
Dyna, año 78, Nro. 168, pp. 164-172.  Medellín, Agosto, 2011.  ISSN 0012-7353

GRAPHICS PROCESSING UNITS: MORE THAN THE PATHWAY 
TO REALISTIC VIDEO-GAMES 

UNIDADES DE PROCESAMIENTO GRÁFICO: MÁS QUE LA 
RUTA HACIA JUEGOS DE VIDEO CON REALIDAD VISUAL Y DE 

MOVIMIENTO

CARLOS TRUJILLO
Facultad de Minas, Universidad Nacional de Colombia, Medellín-Colombia, 050034, catrujila@unal.edu.co

JORGE GARCIA-SUCERQUIA
Universidad Nacional de Colombia, Medellín-Colombia, 050034, jigarcia@unal.edu.co

Received for review Mach 20th, 2011; accepted May 19th, 2011; final version May, 31th, 2011

ABSTRACT: The huge video games market has propelled the development of hardware and software focused on making the game environment 
more realistic. Among such developments are graphics processing units (GPUs). These devices are intended to alleviate the central processing 
unit (CPU) of the host computer from the computation that creates “life” for video games. The GPUs reach this goal with the use of multiple 
computation cores operating on a parallel architecture. Such features have made the GPUs attractive for more than the development of video 
games. In this paper, a brief description of the features of compute unified device architecture (CUDA™), a GPU parallel computing architecture, 
is presented. The application of GPUs on the numerical reconstruction of holograms from a digital in-line holographic microscope is shown. 
Upon the completion of this experiment, we reached an 11-fold acceleration with respect to the same calculation done on a typical CPU.

KEYWORDS: graphics processing units, parallel programming, CUDA™, single instruction multiple data (SIMD), processing thread, 
diffraction integrals, numerical hologram reconstruction 

RESUMEN: El amplio mercado de los juegos de video ha impulsado un acelerado progreso del hardware y software orientado a lograr 
ambientes de juego de mayor realidad. Entre estos desarrollos se cuentan las unidades de procesamiento gráfico (GPU), cuyo objetivo 
es liberar la unidad de procesamiento principal (CPU) de los elaborados cómputos que proporcionan “vida” a los juegos de video. Para 
lograrlo, las GPUs son equipadas con múltiples núcleos de procesamiento operando en paralelo, lo cual permite utilizarlas en tareas mucho 
más diversas que el desarrollo de juegos de video. En este artículo se presenta una breve descripción de las características de compute 
unified device architecture (CUDA™), una arquitectura de cómputo paralelo en GPUs. Se presenta una aplicación de esta arquitectura en la 
reconstrucción numérica de hologramas, para la cual se reporta una aceleración de 11X con respecto al desempeño alcanzado en una CPU.

PALABRAS CLAVE: unidades de procesamiento gráfico, programación paralela, CUDA™, single instruction multiple data (SIMD), 
hilos de procesamiento, integrales de difracción, reconstrucción numérica de hologramas.

1. INTRODUCTION

The demand for powerful computer systems is rising 
every day.This situation is evident in scientific, 
industrial, commercial, and even home environments. 
Traditionally, the capability of computing relies on 
the processor. For the latter the power of computing is 
proportional to the number of transistor per unit area 

into the chip. This is why hardware architectures try 
to increase the density of transistors, but since 2006 
approximately the number of these semiconductors per 
unit area was not able be increased any more due to 
physical limitations such as, for instance, diffraction-
limited photolithography [1]. As a consequence, the 
use of alternative processing paradigms has come to 
have particular importance. 



Dyna 168, 2011 165

It is expected that the demand for faster, cheaper, lighter, 
and more portable computing systems will increase in 
the future. Just to mention one example, video game 
consoles with the features mentioned above will be 
earnestly sought out by video game lovers. Proposed 
answers to these daunting demands can be classified 
into two main types: software and hardware. The 
answers that are software oriented consist of algorithm 
optimization. Such optimization is designed with the 
purpose of diminishing the number of operations to 
be executed. The hardware-based solutions rely on 
computing technology improvements that result in a 
faster execution of instructions 

An alternative solution, compatible with the mentioned 
above is parallel computing.  This computation 
paradigm splits the set of data to be computed into 
equal sub-sets of data that are concurrently processed 
by a specialized hardware. A fairly new approach to 
increase the processing power by means of parallel 
computing is the one that runs on graphics processing 
units (GPUs). 

