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ABSTRACT: This article describes the use of a numeric strategy to perform a metaheuristic optimization for finding the real roots of a 
nonlinear equation system. A theorem that shows why it can be treated as an optimization problem is shown. Some two-, three-, and five-
equation systems are used as examples of the strategy.

KEYWORDS: nonlinear equations, optimization methods, particle swarm optimization

RESUMEN: Este artículo describe una estrategia numérica de optimización metaheurística, utilizada para determinar las soluciones en el 
conjunto de los números reales de un sistema de ecuaciones no lineales. Se utiliza un teorema que demuestra la validez de conversión de 
un problema de solución de ecuaciones no lineales en otro de optimización. A título de demostración, se presentan algunos resultados para 
sistemas de  dos, tres y cinco ecuaciones.

PALABRAS CLAVE: ecuaciones no lineales, métodos de optimización, optimización por enjambre de partículas

1.  INTRODUCTION 

A nonlinear equations system is defined, explicitly, 
by (1). It can also be defined in vectorial (or compact) 
notation by (2). Traditional numerical methods for 
the solution of these systems are based in algorithms 
that make use of matricial operations, whose elements 
belong to the derivatives of its functions. These direct 
methods pose several variations and approaches, but 
one of the most used, in engineering, is Newton-
Raphson and its variations. Nevertheless, they take 
a long time to converge, and they only deliver one 
root (in its traditional form). Therefore, a tendency 
to migrate to more efficient methods is currently 
underway. One approach is to transform the solution 
of the nonlinear system into an optimization problem 
[1] whose mathematical foundation is included in this 
article. Most optimization methods, such as Newton’s 

direct root method and its variants, also have an 
elevated computational cost, which is mainly due to 
the calculation and storage of the Jacobian (first order 
derivatives) and Hessian (second order derivatives) 
matrices that need to be evaluated at each candidate 
point for every iteration. A first approach proposed to 
reduce the memory requirements changed the matrices 
by an approximated one. Methods based on this change 
are known as quasi-Newton, and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm is an example 
of them. It replaces the matrix with an expression 
that contains several matricial operations (additions, 
subtractions, products, divisions, and transposes), so 
the amount of memory required to obtain a new search 
direction is not vastly reduced [2]. Even so, all of these 
methods are easily trapped in local minima, or in saddle 
points, so a starting point near the solution is required, 
thus limiting its application in real life situations. 
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A new optimization strategy has appeared, known as 
metaheuristic algorithms. These make use of stochastic 
processes, and therefore they are not trapped by the 
presence of local minima. A method, whose popularity 
has been on the rise, is particle swarm optimization 
(PSO), developed in 1995 by Eberhart and Kennedy. 
It is based on imitating the behavior of animal flocks 
when looking for new food sources [3], and it is also 
a cooperative method, where all of its members (or 
particles) communicate better spots (or optimums) to 
the swarm [4]. During this research, PSO was used 
to find the real roots of nonlinear systems, due to its 
inherent complexity. 

This article begins by presenting a mandatory 
justification, which allows for the transformation of 
a nonlinear system into an optimization problem. 
The validation process is performed by using, as an 
example, systems of two, three, and five equations.

(1)

(2)

2.  Foundations

Let equation (1) describe a system of  nonlinear 
equations with  unknowns, where fi is a mapping 
of the n-dimensional  vector  
into the real axis . This is equivalent to considering 
a function  and mapping  into  by (3), where 
each function is a coordinate function of .

(3)
Some required definitions are shown below. They are 
related to the continuity and differentiability of the 
functions of  in .

Definition 1: Let be a function of  in . 
It is said that  has a limit L in ,

(4)
if, given any number  there exists a number 

 with the property of 

(5)
always that  and

. (6)

Definition 2: Let be a function of  in
;  is continuous in  if  exists and

. (7)

Moreover,  is continuous in  if  is continuous 
for every point of . 

