
Dyna, year 78, Nro. 170, pp. 15-23. Medellin, December, 2011. ISSN 0012-7353

Real roots of nonlinear systems of equations
through a metaheuristic algorithm

Raíces reales de sistemas de ecuaciones no lineales
mediante un algoritmo metaheurístico

IVÁN AMAYA
B.Sc. Mechatronics Engineering, Ph.D. Engineering student, Universidad Industrial de Santander, iamaya2@gmail.com

JORGE CRUZ
Electronics Engineering student, Universidad Industrial de Santander, mrcrois@hotmail.com

RODRIGO CORREA
Ph.D. on Polymer Science and Engineering, Professor, Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones,

Universidad Industrial de Santander, crcorrea@uis.edu.co

Received for review March 22 th, 2011, accepted May 17th, 2011, final version May, 23 th, 2011

ABSTRACT: This article describes the use of a numeric strategy to perform a metaheuristic optimization for finding the real roots of a
nonlinear equation system. A theorem that shows why it can be treated as an optimization problem is shown. Some two-, three-, and five-
equation systems are used as examples of the strategy.

KEYWORDS: nonlinear equations, optimization methods, particle swarm optimization

RESUMEN: Este artículo describe una estrategia numérica de optimización metaheurística, utilizada para determinar las soluciones en el
conjunto de los números reales de un sistema de ecuaciones no lineales. Se utiliza un teorema que demuestra la validez de conversión de
un problema de solución de ecuaciones no lineales en otro de optimización. A título de demostración, se presentan algunos resultados para
sistemas de dos, tres y cinco ecuaciones.

PALABRAS CLAVE: ecuaciones no lineales, métodos de optimización, optimización por enjambre de partículas

1. INTRODUCTION

A nonlinear equations system is defined, explicitly,
by (1). It can also be defined in vectorial (or compact)
notation by (2). Traditional numerical methods for
the solution of these systems are based in algorithms
that make use of matricial operations, whose elements
belong to the derivatives of its functions. These direct
methods pose several variations and approaches, but
one of the most used, in engineering, is Newton-
Raphson and its variations. Nevertheless, they take
a long time to converge, and they only deliver one
root (in its traditional form). Therefore, a tendency
to migrate to more efficient methods is currently
underway. One approach is to transform the solution
of the nonlinear system into an optimization problem
[1] whose mathematical foundation is included in this
article. Most optimization methods, such as Newton’s

direct root method and its variants, also have an
elevated computational cost, which is mainly due to
the calculation and storage of the Jacobian (first order
derivatives) and Hessian (second order derivatives)
matrices that need to be evaluated at each candidate
point for every iteration. A first approach proposed to
reduce the memory requirements changed the matrices
by an approximated one. Methods based on this change
are known as quasi-Newton, and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm is an example
of them. It replaces the matrix with an expression
that contains several matricial operations (additions,
subtractions, products, divisions, and transposes), so
the amount of memory required to obtain a new search
direction is not vastly reduced [2]. Even so, all of these
methods are easily trapped in local minima, or in saddle
points, so a starting point near the solution is required,
thus limiting its application in real life situations.

Real roots of nonlinear systems of equations through a metaheuristic algorithm - Amaya et al16

A new optimization strategy has appeared, known as
metaheuristic algorithms. These make use of stochastic
processes, and therefore they are not trapped by the
presence of local minima. A method, whose popularity
has been on the rise, is particle swarm optimization
(PSO), developed in 1995 by Eberhart and Kennedy.
It is based on imitating the behavior of animal flocks
when looking for new food sources [3], and it is also
a cooperative method, where all of its members (or
particles) communicate better spots (or optimums) to
the swarm [4]. During this research, PSO was used
to find the real roots of nonlinear systems, due to its
inherent complexity.

This article begins by presenting a mandatory
justification, which allows for the transformation of
a nonlinear system into an optimization problem.
The validation process is performed by using, as an
example, systems of two, three, and five equations.

(1)

(2)

2. Foundations

Let equation (1) describe a system of nonlinear
equations with unknowns, where fi is a mapping
of the n-dimensional vector
into the real axis . This is equivalent to considering
a function and mapping into by (3), where
each function is a coordinate function of .

