
Dyna, year 79, Nro. 171, pp. 41-49.  Medellin, february, 2012.  ISSN 0012-7353

EMG-BASED SYSTEM FOR BASIC HAND MOVEMENT 
RECOGNITION 

SISTEMA DE RECONOCIMIENTO DE MOVIMIENTOS BÁSICOS 
DE LA MANO CON BASE EN SEÑALES EMG

JHONATAN CAMACHO NAVARRO
M.Sc. Ing. Electrónico, Universidad Industrial de Santander, Jhonatan_UIS@hotmail.com

FABIAN LEÓN-VARGAS
M.Sc. Ing. Electrónico, Universidad Industrial de Santander, fabian.mauricio.leon@gmail.com

JAIME BARRERO PÉREZ.
Profesor titular, Universidad Industrial de Santander Sede principal, jbarrero@uis.edu.co

Received for review September 18th, 2009; accepted October 8th, 2010; final version November 8th, 2010

ABSTRACT: This paper presents a system for the automatic identification of six basic hand movements in healthy subjects based on a steady-state 
of electromyographic signals. The following basic hand motions were detected: opening, closing, flexion, extension, pronation, and supination, 
as well as the rest condition. A modular approach of pattern recognition with discrete wavelet transform, principal component analysis, and 
support vector machines was used to discriminate each movement. Identification was completed off-line every 256 ms with a hardware-software 
interface composed of a signal acquisition system with two electromyographic differential channels using Matlab® and LabVIEW® software. 
The system was trained and tested using five subjects of different gender, age, and physical complexion, with identification rates of up to 99.25 %.

KEY WORDS: Electromyography, hand-prosthesis, pattern recognition, principal component analysis, discrete wavelet transform, 
support vector machines

RESUMEN: Este artículo presenta un sistema que permite identificar de forma automática, en sujetos sanos, y haciendo uso de señales 
electromiográficas superficiales en estado estable, los siguientes movimientos básicos de la mano: apertura, cierre, flexión, extensión, pronación 
y supinación, incluyendo la condición de reposo. La discriminación de los diferentes movimientos se realiza a partir de una metodología 
modular de reconocimiento de patrones que incluye el uso de la transformada wavelet discreta, análisis de componentes principales y 
máquinas de soporte vectorial. La identificación fue realizada off-line cada 256 ms mediante una interfaz hardware–software conformada 
por un sistema de adquisición de señales de dos canales diferenciales y algoritmos programados en Matlab® y LabVIEW®. El sistema fue 
entrenado y evaluado para cinco sujetos de diferente género, edad y complexión física, obteniendo tasas de acierto de  hasta el 99.25 %. 

PALABRAS CLAVE: Electromiógrafo, prótesis de mano, reconocimiento de patrones, análisis de componentes principales, 
transformada wavelet discreta, máquinas de soporte vectorial

1.  INTRODUCTION

Upper limb prosthesis has evolved from simple 
mechanical devices with aesthetical purposes to 
complex devices using surface electromyographic 
(sEMG) signals [1]. The sEMG signals enable practical 
and natural movements for handicapped persons using 
less effort and a quick learning rate, which promotes 
an easy and painless transmission [1–9].

Englehart et al. provided the first approach using 
sEMG signals as a method of control in 2001 [3]. The 
approach utilized a system of six types of movement 

identification (hand closed, hand open, wrist flexion, 
wrist extension, ulnar deviation, and radial deviation) 
with four sensing channels. Englehart also used the 
wavelet packet transform (WPT), principal components 
analysis (PCA), and neural networks as the main 
processing components. Recently, Oskoei and Hu 
[4] demonstrated the use of support vector machines 
(SVMs) as a classifier for obtaining optimal results 
compared with other commonly used techniques. To 
reduce computational time, Güle and Koçer [5] applied 
the discrete wavelet transform (DWT) in contrast to 
previous work [6–8] where the WPT was implemented. 
Integrating a methodology on the basis of pattern 



Camacho - et al42

recognition without PCA, Lucas et al. [9] obtained good 
results; however, they used eight sensing channels to 
recognize six movements which imply an associated 
complex instrumentation.

The aim of this work was to recognize seven basic hand 
movements (Fig. 1, including the rest condition), using 
sEMG signals generated by forearm muscle activity 
with only two sensing channels. 

