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ABSTRACT: This paper proposes an approach for a more effective definition of cellular automata transition rules for landscape change 
modeling using an advanced spatial metrics analysis. This approach considers a four-stage methodology based on: (i) the search for the 
appropriate spatial metrics with minimal correlations; (ii) the selection of the appropriate neighborhood size; (iii) the selection of the appropriate 
technique for spatial metrics application; and (iv) the analysis of the contribution level of each spatial metric for joint use. The case study 
uses an initial set of 7 spatial metrics of which 4 are selected for modeling. Results show a better model performance when compared to 
modeling without any spatial metrics or with the initial set of 7 metrics.
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RESUMEN: Este artículo expone un abordaje que permite una definición de reglas basadas en la transición de autómatas 
celulares, para la modelización de alteraciones en la ocupación del suelo, aplicando un análisis avanzada de métricas espaciales. 
Esta considera una metodología en 4 etapas: i) búsqueda de métricas espaciales adecuadas con correlaciones mínimas; (ii) 
selección de una vecindad adecuada; (iii) selección de la técnica adecuada para la aplicación de las métricas espaciales; y (iv) 
análisis del nivel contribución de cada métrica espacial para una utilización conjunta. El caso de estudio incluye un conjunto 
inicial de 7 métricas espaciales de las cuales son seleccionadas 4 para la modelización. Los resultados muestran un desempeño 
superior tanto si se compara con una modelización sin métricas espaciales o utilizando las 7 métricas iniciales.  

PALABRAS CLAVE: Modelación LUCC, autómata celular, reglas de transición, métricas espaciales, geocomputación, nivel de 
contribución de las métricas espaciales

1.  INTRODUCTION 

Land use and cover change (LUCC) modeling is one of the 
most promising approaches to forecast natural environmental 
phenomena such as forest fire spread, deforestation, soil 
erosion, ice and snow cover change, avalanches, etc. [1,2,3]. 
The LUCC models may be deterministic or stochastic [4]. 
Due to the stochastic nature of land cover change processes 
and a significant increase in computer performance, the most 
promising approach seems to be using stochastic models that 
consider spatial correlation with cellular automata (CA). A 
cellular automaton is a collection of cells on a regular grid, 
with each one having a finite number of states. Each cell 
evolves through discrete time steps according to transition 

rules based on the states of the neighboring cells. These 
transition rules are applied iteratively for a specified number 
of time steps. 

Spatial metrics were developed to provide meaningful 
ways of measuring landscape characteristics and are 
usually calculated using a fixed neighborhood. There 
are over 100 statistical measures of spatial metrics. 
However, most of them are very similar and have high 
correlation. These metrics can be calculated with the 
freely available software FRAGSTATS [5]. Spatial 
metrics have been widely used in spatial analysis 
studies or in texture analysis for the classification of 
remotely sensed images [6,7,8]. 



Dyna 170, 2011 43

The use of different spatial metrics in LUCC modeling has 
been pursued by many authors. For instance, [9] used the 
enrichment factor for land use pattern analysis. In [10] a 
set of spatial metrics for landscape structure investigation 
was studied. Another example reflecting the use of different 
sets of spatial metrics can be found in [11]. 

In this study, we implement LUCC modeling with CA 
using spatial metrics. We test whether this approach, 
that increases the number of factors influencing the 
CA transition rules, makes the LUCC modeling more 
adequate. The methodology considers: (i) the definition 
of an adequate neighborhood; (ii) a suitability map 
that represents the suitability of a cell changing one 
type of landscape to another (buffer zones, maps of 
distance to roads and to fresh water sources, etc.); (iii) 
a comprehensive set of spatial features of the studied 
landscape measured with selected spatial metrics. 

The existence of so many spatial metrics results in the 
need of solving an individual subtask in CA modeling, i.e., 
searching for the adequate number of spatial metrics for 
modeling (ideally 6-7 metrics, because the calculation of 
each metric in a sliding window can be a computationally 
intensive task) and searching for the relative importance in 
the analyzed neighborhood. These spatial metrics should 
not only be sufficiently different from each other (i.e., have 
minimal mutual correlation and cover the definition of the 
different landscape characteristics), but also be efficient 
when used as a joint set. 