Definition 3: Let  be a function of 
 in  as follows: 

(8)

where, fi is mapped from  into  for every i. It is 
then defined that 

(9)

if and only if  for every 

There exist several numerical strategies that strive 
to solve this type of system, such as the fixed point 
and multidimensional Newton-Raphson approaches 
[5]. The first one rarely succeeds, while the other 
one (more famous in engineering) converges quickly 
only if the starting point is near the solution, thus 
reducing its application in real life situations and for 
bigger problems. Besides, it requires a lot of computer 
resources and normally finds real roots. However, 
if initialized with a complex point, it will return a 
complex solution. The elevated computer requirements 
are related to the need for calculating, evaluating, and 
storing the Jacobian matrix and the  system in all 
iterations. An improvement to such a disadvantage lies 
in the quasi-Newton algorithms, such as BFGS, where 
an approximation matrix is calculated instead of the 
Jacobian. Even if it lowers the computing requirements, 
its convergence speed is also reduced to the so called 
superlinear convergence. Further improvements 
include a redefinition of the inverse matrix, proposed 
by Sherman and Morrison [6]. There are also some 
other options, such as homotopy [7]. Recent literature 
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describes some of the most important methods for 
solving nonlinear systems [1], [8-11]

2.1  An optimization problem

A good approach, whose author cannot be tracked in 
time, is to transform a problem of solving a system of 
nonlinear equations into an optimization one [1,5,12-
14]. Perhaps one of the most famous examples is the 
steepest descent method (including its variations), 
that has been vastly used (even though it only has 
linear convergence) to obtain the starting points for 
multidimensional Newton-Raphson [5]. Its main 
weakness, is the need to calculate the gradient, which 
can become a very time consuming task and, in some 
cases, an almost impossible one by analytic means. If 
done through commercial software, the computational 
requirements escalate because of the use of symbolic 
math. The theorem that allows the change into 
an optimization problem is presented below. It is 
mentioned for real roots, but its generalization into the 
complex realm is evident [15].

Theorem 1: Real roots 

Let X be a subset of  and consider the system 
(1), where, for each i, fi is a function whose domain 
contains X, and whose range is within real numbers. 
Let  be defined by (10). Note that f needs 
to be properly defined.

(10)

besides: 

Proposition 1. Suppose that (1) has solution in  and 
let . Therefore,  satisfies (1) 
if, and only if,  minimizes f.

Proof. If  satisfies (1), then  for each 
 Therefore,   and since 

 for every , then  is a minimum 
for .

Now, if  minimizes  but does not satisfy (1), then 

  must be a positive number since  for 
every . Given that the system has a solution in 

, there exists an that makes 
 and . Therefore,  

which violates  being the minimum for . Note 
that the general condition on the consistency of the 
system is vital, since it is always possible to construct 

 for a given system and, if  minimizes it, it does 
not imply that a solution exists. Therefore, finding the 
roots for a system of nonlinear equations over a given 
set  can be transformed into an optimization problem 
(minimization for this case) of the function  over the 
set . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (1) and the set 

Step 1: Build 

Step 2: Minimize  over .

Step 3: Let  be a minimum for . If  
then  satisfies (1). Otherwise, it does not have 
solution in .

Based on this theorem, a PSO algorithm was used 
to generate a real root of the system with a given 
precision of , instead of using it to generate 
the starting point for Newton’s direct root method. 
Some simulations with systems of two, three, and five 
nonlinear equations are presented in Section 3. It is 
important to remark that there is also evidence of other 
methods for solving nonlinear systems, but due to space 
restrictions, comparative results are not shown [16].

2.2  PSO

As mentioned, PSO appeared in 1995, thanks to 
Eberhart and Kennedy, who studied the social behavior 
of some animal groups which were looking for new 
sources of food. Unlike other evolutionary approaches 
(e.g., genetic algorithms), PSO is cooperative, sharing 
information with neighboring particles. Neighborhoods 
may have different topologies, so this is a key point 
for branches and variations. In its traditional form, 
the neighborhood is composed of all the particles 
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in the swarm, so every better point found will be 
communicated to them. Another key point is related 
to the way its basic equations (position and speed) are 
updated, traditionally given by (11) and (12), where 
,  represent pointers for each position and time step, 
respectively;  is a particle’s position,  its speed,  
an inertia factor to limit the effect of its previous speed, 

 are the self and swarm trust factors,  are 
random numbers (uniformly distributed) between zero 
and one,  is the best position each particle has 
found and  is the best position of all the swarm. 