(3)
Some required definitions are shown below. They are
related to the continuity and differentiability of the
functions of in .

Definition 1: Let be a function of in .
It is said that has a limit L in ,

(4)
if, given any number there exists a number

 with the property of

(5)
always that and

. (6)

Definition 2: Let be a function of in
; is continuous in if exists and

. (7)

Moreover, is continuous in if is continuous
for every point of .

Definition 3: Let be a function of
 in as follows:

(8)

where, fi is mapped from into for every i. It is
then defined that

(9)

if and only if for every

There exist several numerical strategies that strive
to solve this type of system, such as the fixed point
and multidimensional Newton-Raphson approaches
[5]. The first one rarely succeeds, while the other
one (more famous in engineering) converges quickly
only if the starting point is near the solution, thus
reducing its application in real life situations and for
bigger problems. Besides, it requires a lot of computer
resources and normally finds real roots. However,
if initialized with a complex point, it will return a
complex solution. The elevated computer requirements
are related to the need for calculating, evaluating, and
storing the Jacobian matrix and the system in all
iterations. An improvement to such a disadvantage lies
in the quasi-Newton algorithms, such as BFGS, where
an approximation matrix is calculated instead of the
Jacobian. Even if it lowers the computing requirements,
its convergence speed is also reduced to the so called
superlinear convergence. Further improvements
include a redefinition of the inverse matrix, proposed
by Sherman and Morrison [6]. There are also some
other options, such as homotopy [7]. Recent literature

Dyna 170, 2011 17

describes some of the most important methods for
solving nonlinear systems [1], [8-11]

2.1 An optimization problem

A good approach, whose author cannot be tracked in
time, is to transform a problem of solving a system of
nonlinear equations into an optimization one [1,5,12-
14]. Perhaps one of the most famous examples is the
steepest descent method (including its variations),
that has been vastly used (even though it only has
linear convergence) to obtain the starting points for
multidimensional Newton-Raphson [5]. Its main
weakness, is the need to calculate the gradient, which
can become a very time consuming task and, in some
cases, an almost impossible one by analytic means. If
done through commercial software, the computational
requirements escalate because of the use of symbolic
math. The theorem that allows the change into
an optimization problem is presented below. It is
mentioned for real roots, but its generalization into the
complex realm is evident [15].

Theorem 1: Real roots

Let X be a subset of and consider the system
(1), where, for each i, fi is a function whose domain
contains X, and whose range is within real numbers.
Let be defined by (10). Note that f needs
to be properly defined.

(10)

besides:

Proposition 1. Suppose that (1) has solution in and
let . Therefore, satisfies (1)
if, and only if, minimizes f.

Proof. If satisfies (1), then for each
 Therefore, and since

 for every , then is a minimum
for .

Now, if minimizes but does not satisfy (1), then

 must be a positive number since for
every . Given that the system has a solution in

, there exists an that makes
 and . Therefore,

which violates being the minimum for . Note
that the general condition on the consistency of the
system is vital, since it is always possible to construct

 for a given system and, if minimizes it, it does
not imply that a solution exists. Therefore, finding the
roots for a system of nonlinear equations over a given
set can be transformed into an optimization problem
(minimization for this case) of the function over the
set . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (1) and the set

Step 1: Build

Step 2: Minimize over .

Step 3: Let be a minimum for . If
then satisfies (1). Otherwise, it does not have
solution in .

Based on this theorem, a PSO algorithm was used
to generate a real root of the system with a given
precision of , instead of using it to generate
the starting point for Newton’s direct root method.
Some simulations with systems of two, three, and five
nonlinear equations are presented in Section 3. It is
important to remark that there is also evidence of other
methods for solving nonlinear systems, but due to space
restrictions, comparative results are not shown [16].