The joint use of CA and a set of spatial metrics and 
characteristics in land cover change modeling are 
discussed in this paper. The approach includes a 
preliminary analysis of the spatial characteristics that 
enables their evaluation and their compatibility for joint 
use. The analysis is targeted at processing the minimal 
number of spatial metrics simplifying the calculation 
process and increasing modeling accuracy.

2.  CA modeling and transition rules

2.1 Typical CA modeling

Cellular automata often use Markov chains to model 
LUCC and to forecast the thematic map I’t for a certain 
time t in future. The procedure includes a certain 
number of iterations of a modeling algorithm over 
thematic maps It2 and It1 for time t2 and t1, a matrix of 

transition probabilities P = [pij] (stochastic matrix) from 
the type (class) wi to the type wj, a matrix of the actual 
number of elements transitions within the time interval 
[t2;t1], and a matrix of an expected number of element 
transitions within the time interval [t1;t] assisted by 
CA rules as set by some fCA. In this case, every CA 
can be viewed in the form of a matrix MCА = [cij] 
with order d, where the value of the central element 
ckh (k = h = (2d+1)/2, here «/» — integer division) in 
compliance with fCA to a certain extent depends upon 
the value of all elements of this matrix. 

The matrix MCA will be formed by scanning a raster 
matrix of image It1 = {tmxy = 1,2,…,M; x = 1, 2,…, Cn; 
y = 1, 2,..., Rn} by a sliding window of a size of (2d 
+ 1) ´ (2d + 1) pixels and by saving the result at the 
current position {x,y} of the central pixel of a sliding 
window as a value of pixel c¢

kh = fCA(c11, c12,…, ckh,…, 
cdd) of a new (resulting) image I’t (Fig. 1). Here {x,y} 
is a position of the element ckh in It1, tmxy – a number of 
ωi landscape type, M – a number of landscape types in 
the investigated area, Cn – a number of columns, and 
Rn – a number of rows in a thematic map.

Figure 1. CA operation for collecting new values of 
resulted image on the basis of initial image

2.2 Definition of transition rules

Considering the aforementioned function fCA for CA, 
the transition rules in the algorithm of land cover 
changes modeling should be identified on every point 
{x,y} of the studied area. These are based on the 
probability of landscape type substitution from ωi to ωj 
as pij

res~ fCA(pij
prob, pij

add, pij
sp), where pij

prob – probabilistic 
characteristic, obtained on the basis of a stochastic 
matrix, pij

add – probability calculated using information 
from the suitability maps, pij

sp – probability, defined by 
the spatial metrics. 
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There are different ways of defining the functional 
dependence fCA and finding probabilities pij

prob, pij
add, 

pij
sp. For example, the most logical way to find the joint 

probability pij
res is pij

res ~ pij
prob × pij

add × pij
sp. However, 

it is obvious that if the value of the probability pij
prob, 

pij
add, pij

sp is low, which is very possible in case of their 
multiplication, then the value pij

res will be very small or 
null. As a result, the transition from type wi to type wj 
will be not occur in the modeling procedure. To prevent 
this flaw, we may propose in practice to determine the 
CA transition rules in every point of the analyzed area 
based on the resulting transition probability of ωi-th to 
ωj-th land cover type as (1):

pij
res ~ (1 + pij

prob) × (1 + pij
sp) × (1 + pij

add) – 1 (1)

Following this approach (1), the multiplication of 
probabilities will not have the previously mentioned 
inconvenience, and the probabilities pij

res will be 
evenly located in the range [0,1]. It will also simplify 
the implementation of the modelling algorithm. The 
probability component pij

prob could be obtained as 
pij

prob = pij·nj on the basis of a stochastic matrix P = 
[pij], where nj – number of cells with type wj in a CA 
neighborhood. The probabilistic component pij

add, i.e., 
the suitability maps, can be obtained with the help of 
stochastic maps built with the application of spatial 
analysis functions available in most GIS software. The 
probabilistic component pij

sp can also be defined by 
spatial metrics. One possible solution for this nontrivial 
task is discussed in Section 3.