(11)

(12)
One way to implement this algorithm is:

1.	Assign a random initial position and zero speed for 
each particle. 

2.	Evaluate  and find .

3.	Update the position and speed for each particle with 
(11) and (12).

4.	Evaluate the objective function.

5.	Compare, for each particle, the evaluated value and 
. If it is lower, then update .

6.	Select the best particle and compare it to . If 
lower, then update .

7.	Compare  with convergence criteria. If it does 
not comply, return to 3.

3.  Experiments and Results

3.1  Two-equation systems

3.1.1  System (13)

Figure 1 shows the results obtained after executing the 
PSO algorithm multiple times, starting at (
, ), ( , 5) and (
, ), respectively. It can be seen that, by 

increasing the number of particles, the real root found 
is not critically affected, so, from now on, only total 
values will be shown for each starting point. This 
system has two real roots, located at (
, ) and ( , ), that 
are obtained even if starting at the same point. This 
behavior is due to the heuristic characteristic of PSO 
and allows it to avoid getting stuck at a solution. 

 (13)

Figure 1. Roots distribution for each swarm size and 
starting point, system (13)

It is interesting to show that there seems to be a 
predilection for finding the closest roots, as can be 
deduced from checking against Figure 2, where in 2/3 
of the cases, the solution given by PSO was the closest 
one. Figure 3 shows how the number of iterations 
varies with the size of the swarm. As the number of 
particles rises, it requires fewer cycles to converge. 
However, this reduction is lower for each increase, so 
there must be a minimum number of iterations, under 
which convergence is impossible to achieve (for a given 
margin of error). 

 
Figure 2. Euclidean distance from each starting point to 

real roots, system (13)
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Figure 3. Iteration variation as a function of the swarm 

size, system (13)

3.1.2  System (14)

Figure 4 shows the results obtained after implementing 
PSO for system (14), whose roots are located at (

, ) and ( , 
). Once again, beginning at the same point leads to 
a different solution. Nevertheless, it is also good to 
remark that beginning at different points can lead to 
the same real root. 

 (14)

Figure 4. Real roots distribution for system (14)

Figure 5 shows the way computation time behaves as 
the swarm size increases. Unlike iterations, this variable 
directly increases with population. This is noteworthy, 
since one would expect that by having a lower number 
of iterations (Figure 3), convergence will be achieved 
faster. However, this could be explained as follows: 
by having more particles, the computational cost is 
increased, thus making it so that each iteration takes 

longer to complete. Figure 5 also shows that only for 
big swarm sizes (2000 particles), the starting point 
considerably affects the time required to converge.

 
Figure 5. Computation time as a function of the swarm 

size and the starting point, system (14)

3.1.3  System (15)

Figure 6 shows the results after computing system (15), 
whose roots are located at ( , ), (

, ), ( , 
), and ( , ). When compared 
to Figure 7, it can be seen that there seems to be a 
predilection to converge to closer roots. However, this 
does not mean that it only finds that root, but that it 
will appear more frequently. Figure 8 once again shows 
the variation in the number of iterations as the swarm 
gets bigger. In the same manner as shown previously, 
the bigger the swarm gets, the less iterations will be 
required to converge (up to a limit point for a given 
precision). Moreover, computation time will increase 
due to the excess of operations.

 (15)

 
Figure 6. Real roots distribution for system (15)
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Figure 7. Euclidean distance from each starting point to 
real roots, system (15)

 
Figure 8. Iteration variation as a function of the swarm 

size, system (15)

3.1.4  System (16)

Figure 9 presents the results achieved for system (16), 
whose roots are located at ( , ), 
( , ), ( , 
), and (  ). It is shown that 
the starting point does not affect the algorithm’s 
convergence, even though Figure 10 confirms the 
predilection for closer real roots. Figure 11 shows the 
behavior of the approximation error as a function of 
the swarm size. It is easily seen that dependence exists 
on the number of particles and on the starting point. 
However, in average terms, an excess of particles will 
lead to a higher error. Therefore, it is of the utmost 
importance to choose an appropriate swarm size. 