A GPU is a specialized processor that offloads most 
of the graphics tasks from the central processor unit 
(CPU). Intense 3D rendering applications, like what is 
often used on video-games, are the kind of tasks that 
are offloaded from the CPU. Realistic video-games 
are based on rendering process.Hence, the current 
demands for more realistic video games require 
exhaustive rendering processing, which can only be 
provided by GPUs. As a direct consequence, the video-
game market has propelled the hardware developers 
to build even more powerful GPUs in very compact 
designs. These features make GPUs attractive for 
more than just graphics calculations. Modern GPUs 
are very efficient with manipulating floating point 
operations, and their multi-core structure make them 
more effective than general-purpose CPUs for a range 
of complex computation duties [2]. 

Computing is evolving from central processing 
carried out entirely by the CPU, to co-processing 
between the CPU and the GPU. The CPU takes care 
of data-flow control, the fetching and the decoding of 
the instructions that have to be performed. The GPU 
executes them efficiently thanks to the highly parallel 
nature of its architecture. 

General-purpose computing on a GPU [2], namely 
GPGPU, is a GPU- oriented concept which uses 
the multithread architecture of GPUs for parallel 
computing by means of single-instruction multiple-
data (SIMD). Its performance is based on executing 
the same set of instructions on multiple data by 
individual threads; stream processing [3] is another  
name for this computer programming paradigm. 
Many applications that process large data sets can 
use stream processing to accelerate their calculations. 
For instance, in 3D rendering, large sets of pixels 
and vertices are mapped to parallel threads for 
their execution. Similarly, applications for image 
processing and general media processing such as 
image post-processing, video encoding and decoding, 
image scaling, 3D vision and pattern recognition, 
can map pixels to parallel processing threads [4]. 
In fact, not only image processing algorithms are 
accelerated by parallel data processing: from the 
general processing of signals for simulating physical 
phenomena [5], to financial engineering [6], and 
computational biology [7] we find areas which are 
counted among those highly influenced by the current 
trend of GPGPU application.

In this paper, an introduction to a general purpose 
parallel computing architecture named compute unified 
device architecture (CUDA™) made by NVIDIA® 
is presented.This architecture has a new parallel 
programming model and its own set of instructions to 
control the parallel computing engine from NVIDIA® 
[4]. As a particular application, an implementation 
in CUDA™ which accelerates the calculation of 
diffraction integrals operating over up to four million 
pixels is shown. The implemented calculation on the 
GPU is 11 times faster than that which runs on a typical 
CPU.

2. DIFFERENCES BETWEEN A CPU AND A GPU

A GPU has more transistors devoted to data processing 
than a CPU [4]. This fact means that for massive floating 
point operations, like graphics rendering, a GPU expends 
less transistors on flow control and cache memory than 
a CPU. This feature makes GPUs the appropriated 
tool to run highly parallelized algorithms that handle 
very efficiently thousands of complex floating point 
operations. Figure 1 illustrates the difference in the way 
how the silicon area is distributed on a CPU and a GPU; 



Trujillo & Garcia-Sucerquia166

notice the larger area devoted to arithmetic and logic 
units (ALU) in a GPU than in a CPU.

NVIDIA® chips are built based on multiprocessors. 
These devices have about ten cores, hundreds of 
ALUs, several thousand registers and tens of kilobytes 
of shared memory. Also, the GPUs contain global 
memory, which can be used by all multiprocessors, 
local memory in each multiprocessor, and a special 
memory area for constants.

 

Figure 1. Silicon area distribution for the CPU and GPU.

As product of the hardware differences, the cores of 
a  CPU  -up most four for the quad processors- are 
designed to execute a single thread per core but a very 
high speed. A GPU, on the other hand, is designed for 
fast execution of many parallel threads, running on 
hundreds of ALUs. Memory operations are distinct 
in GPUs compared with that in CPUs. For example, 
normally a CPU does not contain memory controllers, 
and in fact, all GPUs have several of them. Additionally 
to use faster memory, a GPU has larger memory 
bandwidth than a CPU, which is important at the 
moment of processing large data sets in parallel.

CPUs use a large number of their transistors for data 
control and large amount of on-chip cache memory. The 
cache memory is needed for accelerating the execution 
of a few instructions streams. In contrast, GPUs mainly 
use theirs transistors for multiprocessors, which are 
composed of lots of ALUs, shared memory and memory 
controllers. In Figure 1, the above differences are 
shown in terms of the proportion of transistors devoted 
to each task. The GPUs´ features mentioned above do 
not accelerate the execution of individual processing 
threads, but enable to process concurrently thousands 
of threads by taking advantage of the high memory 
bandwidth.