Figure 1. Movements for classification

2.  SYSTEM DESIGN

The identification process was completed by using the 
four sequential modules that are commonly used in 
pattern recognition [2–3]:

• sEMG signal acquisition and conditioning
• feature extraction
• dimensionality reduction
• movement identification

The entire movement identification system based on 
sEMG signaling is summarized in Fig. 2 and consists 
of two principal modules. The first module is related to 
signal acquisition and conditioning, and the second is 
related to computerized digital processing. Each block 
is described in the following sections.

2.1  semg signal acquisition and conditioning

This module is designed to process the analog sEMG 
signals to reduce electromagnetic noise, filter the 
desired frequency components, amplify its magnitude, 

and finally, to digitalize the signals. Afterwards, 
the signal is processed on a PC to determine which 
movement was made.

 
Figure 2. Movement identification system

2.1.1  Electrode type

The silver/silver chloride (Ag/AgCl) electrode is a 
transducer that is commonly used to convert ionic currents 
on the skin produced by muscular activity [10–12]. 

The surface electromyography for the non-invasive 
assessment of muscles (SENIAM) group [11] 
recommends an electrolytic gel application to optimize 
conductivity and skin adherence with the electrodes and 
to take advantage of their characteristics. Following 
the SENIAM guidelines, several characteristics were 
selected for the sEMG signal acquisition:
Electrode form: circular
Electrode size: 10 mm diameter
Electrode material: Ag/AgCl
Skin preparation: cleaned with alcohol, free from hair
Sensor location: longitudinal, parallel to the muscular 
fibers; see Figs. 3 and 4
Distance between electrodes: approximately 20 mm 

2.1.2  Electrode location

Electrodes were placed between two motion points 
and through the longitudinal midline. The longitudinal 
axis corresponds to the muscle fiber direction (Fig. 3) 
[11–13].
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Figure 3. Muscle longitudinal axis

Two bipolar channels were used (see Fig. 4), to reduce 
computing time, storage requirements, and the needed 
instrumentation.

Figure 4. (a) Anterior forearm region and (b) posterior 
forearm region

For sEMG signal acquisition, two phases notably 
influenced the processing: the transient state and the 
stationary state [2–3]. 

The transient state is related to the initial phase of 
movement that is observed during instantaneous sudden 
myoelectric activity. The stationary state is related to 
the myoelectric activity during a sustained movement.

In this study, the sEMG signal was addressed in the 
stationary state. This method does not require threshold 
identification to capture the signal when the movement 
occurs.

2.1.3  Acquisition board

For data registration and sEMG signal storage, a 
hardware-software interface was implemented. 
This layout for signal conditioning was based on an 
electrocardiograph schematic [10], with adaptations 
of amplification characteristics and bandwidth for 
obtaining the desired signals. 

The nature of a sEMG signal is defined by the following 
characteristics:

• The typical sEMG signal amplitude is 0–6 mV.

• A useful signal energy is found in the 0–500 Hz 
range, with the main components located in the 
50–150 Hz range.

Given these characteristics, the acquisition module has 
three stages:

Stage 1

The input stage is composed of op-amps AD620 
and OP97. It is designed for signal acquisition in a 
differential mode by eliminating electromagnetic noise 
interference and common mode signals, thus improving 
the signal-to-noise ratio (SNR) [10,13]. Total gain is 
2000 V/V [8] and is distributed in two circuits to avoid 
output saturation in the initial stage. Small differences 
in the measured signal amplitude are often produced 
due to skin conditions or static biopotential. Therefore, 
a variable gain amplifier is needed for amplitude 
adjustment.

Stage 2

The second stage is the filtering stage, which is 
necessary in order to reject signals that have undesired 
frequency ranges. Three filters were designed with the 
Sallen-key architecture [10].

The first filter is a second order high-pass filter with a 
unitary gain, and a cut frequency of 20 Hz. This filter 
eliminates the offset produced by the movement of 
the electrode contact with the skin and by the cable 
movement [13].

The second filter is a second order low-pass filter with 
40 dB/dec attenuation, unitary gain, and a 500 Hz cut 
frequency. This filter is proposed to accommodate for 
weakened high frequency amplitudes where the sEMG 
signal energy is low [10]. 

A 60 Hz noise cancellation was made with a first order 
notch filter. This filter has a quality factor of 10, unitary 
gain, and 23 dB of rejecting [13].

For sEMG signal amplification, a non-inverter circuit 
with a 100 V/V gain was implemented at the notch 
filter output; Fig. 5 shows a prototype.
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Figure 5. Signal conditioning hardware

Stage 3

In this stage, the sEMG signal was digitalized, as it 
was previously filtered and amplified. An acquisition 
board LAB PCI 1200 was used with ±5 V, 12-bit 
differential resolution, and a sampling frequency of 
1000 Hz [10–12]. 