3.  SPATIAL METRICS APPLICATION

The main purpose of a probabilistic component pij
sp 

in CA modeling is accounting for a wide range of 
possible spatial characteristics of the investigated land 
cover. This will enable a more accurate identification 
of possible transition from type ωi to type ωj. It implies 
the application of spatial characteristics that precede 
CA modeling of land cover change. The basic concepts 
of this modeling approach are:the search for a limited 
number of spatial metrics with low correlation that 
account for the most important spatial characteristics 
of the landscape; (2) the evaluation of the size of the 
analyzed neighborhood in accordance with the applied 
data; (3) the definition of a method for accounting for 
the spatial characteristics in computing a probabilistic 
component pij

sp; (4) the analysis of each spatial metric 

value, the definition of their optimal number, and 
combination for joint use in CA modeling. 

The determined “optimal” finite set of metrics should be 
used to define a probabilistic component pij

sp and then 
to perform the final CA land cover change modeling on 
the basis of the expression (1). Let us consider every 
stage of the proposed methodology in detail: 

Search for a set of metrics. At this stage, a finite 
number of spatial metrics should be selected. Such 
metrics should first of all, have minimal mutual 
correlation; secondly, they should cover as far as 
possible all the relevant spatial characteristics of the 
landscape. Let us define some spatial characteristic with 
index l = 1, 2, …, L (L – total number of spatial metrics), 
calculated for the value tmxyÎIt1 with coordinates {x,y} 
in a sliding window with a neighborhood order d for a 
ωk landscape type as Сk

l = fc(tmxy, d), x = 1, 2, …, Cn; 
y = 1, 2, ..., Rn . The calculation of Сk

l for all elements 
of some It1 allows one to form a matrix (defined as 
Сmk

l = {cmxy = Сk
l, x = 1, 2,…, Cn; y = 1, 2,..., Rn}). 

The set of all possible metrics is rather large and will 
possibly have mutually dependant ones. However, 
most of the relevant landscape characteristics can be 
efficiently described using a smaller set by selecting 
low correlated spatial metrics. The correlation of two 
random spatial metrics Сk

l and Сk
l’, where l, l’ = 1, 2,…, 

L, in the image It1, can be calculated by Expression (2): 

,
(2)

where cov – covariance, and D – variance (dispersion). 
Having calculated the correlation for L metrics in 
pairs, we can select for each Сk

l such characteristics 
Сk

l’ which has the least value Cor(Сmk
l, Сmk

l’) 
according to (2). 

This numerical evaluation allows us to solve the 
task of searching for a finite set of non-correlated 
spatial metrics. This selection can be efficiently tested 
regarding their capacity to reproduce the spatial 
characteristics of the landscape using visual expert 
evaluation of the computational results of spatial 
characteristics for ωk landscape types, where k = 1, 
2, …, M.
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Search for a neighborhood of an appropriate size. As 
mentioned before, the key characteristic of any spatial 
metric is the size (order) of the studied neighborhood. 
This implies using a set of characteristics defined at 
the previous stage, where each characteristic can have 
a different size. However, there are no approaches that 
allow defining explicitly the most appropriate size of 
the studied neighborhood for a set of characteristics 
in CA modeling [12]. CA models are sensitive to 
scale and neighborhood configuration and, as a rule, 
the size of the neighborhood is defined by expert 
evaluation where all the mentioned parameters are 
considered [13,14,15]. The proposed approach uses 
all characteristics in different neighborhood sizes and 
evaluates the impact of all the characteristics on the 
modeling results.