The extended use of the cache memory in the CPU is 
oriented to increase their performance due to low the 
latencies associate with this kind of memory. The use 
of the shared memory, namely the GPU cache, in a 
graphics card is to increase memory bandwidth. In a 
CPU, the larger the cache, the shorter latencies are. In 
a GPU, the memory access latencies are hidden by the 
simultaneous execution of many threads.

In graphics processing, the whole GPU hardware and 
design features described above, make it capable of 
receiving a group of primitives, performing all the 
needed operations, and then rendering output pixels very 
efficiently. The primitives are processed independently, 
concurrently and separately from each other. GPGPU 
goes a little further: the primitives are considered as 
processing threads that can be used for much more than 
graphics processing. This feature constitutes the key to 
extend the GPUs to other environments rather than the 
development of realistic video-games.

3. CUDA PROGRAMMING MODEL WITH 
BASIC EXAMPLES.

In 2007 NVIDIA® launched a parallel computing 
architecture for its GPUs named CUDA™ [4]. 
CUDA™ uses a software environment that enables 
developers to use C as the high level programming 
language. CUDA C is the actual programming language 
that enables the programmer to use CUDATM. CUDA C 
extends C by adding a fundamental concept, the kernel, 
along with a group of functions that make CUDA™ be 
similar to a huge library. 

When a kernel is called, it is executed N times in 
parallel by N different CUDA™ threads [4]. A kernel 
is defined by declaring __global__ before its name, 
followed by the used variables. Calling a kernel follows 
the same procedure of calling a normal C function, but 
adds a new syntax: <<<...>>>. Within these brackets is 
written the number of parallel threads that execute the 
kernel, an example of this calling is the code shown 
in Figure 2. A CUDA™ thread or parallel thread is an 
abstract concept that represents the task that is executed 
on each one of the CUDA™ cores; these cores are 
inside the streaming multiprocessors of a GPU [3]. The 
number of task that can be executed in parallel is given 
by the features of the GPU; currently, an average GPU 
has around one hundred of CUDA™ cores. 



Dyna 168, 2011 167

Figure 2. Basic Code for a kernel call.

In Figure 2 is shown the typical way of using CUDA™. 
That is, in linear fashion, because VecAdd() function is 
executed N times only. The first argument within the 
brackets denotes the dimensions in which the thread 
blocks are organized. If it is set to 1, a row of threads 
are called to execute the kernel.

Figure 3. Code for a kernel call with two-dimensional 
thread blocks.

The code in Figure 3 shows the kernel call structure 
with two-dimensional thread blocks.This code shows 
that a thread matrix can be called as input for running 
a kernel. The blocks can also be arranged in one or two 
dimensions. In the code, a row of 4 blocks is called, 
that is defined in the variable named numblocks. This 
structure is useful when working with large data arrays, 
since the size of each block is limited: In a typical GPU 
only 512 threads per block can be defined. Therefore, if 
the data set is larger than 512 positions, several blocks 
must be used.

Figure 4. Kernel call with two-dimensional thread blocks.

Code in Figure 4 uses a grid of 16x16 blocks, in which each 
block has N/16 threads along each dimension. Following 
these definitions all entries of the matrix are accounted in 
the event of a huge matrix. Also is shown in Figure 4, the 
use of some new built-in variables: blockIdx.x, blockDim.x 
and threadIdx.x. These variables allow the access to each 
thread. They are used to define the position of the data 
structure that each thread runs. The variable blockIdx.x 
defines the block, blockDim.x defines the column or row 
where each block is, and threadIdx.x is the identifier of 
each thread within the block. A diagram illustrating the 
previous concepts is shown in Figure 5.

Figure 5. Threads, blocks and grids in a GPU.

3.1.  Memory hierarchy and data transfer.

CUDA™ threads have access to different types of 
memory during execution, as shown in Figure 6. Each 



Trujillo & Garcia-Sucerquia168

thread has a private local memory and registers, and each 
thread block has a shared memory visible and accessible 
to all threads within the same block. The lifetime of the 
shared memory is the same as the block. There is another 
memory, named global memory, which all threads can 
access. Two additional spaces for accessible read-only 
memory are available for the threads: the constant 
memory and the texture memory. These two memory 
spaces and the shared memory space have optimized 
benefits in certain applications. Generally, the use of 
shared memory is much more efficient than all others due 
to its fast access, since with this on-chip memory, there is 
no need for sending data over the system memory bus [4].