2.2 PSO

As mentioned, PSO appeared in 1995, thanks to
Eberhart and Kennedy, who studied the social behavior
of some animal groups which were looking for new
sources of food. Unlike other evolutionary approaches
(e.g., genetic algorithms), PSO is cooperative, sharing
information with neighboring particles. Neighborhoods
may have different topologies, so this is a key point
for branches and variations. In its traditional form,
the neighborhood is composed of all the particles

Real roots of nonlinear systems of equations through a metaheuristic algorithm - Amaya et al18

in the swarm, so every better point found will be
communicated to them. Another key point is related
to the way its basic equations (position and speed) are
updated, traditionally given by (11) and (12), where
, represent pointers for each position and time step,
respectively; is a particle’s position, its speed,
an inertia factor to limit the effect of its previous speed,

 are the self and swarm trust factors, are
random numbers (uniformly distributed) between zero
and one, is the best position each particle has
found and is the best position of all the swarm.

(11)

(12)
One way to implement this algorithm is:

1.	Assign a random initial position and zero speed for
each particle.

2.	Evaluate and find .

3.	Update the position and speed for each particle with
(11) and (12).

4.	Evaluate the objective function.

5.	Compare, for each particle, the evaluated value and
. If it is lower, then update .

6.	Select the best particle and compare it to . If
lower, then update .

7.	Compare with convergence criteria. If it does
not comply, return to 3.

3. Experiments and Results

3.1 Two-equation systems

3.1.1 System (13)

Figure 1 shows the results obtained after executing the
PSO algorithm multiple times, starting at (
,), (, 5) and (
,), respectively. It can be seen that, by

increasing the number of particles, the real root found
is not critically affected, so, from now on, only total
values will be shown for each starting point. This
system has two real roots, located at (
,) and (,), that
are obtained even if starting at the same point. This
behavior is due to the heuristic characteristic of PSO
and allows it to avoid getting stuck at a solution.

 (13)

Figure 1. Roots distribution for each swarm size and
starting point, system (13)

It is interesting to show that there seems to be a
predilection for finding the closest roots, as can be
deduced from checking against Figure 2, where in 2/3
of the cases, the solution given by PSO was the closest
one. Figure 3 shows how the number of iterations
varies with the size of the swarm. As the number of
particles rises, it requires fewer cycles to converge.
However, this reduction is lower for each increase, so
there must be a minimum number of iterations, under
which convergence is impossible to achieve (for a given
margin of error).

Figure 2. Euclidean distance from each starting point to

real roots, system (13)

Dyna 170, 2011 19

Figure 3. Iteration variation as a function of the swarm

size, system (13)

3.1.2 System (14)

Figure 4 shows the results obtained after implementing
PSO for system (14), whose roots are located at (

,) and (,
). Once again, beginning at the same point leads to
a different solution. Nevertheless, it is also good to
remark that beginning at different points can lead to
the same real root.

 (14)

Figure 4. Real roots distribution for system (14)

Figure 5 shows the way computation time behaves as
the swarm size increases. Unlike iterations, this variable
directly increases with population. This is noteworthy,
since one would expect that by having a lower number
of iterations (Figure 3), convergence will be achieved
faster. However, this could be explained as follows:
by having more particles, the computational cost is
increased, thus making it so that each iteration takes

longer to complete. Figure 5 also shows that only for
big swarm sizes (2000 particles), the starting point
considerably affects the time required to converge.

Figure 5. Computation time as a function of the swarm

size and the starting point, system (14)

3.1.3 System (15)

Figure 6 shows the results after computing system (15),
whose roots are located at (,), (

,), (,
), and (,). When compared
to Figure 7, it can be seen that there seems to be a
predilection to converge to closer roots. However, this
does not mean that it only finds that root, but that it
will appear more frequently. Figure 8 once again shows
the variation in the number of iterations as the swarm
gets bigger. In the same manner as shown previously,
the bigger the swarm gets, the less iterations will be
required to converge (up to a limit point for a given
precision). Moreover, computation time will increase
due to the excess of operations.