Defining a method for accounting the spatial 
characteristics. The spatial characteristics for land 
cover change modeling with CA could be used in 
different ways. One of the methods for accounting 
such characteristics is proposed. Taking into 
account that there are several characteristics (L), it is 
reasonable to introduce them into a vector of L length, 
where the value of the vector components should be 
specified in the same range for the simplification 
of processing (e.g., [0;1]). Let us find the vector of 
“average characteristics” for each ωk landscape type 
of image 

It1 [ ]T21avg ... k
L

kkk
C CCC=F , where

, l = 1,2,…,L   (3)

In this case, the value k
lC  will define some average 

spatial statistic for ωk landscape type. In the process 
of modeling and I’t image creation, we calculate for 
every ωk, k = 1, 2, …, M, landscape type a vector of 

similar characteristics [ ]T21loc ... k
L

kkk
C CCC=F , 

but only for some current point {x,y} of the image It1 
in the neighborhood d. Here, the transition probability 
from ωi type to ωk type for the point {x,y} could be 
defined as (4):

 = |1 – d(Fk
Cloc, F

k
Cavg)|,    (4)

where d (Fk
Cloc, F

k
Cavg) – Euclidean distance between 

vectors. 

Comparing these vectors for every landscape type 
in pairs, we can define how similar are both spatial 
characteristics of a ωk type in the current sliding 
window and the average spatial characteristics on 
the whole raster image. This allows for the definition 
of the transition probability for every CA central 
element of the analyzed neighborhood for every ωi 
landscape type, and for choosing the highest one for 
the ωk landscape type.

Analysis of each metrics value in joint use. In 
practice, it is not easy to define the appropriate set of 
characteristics because of their correlation, overlapping, 
and other problems of joint use. To overcome this 
problem, the authors propose to search for the most 
effective set of the spatial characteristics which is 
described below. A series of experiments should be 
carried out to build a forecast map I’t based on It2 and 
It1 images by means of some unique combinations of 
spatial characteristics specified for every experiment. 
Each obtained forecast map I’t should be compared 
to the ground truth map It according to an accuracy 
criterion. It will allow evaluating the efficiency of the 
spatial characteristics combination used in every case 
and also the evaluation of every characteristic in the 
final modeling result. It should be pointed out that if 
the ground truth image is absent, it is still possible to 
evaluate the efficiency of the spatial characteristics 
used at this stage. In this case, the modeling should 
be performed in the time period [t2; t1] instead of 
the period [t1; t]; the image It2 should be considered 
to be a basic image subject to transformation instead 
of image It1; and a transition areas matrix should be 
used as the matrix of expected transition areas. In this 
case, the result of modeling I’t can be compared with 
the known image It1 and considered a ground truth 
image, which enables one to evaluate the modeling 
results and the used set of spatial characteristics. All 
experiments mentioned above are aimed at selecting 
a unique combination of characteristics among all 
possible combinations. For instance, the combination 
{C1

k, 0, 0,…} is used in the first experiment, the 
combination {C1

k, C2
k, 0,…}is used in the second 
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experiment, etc., until the very last experiment with 
the combination {C1

k, C2
k, …, CL

k} that includes 
all preselected characteristics. As a result of every 
experiment, we have a forecast map I’t. Comparing it 
with the ground truth map will enable us to obtain the 
evaluation results according to an accuracy criterion. 
After that, the results should be arranged in descending 
order according to an accuracy criterion value. Hence, 
after ranking each set of characteristics a value of the 
modeling accuracy is assigned. It allows for evaluating 
the value and efficiency of every characteristic in the 
analyzed combinations. The following methodology is 
recommended for the evaluation of the contribution of 
every characteristic to the final modeling. It is possible 
to evaluate a contribution level of a Cl

k characteristic 

in a single h-th experiment such as M
accvS

h
h
C

h
C ⋅=

, where h = 1, 2, …, Nexpr, aссh – value of accuracy 
criterion in an h-th experiment, M – the number of 
characteristics used in modeling, v = {0,1}: v = 0, if Cl

k 
is absent in a set of characteristics combination and v = 
1 – if Cl

k is present. The contribution level evaluation 
of Cl

k according to the results of N experiments (i.e., 
integral evaluation) can be defined as (5): 

∑
=

=
N

h

h
C

N
C S

N
S

1

1
    (5)