Figure 6. Memory Hierarchy.

CUDA™ allows heterogeneous programming  as 
shown in Figure 7. The model assumes that kernels 
run on a physically separate device which operates as a 
co-processor for the host which is running the program 
sequentially. The CUDA™ programming model also 
assumes that both the host and the device maintain their 
separate memory spaces in the DRAM; these memory 
spaces are named host memory and device memory, 
respectively [4].

Before calling a kernel and running it concurrently in 
a GPU, the data to be processed have to be defined. To 
define the data, variables of any type can be used: int, 
float, float2, char, or others types default of CUDA™ 
as uchar1 or Complex. The variables must have one 
characteristic: they must be allocated in the memory of 
the GPU for being usable by CUDA™. Such allocation 
process is done by means of functions that allow the data 
transfer between the CPU and the GPU memory spaces. 
The functions that CUDA™ architecture has built-in for 
this purpose are: cudaMalloc(),a function that places a 
variable in the memory space of the GPU, cudaFree(), a 
function that frees the memory of the GPU of a variable 
and cudaMemcopy() a function that passes data from a 
variable in the CPU memory to a variable in the GPU 
memory or vice versa. In the code of Figure 8 is shown 
the use of each one of these functions.

Figure 7. CUDA™ Program Execution.



Dyna 168, 2011 169

3.2.  CUDA Libraries and Graphic Interoperability.

CUDA™ allows for more than generic arithmetic 
operations on data arrays. With CUDA™ is possible 
to carry out specific operations widely used by the 
scientific and engineering community by means of 
specialized libraries. Just to present two examples, 
CUBLAS and CUFFT, are the two most celebrated 
NVIDIA® GPU-accelerated math libraries. CUBLAS 
is an implementation of BLAS, (Basic Linear 
Algebra Subprograms). The basic model by which an 
application uses the CUBLAS library, is by creating 
matrix and vector objects in the GPU memory space. 
Once the objects are created they are filled with data 
to call a sequence of CUBLAS functions. The final 
step is to upload the results from GPU memory space 
back to the host CPU memory. To accomplish this 
set of task, CUBLAS provides helper functions for 
creating and destroying objects in the GPU space. 
Additional functions are available for writing data to- 
and retrieving data from-the created objects.

Figure 8. Code for data transfer in CUDA™.

CUFFT is the NVIDIA® CUDA™ library for the fast 
Fourier transform. The FFT is a very efficient algorithm 
for calculating the discrete Fourier transform of real 
or complex data sets. The CUFFT lets, through few 
instructions, to compute in parallel the FFT of a data 
set in the GPU. CUFFT takes advantage of all the 
computational power of the GPU without having to 
write the full implementation from scratch [8]. CUFFT 
is modeled after the most efficient implementation of 
the fast Fourier algorithm in the market, the FFTW [9]. 
The parameters used in its implementation are similar 
to those used in FFTW. In Figure 9 is illustrated, by 
an example, how to perform a 2D Fourier transform 
from complex to complex in CUDA™ in device 
code. Initially the dimensions of the transform are 
defined. After, the plan (FFT configuration), the input 
variable, and output variable are also defined. For the 
illustrated case, the variables are of the type complex, 
that is, a special CUFFT float2 variable; right after 
comes the dynamic allocation of these variables with 
the cudaMalloc() function. The function cufftplan2d 
generates the FFT plan. The next step is to run the 
plan with cufftExecC2C(), in which is determined if 
the transform is direct or inverse. In odata is allocated 
the output data. Finally, the instructions cufftdestroy() 
and cudaFree() free the variables used by CUDA™.

Figure 9. CUDA™ Program for Two-dimensional 
computation of Fourier transforms on complex data.

Other useful feature of CUDA™ is the graphics 
interoperability with DirectX and OpenGL [4]. 
OpenGL (Open Graphics Library) is a 2D and 3D 
graphics library made for C [10]. It consists of a series 
of functions that allow for handling different features 



Trujillo & Garcia-Sucerquia170

of images, as textures, shades, among others. Together 
with a set of auxiliary libraries, OpenGL provides 
the necessary tools to manage windows and events 
happening over the windows in a very simplified way. 
The system itself is an event handler, this means, the 
library cyclically checks every event, and if one is 
activated, it executes the function designated for that 
particular event.