The visualization and storage stage was completed 
using LabVIEW®. The front panel, where acquisition 
and register parameters are configured, is shown in Fig. 
6. These parameters include storage time, sampling 
frequency, number of acquisition channels, storage 
files, and devices used [14].

Figure 6. Electromyograph front panel

The sEMG signal sensing is executed during 256 ms 
per channel.

2.2  Feature extraction

This module processes the sEMG signal features in the 
time-frequency domain producing an “initial features set”.

Most approaches based on feature sets obtained from 
frequency analysis show better results than approaches 
based on time domain analysis [3]. 

2.2.1  Discrete Wavelet Transform

The discrete wavelet transform (DWT) is the 
representation of a function by wavelets. The wavelets 

are scaled, and the translated copies of a finite-length 
or fast-decaying oscillating waveform are known 
as the mother wavelet. Wavelets can be combined 
using a shift, multiply, and sum technique called 
convolution. Portions of sEMG signals are used to 
extract information [15].

The DWT has advantages over traditional techniques 
for representing functions with discontinuities and 
sharp peaks. In addition, accurate deconstruction 
and reconstruction of finite, non-periodic, and non-
stationary signals can be obtained by applying a 
multiresolution analysis.

The results obtained from a DWT provide the scale and 
detail coefficients, which represent time and frequency 
data packs [15].

The feature vector is formed by statistics calculated 
on the detail coefficient packets and approximation 
coefficients obtained on each resolution level of 
the wavelet analysis (descriptors). In this stage, the 
corresponding pattern of each movement is formed by 
the feature vector of the anterior channel signal followed 
by the feature vector of the posterior channel [14].

The statistics calculated for this stage are: root mean 
square (RMS), variance, standard deviation, correlation, 
covariance, median, mean, maximum value, minimal 
value, and wavelet energy. The statistics calculated 
over the wavelet coefficients provide information 
regarding the tendencies, abnormalities, and energy 
of the sEMG signal.

2.2.2  Wavelet parameters 

In this study, parameters such as minimum computing 
time, similarity to the sEMG signal based on correlation 
coefficient, and better representation of frequency 
content of the sEMG signal (see Table 1), were used 
to decide which wavelet signal will be tested. Hence, 
a preliminary test was carried out over several mother 
wavelets to discriminate which wavelets were best 
suited [14].

In this work, mother wavelets used in previous pattern 
recognition studies [16–17] were used to evaluate 
previous criteria. 
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The preselected mother wavelets were: daubechies3, 
daubechies4, daubechies5, daubechies6, coiflet3, 
coiflet4, coiflet5, coiflet6, symlet4, symlet5, and symlet6.

To define the decomposition level, each level was 
related to their analyzed frequency range (see Table 
1). According to [12], the dominant energy is located 
at 50–150 Hz, matching mainly to the third level of 
decomposition.

On the other hand, according to previous research [3], 
identification degrades quickly along the segment of 
longitudinal decrement. However, 256 samples had 
a good performance without affecting the real time 
restrictions that are imposed by a hand prosthesis, 
where the control system must take action within 300 
ms (300 samples with a sampling frequency Fs = 1 
KHz) according to international standards [2–3].

Table 1. Resolution level and corresponding frequency 
range of sEMG signal

Resolution 
Level

Frequency range in 
Hz

1st Level 250 to 500

2nd Level 125 to 250

3rd Level 62.5 to 125

4th Level 31.25 to 62.5

Based on previous studies, the original signal was 
analyzed with the wavelet transform process by 
sectioning it with disjointed and adjacent windows 
formed by 256 samples.

Several tests were performed on healthy subjects. The 
order of the movements was as follows: hand closed, 
hand open, wrist flexion, wrist extension, pronation, 
resting and supination. The execution time of each 
movement was ten seconds. 

The process performed in this feature extraction module 
is summarized in Fig. 7.

 
Figure 7. Scheme of feature extraction

The digital sEMG signal x[n] is decomposed in three 
resolution levels. The coefficients represent the degree 
of correlation between the original signal x[n] and the 
displaced and scaled versions of the mother wavelet. 
Descriptors C1, C2, C3, and C4 correspond to the 
statistics that are calculated with these coefficients.