Changing successively the number of experiments N 
= 1, 2, …, Nexpr, whose overall results define the value 
of every characteristic for forecast mapping accuracy, 
we can model the family of curves – contribution 
level of every characteristic based on Nexpr experiment 
results. Here, it should be noted that a low number N 
will conform to “the most successful” combinations 
of characteristics, that will correspond to the most 
effective characteristics and ensure the most accurate 
modeling results. With the increase of N, a contribution 
level of every characteristic will be approximately the 
same, converging to the value (6): 

M

accN
S h

h

h
C

∑
≈

/1
    (6)

4. RESULTS AND DISCUSSION

The proposed methodology of spatial metrics analysis 
and its application to CA land cover change modeling 
was implemented in software using C++ Builder IDE. 

Let us consider in detail an application example and 
define the appropriate set of spatial metrics and its 
neighborhood size for the specific land cover change 
modeling case study. 

In the example, the sample time series thematic 
maps of geoinformation software Idrisi Kilimanjaro 
– Landuse71.rst (image It2), Landuse85.rst (image 
It1) and Landuse91.rst (image It) files were used as 
research data  (Clark Labs – IDRISI GIS and Image 
Processing Software, http://www.clarklabs.org/, 
Office of Geographic and Environmental Information 
(MassGIS), Commonwealth of Massachusetts 
Executive Office of Environmental Affairs, http://www.
mass.gov/mgis/). These maps have 9 thematic classes 
(High Density Residential, Low Density Residential, 
Industrial/Commercial, Roads/Transportation, Water, 
Cropland and Pasture, Forest, Wetland, Grass Surfaces) 
composed of 565 columns and 452 rows. Spatial 
resolution of the images is 60 m. The spatial pattern 
of the data used is quite complex which is typical for 
LUCC data. 

From this time data series, the stochastic matrix, 
matrixes of transition areas, expected transition areas 
were calculated and the modeling was carried out on 
the basis of the maps for years 1971 and 1985. The 
map for year 1991 was used as the ground truth data. 

The criteria used to evaluate the accuracy of modeling 
results were the Receiver/Relative Operating 
Characteristic (ROC) and Kappa Index of Agreement 
(KIA). The ROC curve is a graphical plot of the number 
of true positives versus the number of false positives for 
a binary classifier system as its discrimination threshold 
is varied, and it is often used to evaluate the results of 
a prediction. ROC of 0 means the worst agreement 
between an obtained map and a ground truth map; ROC 
of 1 means a complete agreement between an obtained 
map and a ground truth map. The KIA criterion is 
mainly used in the field of remote sensing to compare 
two raster images with a contingency table to find out 
whether their differences are due to a chance or to a real 
disagreement or agreement. The KIA of 1 means that 
two images show a perfect agreement, while the KIA 
of –1 means that they show a perfect and consistent 
agreement, and a KIA of 0 means that the two images 
show a random level of agreement/disagreement (i.e., 
there is no relationship between them). The application 
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of the proposed methodology is described below.

Stage 1. Selection of a set of spatial metrics. Due to 
the great number of applicable characteristics and 
according to expression (1) it is proposed to use an 
initial set of 7 different spatial characteristics (7)–(13). 
Spatial characteristics are accounted for each {x,y} 
element of the raster image It1 in a sliding window 
with (2d + 1) ´ (2d + 1) elements in a neighborhood 
for some land cover type ωk, where d can be an order 
of the neighborhood: 

,     (7)

,      (8)

,    (9)

,     (10)

,   (11)

,     (12)

 (13) 

Where n is a number of elements in the neighborhood, 
m – a number of patches of all types, (a patch is a small 
area of one type of elements (pixels) of the landscape 
surrounded by the elements of another landscape 
type) k index determines the current ωk landscape 
type, j – index  determines a number of a patch), nj

k – a 
number of the ωk type elements in the neighborhood, 
pj

k – a patch perimeter, hj
k – a number of the elements 

to the nearest pixel of a ωk type patch, mk – a 
number of the ωk type patches in the neighborhood, 