OpenGL provides a graphic user interface for CUDA™ 
through a full interoperability between them. Some 
resources of OPENGL can be mapped to the address 
space of CUDA™; either to enable CUDA™ to read 
data processed by OpenGL or to enable CUDA™ to 
transfer already processed data to be consumed by 
OPENGL [4]. This capability eliminates the need of 
transferring data from device memory to host memory, 
every time is needed the visualization of the results 
of an operation performed by a kernel, for example, 
over an image.  The fewer the data transfers the faster 
the algorithms are, especially for large amount of 
processed data.

4 .  A P P L I C AT I O N  O F  C U D A ™  T O 
ACCELERATED COMPUTATION OF THE 
DIFFRACTION INTEGRALS FOR DIGITAL 
IN-LINE HOLOGRAPHIC MICROSCOPY. 

Figure 10. DIHM hologram reconstruction by scalable 
convolution reconstruction. The input and output images are 
2048x2048pixles.The image at left is obtained by C++ @ 1 
frame per second (fps) and at right by CUDA™ @ 10 fps.

In this section the power of computation provided 
by CUDA™ is applied to evaluate numerically 
diffraction integrals. In particularly, CUDA™ is 
employed for numerical reconstruction of digitally 
recorded holograms in digital in-line holographic 
microscopy (DIHM). Once the hologram is recorded 

by a digital camera, it is transferred to a PC for its 
further processing. The hologram reconstruction can be 
described as the diffraction that a converging spherical 
wavefront undergoes as it illuminates the recorded 
hologram. In the Fraunhofer domain, the described 
above diffraction process is represented precisely by 
[11, 12]:

( ) ( ) ( ) 2exp /K I ik d r
s

 = ⋅ ∫î r î r r .  (1)

In equation (1) the integration extends over the surface 
of the screen s, a charge-coupled device (CCD) or 
complementary metal-oxide semiconductor (CMOS) 
camera, with coordinates ( ), ,x y L=r , L the distance 
from the illumination source to the center of the 
screen; 2 /k π λ=   is the propagation number; ( )I r  is 
the contrast in-line hologram obtained by subtracting 
the images with and without the sample present; and 

( ), ,x y zξ ξ ξ=î  are the coordinates at the reconstruction 
plane. ( )K î  is a complex quantity that can be calculated 
on a number of planes at various distances zr from the 
illumination source (pinhole) in order to recover the 
three-dimensional information of the sample, from 
a single two-dimensional DIHM hologram. The 
reconstruction operation is entirely done numerically 
over a single two-dimensional DIHM hologram with 
MxN pixels. The computational implementation of 
equation (1) has a complexity of O (MxN) which 
is extremely time consuming.. With the aim of 
reducing the computation time of equation (1) without 
compromising the very demanding requirements of 
DIHM, Kreuzer [12] patented a procedure. This method 
casts equation (1) into a scalable convolution that 
allows for using FFT and in this way for accelerating 
the numerical reconstruction of DIHM holograms. 
This scalable convolution reduces the complexity of 
the computation to O (MxlogN), still a large number 
if, for instance, M=N=2048. Fortunately, once the 
reconstruction process is represented in terms of FFTs, 
CUFFT can be used for the parallelized reconstruction 
of the holograms, with the results that are shown below.

For comparison, the scalable convolution algorithm has 
been implemented in C++ and CUDA™ [13]. With both 
algorithms there has been reconstructed a 2048x2048 
pixels hologram into a 2048x2048 pixels image. The 
results are shown in Figure 10. From this Figure is 
clear that there is no difference between the recovered 
information from the hologram, meaning that the 



Dyna 168, 2011 171

scalable convolution algorithm is fully parallelizable. 
For clearer comparison the area in the white square has 
been enlarged and its contrast optimized. A cluster of 
four beads is very well resolved with both algorithms.

The reconstruction algorithms have been implemented 
in a personal computer powered with an Intel® Core™ 
2 Quad running at 2.33GHz and 4GB of RAM memory. 
The computer hosts a Geforce 9800GT graphics card 
with 112 stream cores, 512MB of local memory 
and running at 600MHz. Table 1 summarizes the 
results obtained as holograms of different sizes are 
reconstructed. It is apparent the important reduction of 
the reconstruction time, which for the largest hologram 
is of the order of 11 times. 

Table 1. Scalable convolution reconstruction time for 
different sizes of holograms in CUDA™ and C++. The 
output images have the same number of pixels that the 

input holograms.