 (15)

Figure 6. Real roots distribution for system (15)

Real roots of nonlinear systems of equations through a metaheuristic algorithm - Amaya et al20

Figure 7. Euclidean distance from each starting point to
real roots, system (15)

Figure 8. Iteration variation as a function of the swarm

size, system (15)

3.1.4 System (16)

Figure 9 presents the results achieved for system (16),
whose roots are located at (,),
(,), (,
), and (). It is shown that
the starting point does not affect the algorithm’s
convergence, even though Figure 10 confirms the
predilection for closer real roots. Figure 11 shows the
behavior of the approximation error as a function of
the swarm size. It is easily seen that dependence exists
on the number of particles and on the starting point.
However, in average terms, an excess of particles will
lead to a higher error. Therefore, it is of the utmost
importance to choose an appropriate swarm size.

 (16)

Figure 9. Real roots distribution for system (16)

Figure 10. Euclidean distance from each starting point to

real roots, system (16)

Figure 11. Square error variation as a function of the

swarm size, system (16)

3.1.5 System (17)

Figure 12 plots the results after implementing system
(17), whose roots are located at (,
) and (,). Once again, unlike
direct search methods, the starting point is not a
restriction for the real root found as a solution. Even
so, the predilection for closer roots is maintained.

Dyna 170, 2011 21

 (17)

Figure 12. Real roots distribution for system (17)

Figure 13 allows corroboration of the behavior from
Figure 5: the bigger the swarm, the lower the number
of required iterations. However, computation time will
be increased.

Figure 13. Computation time variation as a function of

the swarm size, system (17)

3.2 Three-equation systems

Striving to analyze the combined behavior of systems
(18)-(21), some plots are presented with relevant data.
Figure 14 shows the variation on the computation time
as a function of the number of iterations. It can be seen
that it is normal to expect that a smaller system (i.e.,
one that performs more iterations) takes less time to
converge. The relation between swarm size and number
of iterations can be checked in Figure 15.

 (18)

 (19)

 (20)

 (21)

Figure 14. Computation time variation as a function of
the swarm size, systems: (18): diamond), (19): square),

(20): triangle), and (21): cross)

Figure 15. Iteration variation as a function of the swarm

size, systems: (18): diamond), (19): square), (20):
triangle), and (21): cross)

3.3 Five-equation systems

In an effort to check the behavior of PSO for more
complex scenarios, systems (22) and (23) were
implemented. Once again, Figure 16 shows that as the
number of iterations goes up, the system is simplified
and converges in less time.

Real roots of nonlinear systems of equations through a metaheuristic algorithm - Amaya et al22

(22)

(23)

Figure 16. Computation time variation as a function of the

swarm size. Systems: (22): diamond) and (23): square).

Figure 17 confirms the fact that smaller systems take
more iterations to converge, but they are also simpler
and therefore require less time to deliver a solution.

Figure 17. Iteration variation as a function of the swarm
size. Systems: (22): diamond) and (23): square).

3.4 Performance Comparison

In an effort to compare the performance (in terms of
speed) of PSO against commercial software, plots of
average computation time for each type of system were
performed. For problems of two and three equations,
the average computation time of PSO was well above
the one achieved with the commercial software.
However, this changes for bigger systems, as can be
seen in Figure 18, where it is easily deducted that for 10
particles, the required time is about half of that required
by commercial solutions. Therefore, it appears that PSO
is a good choice for bigger, more complex systems.

Figure 18. Average computation time for 5 x 5 systems.

Diamond: PSO evolution. Dotted line: commercial
software time

4. Observations and Conclusions

After a careful review of the experimental data, it is
natural to conclude that as the swarm gets bigger, the
number of required iterations go down (see Figure
3,8,15). Interesting, though, is the fact that it has an
adverse effect in the computation time (see Figure
5,13,14). This appears to be contradictory, since if
there are less iterations it is expected that it will be
quicker. Even though this is true, there is also the fact
that by having a bigger swarm, the communication
will be performed between more members, so it will
adversely affect iteration time. Moreover, there will
be more particles that require the calculation of
and , so this will also increase the iteration time.
In the end, convergence time will be higher than for a
smaller swarm. Another interesting effect is the one that
the swarm size has on the approximation error, which
is directly proportional (see Figure 11). However, at
the current time, it remains unknown whether it is due
to some type of collision between particles or if it is
due to the inertia weight (), which could be stopping

Dyna 170, 2011 23

particles before they are able to migrate to a better
point. In spite of that, it is of the utmost importance to
define a proper swarm size, so that a balance between
iterations, computation time and approximation error,
is found. If chosen properly, a solution faster than by
commercial means can be achieved (Figure 18). It is
remarkable that PSO appears to have a preference for
finding roots which are closer to the starting point, but
still finding the furthest ones.