Аk – a total area of the ωk-type patches. For spatial 
characteristics, the conditional notations descriptions 
are: СFO – frequency of occurrence (relative frequency 
of ωk elements occurrence in the neighborhood), СPD – 
level of patch density (relative frequency of specified 
patch), СAFM – average fractal measure of perimeters 
(estimation of average length of patches perimeters), 
СADP – average distance between patches, СLD – level 
of division (density of elements), СLPS – level of patch 
size (patch density), СPAFRAC – perimeter-area fractal 
dimension (evaluates patch shape complexity). These 
metrics were calculated for ωk, k = 1, 2, …, M using 
Idrisi Kilimanjaro raster image (file Landuse85.rst). 
Then their values were normalized into a range of 0 
and 1, and prepared for accounting in psp component 
calculation.

When a visual assessment is needed, metrics should 
be presented in the form of probabilistic raster 
images, where each pixel represents the calculated 
result for the corresponding characteristic (in this 
case, in a 5 × 5 elements neighborhood size obtained 
for ωk “High Density Residential Area” (Fig. 2). The 
visual analysis of the raster images demonstrates that 
every characteristic reveals some unique uncorrelated 
spatial features and delineates the borders between the 
landscape types. Obviously, characteristics СADP and 
СLD in comparison with other characteristics revealed 
few spatial features of the investigated area due to the 
fact that the corresponding raster images (d and e in 
Fig. 2) contained minimum information. 

Stage 2. To define the appropriate neighborhood size 
of spatial characteristics, a set of experiments with 3 
× 3, 5 × 5, 7 × 7, 9 × 9, 15 × 15, and 29 × 29 elements 
in the neighborhood was carried out. The modeling 
was done with each characteristic from (7)–(13) 
separately, as well as without any spatial characteristic 
at all. The experiments allowed for us to prove the 
appropriateness of the use of spatial characteristics in 
CA modeling (the accuracy of the modeling results 
with any characteristic is significantly higher than 
the same results obtained without accounting for the 
spatial characteristics), and to find the sensitivity 
of every single characteristic to its neighborhood 
size (Fig. 3). Results show that for this type of data 
(landscape patterns, scale) the best accuracy results in 
all cases were achieved in the window size with 5 × 
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5 elements both for KIA and ROC accuracy criteria. 
It is obvious that the impact of spatial characteristics 
may significantly depend on both the neighborhood 
size chosen and the features (e.g., the scale) of specific 
landscape patterns [12,13,14].

Figure 2. Spatial characteristics for 5 × 5 neighborhood 
size, obtained for ωk-type “High Density Residential Area” 

(a-g), initial raster image (h) (maps without scale)

The numerical and visual evaluation of the results for 
different neighborhood sizes confirmed that in small 
neighborhood sizes, like 3 × 3, landscape spatial 
features are accounted to some extent only. But if 
we considerably increase the neighborhood size, 
the generalization level of spatial features becomes 
too high and spatial features will become hard to 
distinguish. Hence, to enable easy distinction of 
landscapes features, it is proposed to use the 5 × 5 
neighborhood size for the land cover change modeling. 

Figure 3. Accuracy of modeling results vs. spatial 
characteristics in different neighborhood sizes. Accuracy 

criteria: a) KIA; b) ROC

As an exception, the results obtained with СAFM 
characteristic (the lowest results in comparison with 
other characteristics for a neighborhood of any size), 
and with the СLPS characteristic did not show a robust 
correlation with a neighborhood size (results of 
additional experiments for СLPS are depicted in Fig. 4). 

Figure 4. Accuracy of modeling results VS СLPS 
characteristics used in different neighborhood sizes
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Additional research on СLPS application, performed 
with smaller discrete steps for neighborhood size, 
proved a significant sensitivity of this characteristic 
to the scale of the analyzed land type structure. In this 
case, higher and more robust results of ROC and KIA 
were obtained for the medium neighborhood size (5 × 
5, 9 × 9 elements) and for the large neighborhood size 
(21 × 21, 23 × 23 and 29 × 29 elements). Considering 
this behavior, the СAFM and СLPS metrics, were omitted 
from this case study.