2.3  Feature reduction

There is a drawback when the feature vector is used as 
a direct input for the artificial intelligence algorithms. 
Feature vectors are, mostly, high dimensionality vectors 
with no information order. For this reason, it is necessary 
to reduce the vector size with techniques that preserve 
and organize the most relevant information. These 
techniques reduce the processing time and improve the 
results of the artificial intelligence algorithm [18–19].

Dimensionality reduction can be executed using 
characteristic projection methods, such as principal 
component analysis (PCA) [20]. The objective of PCA 
is to detect redundant information and to reorganize it 
for an easier interpretation.

The PCA analysis preserves a new set of features, 
with minimum square error, which are ordered from 
maximum to minimum variance.

New features are obtained using the Eigen-vectors of the 
covariance matrix or the correlation matrix. When the 
correlation matrix is used, the analysis is not affected 
by amplitude variations in the feature vector. This 
phenomenon is known as normalized analysis [20].
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According to the Kaiser Criterion [21], only the new 
features with a variance higher than the mean are 
required. When this criterion is evaluated using the 
correlation matrix, it is called the normalized Kaiser.

For this work, another criterion based on sEMG signal was 
adapted to exclude the new features with small variance 
values [20]. Hence, preliminary tests were executed using 
data from the sEMG signals, and only the new features 
with variance greater than 2 % of the maximum value were 
included. This criterion was called percentage.

The dimensionality reduction module was then applied 
as shown in Fig. 8. The feature vector was reduced by 
PCA.

 
Figure 8. Dimensionality reduction

The new features (R1, R2, and R3) were linear 
combinations of the initial ones (C1… C4).

2.4  Movement identification

Support vector machines (SVMs) were used for 
movement identification. Contrasting with the Bayesian 
method, these machines do not require any hypothesis 
regarding the probability density function of the data. 
In comparison with neural networks, they can reduce 
the number of parameters that must be introduced by 
the user [22–23].

Intuitively, given a group of samples distributed into 
two classes, a linear SVM searches for a hyper plane 
to locate the maximum number of samples on the same 
side, while the distance from the classes to the hyper 
plane is maximized. If the hyper plane exists, the data 
are linearly detachable [22–23].

If data are not linearly detachable, the hyper plane 
search lacks relevance. Nonlinear SVMs trough kernel 

functions are then used as an alternative. If there are 
more than two classes, a parallel arrangement of 
biclassificator SVMs is implemented along with an 
interpreter element [14,24].

In this stage, the software tool MSVToolBox10 [25], 
developed at Universidad Industrial de Santander, was 
used to find the optimal defining parameters through cross-
validation and a grid search [14,25]. The main parameters 
defined are: kernel, penalty constant, slack variables, the 
optimization method, and the decomposition method [26].

The implementation of this movement identification 
module is shown in Figure 9. 

 
Figure 9. Movement identification

The reduced feature vector is labeled according to the 
executed movement by the interpreter element based on 
partial decisions of biclassificator machines (multiclass 
SVMs). These machines can discriminate between two 
specific movements (ovo) or between one movement 
and the rest (ovr).

3.  TESTS EXECUTED

Data from each subject was divided into two sets with 
50 % designated for training and 50 % for validation. 
The identification system was implemented using a 
five-fold cross-validation over the training data. Two 
preliminary tests were performed on the data from one 
subject to determine the optimal parameters of DWT, 
PCA, and SVMs, and these parameters were then 
applied to all five subjects.

3.1 First preliminary tests

Two initial pilot tests were performed to observe the 
effects and changes produced by the mother wavelet, 
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resolution level, and variations in descriptors. 

During both pilot tests, PCA parameters (normalized 
Kaiser), and SVMs parameters (polynomial kernel, 
ovo decomposition, penalty constant with value 100, 
optimization method smo, interpreter element based on 
voting schemes, and Gaussian membership probability 
functions) were fixed.

These SVMs parameters were used following a 
preliminary test with a classification ratio of 70 %. 
The SVMs variations in Table 2 were evaluated by 
cross-validation and a grid search. Using criteria 
presented in Section 2, the RMS value as statistic in 
the feature extraction stage (descriptor), mother wavelet 
daubechies4, third resolution level, and normalized 
Kaiser Criterion were used.

Table 2. SVMs parameters

Parameter Options

Kernel Polynomial, Sigmoidal, 
Radial base

Decomposition ovo, ovr

Interpreter
Gaussian membership 

probability functions, and 
Voting methods

Optimization Irwls and smo

Penalty constant [0-1000]

The first pilot test was executed using the mother 
wavelets preselected in Section 2.2.2. This pilot 
test was completed under fixed resolution level and 
descriptors. The mother wavelets that presented a 
classification ratio over 80 % were: coiflet3, coiflet4, 
symlet4, symlet6, daubechies4, and daubechies5.