Finally, and as future research, it would be interesting
to study PSO with complex roots and interval
mathematics. A first step towards this goal has been
taken [17], and we hope to report more conclusive
information in the near future.

AcknowledgmentS

This work was supported by Vicerrectoría de
Investigación y Extensión (Universidad Industrial de
Santander), in the framework of project code 5551.

References

[1] Grosan, C. and Abraham, A., A New Approach for
Solving Nonlinear Equations Systems, IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and
Humans, Vol. 38, (3), pp. 698-714, May. 2008.

[2] Rao, S. S., Engineering Optimization: Theory and
Practice, Fourth Ed. John Wiley & Sons, Inc., pp. 1-829, 2009

[3] Parsopoulos, K. E. and Vrahatis, M. N., Particle Swarm
Optimization and Intelligence: Advances and Applications,
First Ed. Information Science Reference, pp. 1-329, 2010.

[4] Clerc, M., Particle swarm optimization, First Ed. ISTE,
,. 243, P. 2006

[5] Burden, R. L. and Faires, J. D., Análisis Numérico, Sexta
Ed. International Thomson Publishing, , pp. 1-802. 1998

[6] Dennis, J. E. J. and Moré, J. J., Quasi-Newton Methods,
Motivation and Theory, SIAM Review, Vol. 19, (1), pp.
46-89, 1997.

[7] Allgower, E. L. and Georg, K., Numerical continuation
methods: an introduction, Third Ed. Springer-Verlag New
York, Inc., , pp. 1-388. 1990

[8] Effati, S. and Nazemi, A., A new method for solving a
system of the nonlinear equations,” Applied Mathematics
and Computation, Vol. 168, no. 2, pp. 877-894, Sep. 2005.

[9] Bader, B. W., Tensor-Krylov Methods for Solving Large-
Scale Systems of Nonlinear Equations, SIAM Journal on
Numerical Analysis, Vol. 43, (3) , 1321 P. 2005.

[10] Salimbahrami, B. and Lohmann, B., Order reduction
of large scale second-order systems using Krylov subspace
methods, Linear Algebra and its Applications, Vol. 415, (2-
3), pp. 385-405, Jun. 2006.

[11] Halton, J. H., Sequential Monte Carlo Techniques for
Solving Non-Linear Systems, Monte Carlo Methods and
Applications, Vol. 12, (2), pp. 113-141, Apr. 2006.

[12] Ortega, J. M. and Rheinboldt, W. C., Iterative Solution
of Nonlinear Equations in Several Variables, First Ed.
Academic Press, New York, , pp. 1-599, 1970.

[13] Nie, P., A null space method for solving system of
equations, Applied Mathematics and Computation, Vol. 149,
no. 1, pp. 215-226, Feb. 2004.

[14] Nie, P., An SQP approach with line search for a
system of nonlinear equations, Mathematical and Computer
Modelling, Vol. 43, (3-4), pp. 368-373, Feb. 2006.

[15] Gómez, L., Propuesta de demostración del teorema
sobre la relación entre sistemas de ecuaciones y el problema
de optimización (comunicación interna). pp. 1-2, 2010.

[16] Areiza, M., Un Método Numérico Cerrado para la
Solución de Sistemas de Ecuaciones No Lineales en Dos
Variables, Dyna, Vol. 69, (137), pp. 45-50, 2002.

[17] Vanegas, D., Barragán, K. S., and Correa, R.,
Comparación de las técnicas de optimización por análisis
de intervalos y la de enjambre de partículas para funciones
con restricciones,” Ingeniería y Universidad (Universidad
Javeriana - Accepted), 2011.