Stage 3. In accordance with the spatial characteristics 
application, the averaged characteristics can be 
presented as a vector: 

The components of the vector FCavg are calculated for 
every ωk type of the landscape by moving the sliding 
window throughout the raster image It1 and calculating 
the mean value according to (3) of every characteristic 
from (7)–(13). The local characteristics of every ωk 
landscape type are calculated in specific location {x,y} 
using (7)–(13) in the analyzed neighborhood and can 
be presented as a vector: 

Furthermore, according to the proposed methodology 
and based on expression (4) a spatial probabilistic 
component pij

sp is defined. This component can be used 
in expression (1) for the final definition of CA rules for 
modeling. To escape the impact of padd component in 
expression (1), we set it to zero for all {x,y}.

Stage 4. This stage is aimed at defining the appropriate 
set of characteristics in the case of their joint use. The 
overall number of experiments for 7 characteristics 
evaluation process is Nexpr = 27 = 128 where all 
experiments are performed using a unique combination 
of the characteristics. Every expression resulted in a 
forecast map. Comparing it with the ground truth map, 
we may obtain the evaluation results according to the 
KIA and ROC criteria. After that, the results should be 
arranged in a descending order according to an accuracy 
criterion value (in this case, the KIA criterion is chosen, 
Fig. 5а). In Fig. 5 b, the results of the contribution level 
evaluation for each characteristic obtained where N 
= 1, 2, …, Nexpr are presented. These were obtained 

according to the technique for metrics contribution 
level definition described by Expression (5). Results 
show that the first experiments have the most accurate 
results (Fig. 5 a, KIA ≥ 0.86, experiments no. 1-30). 
This means that combinations of spatial characteristics 
in these experiments are more “useful” for the modeling 
accuracy than the combinations of characteristics for 
experiments with the worst accuracy results (Fig. 5 a, 
KIA ≤ 0.86, experiments no. 50-120). The analysis of 
dependencies (Fig. 5 b), shows that the most precise 
model is obtained using the set of characteristics CFO, 
СPD, СLPS and СPAFRAC. This demonstrates the highest 
contribution level of these characteristics in the 
performed experiments. The smaller significance level 
of СADP, СLD and СAFM characteristics is proven by the 
numerical and visual evaluation (Fig. 2 d and e and 
Fig. 3, accordingly). 

Figure 5. Results of the experiments for different 
combinations of spatial characteristics ranked in 

descending order of: a) values of KIA accuracy criterion; 
b) the contribution level of every characteristic

5.  CONCLUSIONS 

An approach to advanced spatial metrics analysis for a 
more effective CA transition rules definition in LUCC 
modeling has been proposed. This method is based 
on: (i) the search of the most adequate spatial metrics 
with a minimal mutual correlation; (ii) the definition 
of appropriate neighborhood size; (iii) the definition 
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of spatial metrics application; and (iv) the analysis 
of contribution level of each metric for joint use. A 
technique for determining the contribution level of the 
spatial characteristics in different sets throughout CA 
LUCC modeling has also been proposed. The approach 
was applied to time series land cover data using a 
set of 7 spatial characteristics. The analysis of the 
contribution level and the compatibility of metrics for 
joint use were carried out. To determine the accuracy of 
modeling, both ROC and KIA were used. The proposed 
methodology made possible the evaluation of the 
value of each characteristic and its compatibility using 
different combinations for joint use and the reduction 
of a number of preselected characteristics from 7 to 4 
items. This lead to the simplification of the calculation 
process and to a modeling accuracy higher than the 
one obtained using any spatial characteristics or with 
the application of the 7 preselected spatial metrics. 
Results of the contribution level evaluation for each 
characteristic showed that the frequency of occurrence 
(СFO), patch density (СPD), level of patch size (СLPS), 
and perimeter-area fractal dimension (СPAFRAC) had 
the highest contribution level according to KIA. The 
best accuracy results for this type of data (landscape 
patterns, scale) were found using a neighborhood size 
of 5 × 5 elements. Due to non-robust results when using 
different neighborhood sizes, both fractal measure of 
perimeters (СAFM) and level of patch size (СLPS) are not 
recommended for use in this case study.
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