In the second pilot test, the objective was to determine 
which of the statistics proposed in Section 2.2.1 provide 
relevant information for the classifier. The descriptors 
were varied while the resolution level and mother 
wavelet daubechies4 were kept fixed (the best wavelet 
in first pilot test).

The statistics that presented a classification ratio over 
80 % were: RMS value, variance, mean value, and 
standard deviation. 

To find the adequate alternative to calculate the PCA 
with ‘percentage’ criteria associated, a final pilot 
test was performed using fixed parameters from the 
previous pilot tests.

3.2 Second preliminary tests

Two resolutions levels (third and fourth) were taken 
into account because these coefficients concentrate the 
dominant frequency ranges into sEMG signals, as can 
be seen in Table 1.

Two groups were formed for the statistical tests, one 
that took into account only the RMS value and another 
that took into account all the values obtained from first 
preliminary tests.

As result, 16 test combinations (variations) were 
obtained to evaluate each particular mother wavelet. 
Each combination was performed with all possible 
variations from Table 2.

4.  RESULTS 

The best combination, (see Table 3), obtained an error 
of 0.75 % for the classification.

Table 3. Optimal performance combination

Parameter Description

Mother Wavelet Daubechies 4

Resolution level 4

Calculated statistic RMS value

PCA analysis Normalized 
Standard

With respect to the classification of feature vectors 
using SVMs, the parameters with the best performance 
were: polynomial kernel, decomposition method ovo, 
interpreter element based on voting functions, Gaussian 
membership probability functions, and the optimization 
method smo. The decomposition method ovr did not 
guarantee good results, and the optimization method 
irwls did not converge in most tests. 

Finally, an extrapolation test was performed to check 
the validity of this result in other subjects. During 
this test, the parameters shown in Table 3 were used, 
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and sEMG signals from five subjects with different 
characteristics were analyzed. The results of each 
classification of error of movements per subject are 
shown in Table 4.

Table 4. Error rate (%) per movement in tests for 5 
subjects using the best performance combination of 

preliminary tests
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0 0 0 0 0 0 15.78 2.25
0 0 0 0 0 0 31.57 4.51

Table 4 shows the identification error in different 
movements using data related to men/women, between 
18 and 38 years old. The results demonstrate some error 
for most of the data related to forearm supination. It 
is also noted that the smallest amount of recognition 
error corresponds to remaining movements with some 
exceptions.

5.  DISCUSSION

The convergence ratio in training was very fast because 
cross-validation and SVMs do not have local minimums 
and require few parameters. The use of fewer sensing 
channels also reduces computational costs. 

The proposed hand movement identification system 
in this work can be used to build practical upper limb 
prosthesis similar to the work of Huang et al. [27]. 
Because of the few instrumentation requirements of 
this system (only two sensing channels) and the relative 
easy implementation of this signal processing into 
embedded systems, it is expected that the economic 
costs can be reduced as compared with previous 
systems.

Off-line processing is sufficient for 256 ms of sEMG 
signal applying DWT, PCA, and SVMs to obtain good 
results, but testing with other window widths is required 
to verify on-line systems.

The RMS value is the only statistic required to generate 
the proper feature vector by applying DWT with the 
mother wavelet daubechies4 and the fourth resolution 
level.

The PCA analysis allows better classification results 
under the normalized ‘percentage’ criterion, reducing 
the feature vector roughly 50 %.

6.  CONCLUSION

The most influential parameters on the success rate 
of movement identification are related to the correct 
acquisition of the sEMG signals. Therefore, the 
implementation of a notch filter is mandatory to filter 
the 60 Hz signal. All wires should be shielded, and the 
gain must be adapted by taking into account the static 
biopotential variations of each subject. Without these 
considerations, it is not possible to recognize sEMG 
patterns of hand movements, because signal quality is 
not guaranteed.

Using only two acquisition channels, each one with a 
sampling frequency of 1 KHz, it is possible to obtain 
success rates over 90 % in six basic hand movement 
identifications in healthy subjects with different ages, 
genders, and physiques. 

To control a hand prosthesis or robotic arm, the next 
step is to implement the proposed approach on an 
embedded system. It is also necessary to assess the 
movement identification system using sEMG signals 
obtained from handicapped persons to verify the 
performance of the system.
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