 (16)

Figure 9. Real roots distribution for system (16)

 
Figure 10. Euclidean distance from each starting point to 

real roots, system (16)

 
Figure 11. Square error variation as a function of the 

swarm size, system (16)

3.1.5  System (17)

Figure 12 plots the results after implementing system 
(17), whose roots are located at ( ,
) and ( , ). Once again, unlike 
direct search methods, the starting point is not a 
restriction for the real root found as a solution. Even 
so, the predilection for closer roots is maintained. 
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 (17)

Figure 12. Real roots distribution for system (17)

Figure 13 allows corroboration of the behavior from 
Figure 5: the bigger the swarm, the lower the number 
of required iterations. However, computation time will 
be increased. 

 
Figure 13. Computation time variation as a function of 

the swarm size, system (17)

3.2  Three-equation systems 

Striving to analyze the combined behavior of systems 
(18)-(21), some plots are presented with relevant data. 
Figure 14 shows the variation on the computation time 
as a function of the number of iterations. It can be seen 
that it is normal to expect that a smaller system (i.e., 
one that performs more iterations) takes less time to 
converge. The relation between swarm size and number 
of iterations can be checked in Figure 15.

 
 (18)

 
 (19)

 
 (20)

 
 (21)

 
Figure 14. Computation time variation as a function of 
the swarm size, systems: (18): diamond),  (19): square), 

(20): triangle), and (21): cross)

 
Figure 15. Iteration variation as a function of the swarm 

size, systems: (18): diamond),  (19): square), (20): 
triangle), and (21): cross)

3.3  Five-equation systems

In an effort to check the behavior of PSO for more 
complex scenarios, systems (22) and (23) were 
implemented. Once again, Figure 16 shows that as the 
number of iterations goes up, the system is simplified 
and converges in less time. 
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(22)

 
 

 
 

(23)

 
Figure 16. Computation time variation as a function of the 

swarm size. Systems: (22): diamond) and (23): square). 

Figure 17 confirms the fact that smaller systems take 
more iterations to converge, but they are also simpler 
and therefore require less time to deliver a solution. 

Figure 17. Iteration variation as a function of the swarm 
size. Systems: (22): diamond) and  (23): square).

3.4  Performance Comparison

In an effort to compare the performance (in terms of 
speed) of PSO against commercial software, plots of 
average computation time for each type of system were 
performed. For problems of two and three equations, 
the average computation time of PSO was well above 
the one achieved with the commercial software. 
However, this changes for bigger systems, as can be 
seen in Figure 18, where it is easily deducted that for 10 
particles, the required time is about half of that required 
by commercial solutions. Therefore, it appears that PSO 
is a good choice for bigger, more complex systems.

 
Figure 18. Average computation time for 5 x 5 systems. 

Diamond: PSO evolution. Dotted line: commercial 
software time

4.  Observations and Conclusions

After a careful review of the experimental data, it is 
natural to conclude that as the swarm gets bigger, the 
number of required iterations go down (see Figure 
3,8,15). Interesting, though, is the fact that it has an 
adverse effect in the computation time (see Figure 
5,13,14). This appears to be contradictory, since if 
there are less iterations it is expected that it will be 
quicker. Even though this is true, there is also the fact 
that by having a bigger swarm, the communication 
will be performed between more members, so it will 
adversely affect iteration time. Moreover, there will 
be more particles that require the calculation of  
and , so this will also increase the iteration time. 
In the end, convergence time will be higher than for a 
smaller swarm. Another interesting effect is the one that 
the swarm size has on the approximation error, which 
is directly proportional (see Figure 11). However, at 
the current time, it remains unknown whether it is due 
to some type of collision between particles or if it is 
due to the inertia weight ( ), which could be stopping 
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particles before they are able to migrate to a better 
point. In spite of that, it is of the utmost importance to 
define a proper swarm size, so that a balance between 
iterations, computation time and approximation error, 
is found. If chosen properly, a solution faster than by 
commercial means can be achieved (Figure 18). It is 
remarkable that PSO appears to have a preference for 
finding roots which are closer to the starting point, but 
still finding the furthest ones. 

Finally, and as future research, it would be interesting 
to study PSO with complex roots and interval 
mathematics. A first step towards this goal has been 
taken [17], and we hope to report more conclusive 
information in the near future.
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