Size of the 
hologram

Time 
CUDA™ (ms)

Time C++ 
(ms)

512x512 9.06 63
1024x1024 26.40 312
2048x2048 97.82 1061

5.CONCLUSIONS

Parallel computing is a technique in which many tasks 
run simultaneously. Traditionally it has been developed 
in multi-processor systems (multiples CPUs) called 
clusters, with the disadvantage that these cluster 
are bulky and quite expensive.. The GPUs offer an 
alternative approach to parallel computing, which 
allow for using the developed power for video games 
in different environments. Many are the advantages 
of parallel computing on GPUs. Mainly the cost and 
size are two reasons why GPUs can be chosen for 
implementing parallel computing as a very viable 
option to accelerate floating point numerical computing.

CUDA™ is a parallel computing architecture for 
embedded devices created by NVIDIA®. It allows, 
thanks to its rich software development kit (SDK), the 
implementation of algorithms for concurrent execution 
and thus reducing the processing time. Many of these 
algorithms are designed to achieve real-time execution. 

This new opportunity provided by NVIDIA®, shows 
another side of the GPUs, that traditionally have been 
used exclusively for graphics processing on the video-
game world.

Almost any algorithm that is implemented in a CPU 
can be implemented in a GPU. It should be noted that 
in both cases there will not be the same computational 
efficiency; only those tasks that have a high degree 
of parallelism, and especially a high floating point 
arithmetic demand, are the greatest benefited when 
implemented on a GPU. This is the case of holographic 
reconstruction via the computation of diffraction 
integrals.

Digital in-line holographic microscopy is perhaps the 
simplest methodology to obtain three-dimensional 
information from the micrometer world. Particularly 
this technique requires very large and complex 
calculations. One limitation at the moment of 
reconstructing large-size holograms is the elapsed 
time for calculation. This has prevented, until now, 
the possibility of having portable systems for real-time 
holographic reconstruction. In this paper it has been 
shown that using CUDA™ is possible to extend the 
use of DIHM for real time application. CUDA™ can 
be employed for accelerating diverse tasks as: object 
recognition, many bodies problems computation, 
Monte Carlo simulation among many others.

REFERENCES 

[1] HARRIOTT, L. Limits of Lithography. Proceedings of 
the IEEE, Vol. 89, No. 3, March 2001.

[2] OWENS, J., HOUSTON, M., LUEBKE, D. AND 
GREEN, S. GPU Computing: Graphics Processing 
Units - powerful, programmable, and highly parallel - 
are increasingly targeting general-purpose computing 
applications. Proceedings of the IEEE, Vol. 96, No. 5, May 
2008.

[3] AHRENBERG, L., PAGE A., HENNELLY, B., 
MCDONALD, J., AND NAUGHTON, T. Using Commodity 
Graphics Hardware for Real-Time Digital Hologram View-
Reconstruction, J. Disp. Tech., 5, 4, 2009.

[4] NVIDIA, CUDA™, “NVIDIA CUDA C Programming 
Guide,” 3.1.1, 2010.



Trujillo & Garcia-Sucerquia172

[5] HARRIS, C., HAINES, K. AND STAVELEY -SMITH 
L. GPU Accelerated Radio Astronomy Signal Convolution, 
Exper. Astro., 22, 129–141, 2008.

[6] GAIKWAD, A. AND TOKE I. GPU based Sparse Grid 
Technique for Solving Multidimensional Options Pricing 
PDEs. Proceeding WHPCF ‘09, 2009.

[7] STONE, J., PHILLIPS, J., FREDDOLINO, P., HARDY, 
D., TRABUCO, L. AND SCHULTEN, K. Accelerating 
molecular modeling applications with graphics processors. 
J. Comp. Chem., 28, 2618-2640, 2007.

[8] NVIDIA, CUDA™, “ CUDA CUFFT Library,” 3.1, 
2010.

[9] FFTW home page. Available: http://www.fftw.org/ [cited 
March 8 2011].

[10] OPENGL HOME PAGE. Available:  http://www.
opengl.org/ [cited March 8 2011].

[11] GARCIA-SUCERQUIA, J., XU, W., JERICHO, S., 
KLAGES, P., JERICHO, M. AND KREUZER, H. Digital In-
line Holography Microscopy, Appl. Opt. 45, 836-850, 2006. 

[12] US Patent 6.411.406 B1, KREUZER H.J. Holographic 
Microscope and Method of Hologram Reconstruction, 2002.

[13] KREUZER H.J. AND KLAGES P. A software package for 
the reconstruction of digital in-line and other holograms DIHM-
software, Helix Science Applications, Halifax, N.S., Canada, 2006.


