motion detection 
process has a lineal complexity of n, the number of 
trackable features in the image. Since it implements 
the recursive version of EM, the estimation of the 
number of motion trends has a linear complexity. To 
sum this up, the complexity of the dynamic selection 
of features, the image stabilization, and the motion 
classification is given as:
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(8)

4.3  Numerical degradation

To detect the numerical system degradation, we use 
the homography H*

j associated with image Ij, a distant 
homography H*

i, associated to image Ii,  and the pair 
of images I’i and I’j, which represents the homography 
projection of Ii and Ij, respectively. Utilizing the pair of 
images I’i and I’j, the homography Hij is estimated using 
Algorithm 1. The homography Hij must satisfy det(Hij) 
= 1, because Hij has to be the identity matrix. This is 
so because the projection of Ii into Ij occurs in the same 
space. When the normalized determinant is not unitary, 
the system falls into a non-consistent state. Then, when 
the absolute difference between 1 and det(Hij) is greater 
than a predefined threshold, the current homography 
H*

j is substituted with H*
i’. 

5.  EXPERIMENTAL RESULTS

The experimental model has two stages. In the first 
one, we validate the method for the dynamic selection 
of features. In the second one, we test our method in 
outdoor environments.

Figure 1. RMSE error of artificial images with additive 
white noise

Figure 2. RMSE error images with several moving 
objects

Figure 3. RMSE graph error from a short image sequence 
used to validate our approach
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Figure 4. Evolution of trackable features over time. In (a), 
we illustrate the results for the intersection sequence and 

in (b), the results for the freeway sequence

5.1  Algorithm validation

The validation process quantifies the error of the 
estimated homography for each pair of images. The 
level of efficiency is measured with root mean square 
error (RMSE) [2] using the inter-frame selected fixed 
features. We used two vibration-free image sequences: 
one of an artificial pattern, and a second of an outdoor 
scene. A random displacement is applied to both 
images’ sequences to simulate camera vibration.

The artificial pattern consists of a set of square marks 
of 5 × 5 pixels, uniformly distributed. To simulate the 
vibration effects, the marks were randomly displaced. 
These marks correspond to fixed and moving objects. 
Both groups are displaced with independent random 
motion. This trial is repeated 100 times for each 
parameter combination, changing the proportion of 
moving objects from 10% to 40% with increments 
of 5%, also changing the amount of displacement 
from 4 to 14 pixels with increments of two pixels, 
and using a neighborhood of 4 × 4 pixels. The error 
is considerably small, even in the cases of large 
displacements (Figure 1). 

The estimated homography error using our approach 
is small, even when the number of moving features is 
increased. The feature selection process C[f(ξ)] is robust 
because the distribution of fixed objects is identifiably 

from the error density f(ξ). Then, using a proportion 
of motion objects of 40%, with a random displacement 
intensity of 6 to 14 pixels, and different motion trends 
from 1 to 5 groups, we observe, as illustrated in  Figure 2, 
that the homography error does not increase considerably, 
even though there are several trends of motion. This 
confirms that the criterion for feature detection C[f(ξ)] is 
efficient, even when there are several significant motion 
trends in the objects at the scene.

In a second stage, a sample of 100 vibration-free 
images was taken from a vehicular intersection. The 
vibrations were simulated with random displacements 
in each image. The displacement varies from 2 to 10 
pixels with increments of 2 pixels. The neighborhood 
radio r that surrounds each feature x’I ∈ F is varied 
from 1 to 5 pixels with increments of one pixel. Note 
in Figure 3 that the error is significantly higher than 
in the case of the artificial pattern sequence. The 
neighborhood size affects the degree of accuracy. 
Small neighborhoods are more likely not to have 
enough texture for estimating the feature displacement. 
In contrast, in large neighborhoods, there is the risk 
of selecting regions that are part of objects moving in 
different directions. However, the results show that our 
approach is capable of estimating, with a high degree 
of accuracy, the image transformations in a controlled 
environment.

Table 1. Some parameters of the image sequences.

Attribute Intersection Freeway

sequence length 1,800 1,000

resolution (pixels) 320 × 240 360 × 242

frames per second ≈10 (variable) ≈5 (variable)

JPEG compression level 0.75 0.50

video transmission cable microwaves
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Figure  5. Motion detection vibration caused by rain and wind

Figure 6. Frames with/without an adequate distribution of 
trackable features in poor quality video sequences

5.2  Outdoor environment

Then, we applied our method in two different scenarios. 
Table 1 summarizes the main characteristics of each 
scenario. The sequence of images from the intersection 

shows changing luminance and motion conditions. 
The objects with motion include vehicles, bicycles, 
and pedestrians. In several instances, the sequence of 
images has vibrations due to vehicles, rain, and wind. 
The freeway sequence has poor video quality and a 
high zoom level which increments the effect of the 
perceived vibration. 

Figure 4 shows the number of features found and selected 
for each of the test sequences. From the amount of features, 
seen as blue lines, it was determined that those remaining 
fixed, seen as green lines, were useful, discarding those that 
present movement and could not be tracked—seen as red 
lines. The changes in luminance, reflection, and the effects 
of rain, cloud occlusions, and compression level, have an 
impact on the detected number of fixed features. Figures 
5 and 6 show representative situations for each sequence. 
Even though, there are clearly detectable trends of motion, 
the distribution of texture is non-uniform, and there are 
changes of luminance due to rain and light reflection, as 
is noted in Figure 5. Overall, considering the poor quality 
of the video, which is the first image of Figure 6, fixed 
and moving features were detected efficiently as can be 
seen in Figure 5. The sudden illumination changes and 
reflections are supported efficiently.  When the features are 
insufficient or are not uniformly distributed for estimating 
the parameter of the homography, the reliability measure 
provides a criterion for deciding whether the homography 
transformation is satisfactory. Figure 6 illustrates this case. 
In the first image, the proportion of eigenvalues taken from 
the feature distribution is 0.6113, which is close to the ideal 
proportion of images sizes (242/360 = 0.6722). In contrast, 
in the second case, this proportion is 0.2846. This condition 
warns the method that there is a lack of information to 
distinguish between moving and static objects.

Figure 7. Non-supported scenarios. In (a), the distribution is 
not conveniently modeled with a mixture of Gaussians. In (b) 
there is not enough texture information in the static regions

When the regions containing moving objects are larger 
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than those containing static objects, the algorithm cannot 
distinguish between them because there is not enough 
information in the error function f(ξ). In Figure 7, we 
illustrate a scenario where it is not possible to detect 
background features. In this Figure, blue arrows illustrate 
the main trends of vehicular motion. In Figure 7(a), the 
estimated Gaussians of f(ξ) is shown. It is noteworthy that 
there is not enough texture in the background to select 
features. To solve this problem, we have two possible 
existing options. The first consists of replacing the 
classification function C[f(ξ)] and incorporating additional 
information about the scenario. The second option consists 
of selecting image regions with static features.

6.  CONCLUSION

In this investigation, we introduced a method to 
efficiently detect motion patterns in cameras subject 
to vibration, a method which is based on the dynamic 
selection of features. The method gave satisfactory 
results in both artificial and outdoor scenarios. The 
use of dynamic features and the proposed selection 
criterion resulted in an efficient and adaptable algorithm 
for coping with scene changing conditions such as 
illumination, occlusions, and poor video quality. 
The numerical degradation stage helped to boost 
the algorithm performance for extended sequences, 
providing spatial consistency. Our approach is efficient 
and adaptable to different environmental conditions, 
without affecting motion detection efficiency. 
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