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ABSTRACT: An analytical method and the closed-form expressions derived in a companion paper are used to evaluate the induced 
elastic bending moments and second-order deflections in slender prismatic columns with initial geometric imperfections (i.e., 
initial curvature and out-of-plumbness) and semirigid connections when the columns are subjected to eccentric axial loads at 
both ends. Comparisons of the induced elastic moments, the second-order deflections, and the critical loads obtained using the 
proposed approach, and those available in the technical literature for classic column cases are presented herein. Also, sensitivity 
studies and several examples are presented in detail which demonstrate the effectiveness and accuracy of the proposed closed-form 
equations and the importance of initial imperfections, semirigid connections, and lateral bracing on the second-order behavior 
and stability of beam-columns. Results obtained from the proposed equations are compared with those obtained using the FEM 
computer program ABAQUS, showing its simplicity and accuracy. The closed-form expressions can be used by researchers 
and structural engineers to investigate the effects of initial imperfections and semirigid connections on the elastic behavior 
of columns under heavy eccentric axial loads, including cases with relatively large deflections (< 0.1 times the column span).

KEY WORDS: Beam-columns, bracing, buckling, columns, computer applications, deflections, design, frames, large 
deflections, loads, reversals of deflections, second-order analysis, stability

RESUMEN: Un método analítico y expresiones cerradas derivadas en una publicación adjunta son utilizadas  para evaluar 
los momentos de flexión y deformaciones laterales elásticas de segundo-orden inducidas en columnas prismáticas esbeltas 
con conexiones semirrígidas y con imperfecciones iníciales geométricas (tales como curvatura y desplome iníciales) cuando 
son sometidas a fuerzas axiales excéntricas en ambos extremos. En esta publicación se presentan comparaciones de los 
momentos inducidos y las deformaciones de segundo-orden y las cargas críticas obtenidas utilizando el método propuesto 
con los otros métodos disponibles en la literatura técnica para los casos clásicos de columnas aisladas. También se presenta 
en detalle estudios de sensibilidad y ejemplos que demuestran la eficacia y la precisión del método propuesto y de sus 
ecuaciones cerradas mostrando la importancia de los efectos de las imperfecciones iníciales, conexiones semirrígidas y 
arriostramiento lateral en el análisis de segundo-orden y la estabilidad de vigas-columnas. Resultados obtenidos a partir 
del método propuesto y de sus ecuaciones y comparaciones con los obtenidos con el programa ABAQUS de elementos 
finitos. Investigadores e ingenieros estructurales pueden utilizar el método propuesto para estudiar los efectos combinados 
de las imperfecciones iniciales y las conexiones semirrígidas en el comportamiento elástico de columnas bajo grandes 
cargas axiales excéntricas incluyendo casos con deformaciones relativamente grandes (<0,1 veces el tamaño de columna).

PALABRAS CLAVE: Vigas-columnas, arriostramiento, pandeo, columnas, aplicaciones informáticas,  deflexiones,  diseño,  
marcos, grandes deflexiones, cargas, reversión de deflexiones,  análisis de segundo-orden, estabilidad

1.  INTRODUCTION

The effects of initial imperfections on the elastic 
response of slender columns subjected to axial loads 
were investigated by the writer in a companion paper 
[1].

Formulas that can be used in the analysis of columns 
that exceed the out-of-straightness and out-of-
plumbness tolerated by the construction codes are 
nonexistent in the technical literature. The main 
objective of this publication is precisely that, to 
present closed-form expressions for Euler-Bernoulli 
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columns with uninhibited, partially-inhibited, and 
totally-inhibited sidesway that can be used in their 
stability and second-order analyses. Comparisons of 
the induced elastic moments, second-order deflections 
and buckling loads obtained using the proposed 
approach with those available in the technical literature 
for classical column cases are presented. In addition, 
sensitive studies carried out using the proposed closed-
form expressions and the FEM computer program 
ABAQUS are presented in detail. These demonstrate 
the effectiveness and accuracy of the proposed 
equations and the importance of initial imperfections 
on the second-order behavior as well as the stability 
of prismatic columns with semirigid connections and 
lateral bracing.

2.  CLASSIC COLUMN CASES

Closed form expressions developed by Aristizabal-Ochoa 
listed in Table 1 (see [1]) are used herein to calculate the 
induced end moments, lateral deflections, and buckling axial 
loads of classical column cases with initial imperfections. 

2.1.  Columns with sidesway inhibited

2.1.1.  Column with initial curvature and equal end 
restraints

Using the expressions listed in Table 1 (see [1]), the end 
moments of the Fig. 1a column, assuming that D - Do = ea = 
eb = 0 and aκ

 = bκ
 = κ (or aρ

 = bρ  = ρ ) are as follows:
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Notice that symmetric buckling occurs only when the 
initial imperfection is also symmetric (i.e., when n = 
1, 3, 5...) with Ma = −Mb = Mo given by Eq. (2):
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Anti-symmetric buckling occurs only when the initial 
imperfection is also anti-symmetric (i.e., when n = 2, 
4, 6...) with Ma = Mb = Mo given by Eq. (3):
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Notice that for 1) r = 0 (i.e., perfectly pinned-pinned 
column), then from Eqs. (2) and (3), Mo = 0 for both 
symmetrical and anti-symmetrical buckling modes; 2) 
r = 1 (i.e., a perfectly clamped-clamped column), then 
from Eq. (2): 
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This expression is identical to that reported by 
Timoshenko and Gere [2] or n = 1 for the symmetrical 
buckling mode. Likewise, from Eq. (3)
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for the anti-symmetrical modes; and 3) the buckling 
loads for the symmetrical and anti-symmetrical modes 
can be calculated from the characteristic equations 
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[obtained by making the denominators of Eqs. 
(2) and (3) equal to zero], respectively. These last 
two expressions are identical to that reported by 
Timoshenko and Gere [2].

The lateral deflection along the column can be obtained 
from the expressions listed at the bottom of Table 1 for 
symmetric and anti-symmetric buckling. For instance, 
for the symmetric case u(x) and u(h/2), these are as 
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follows:
  

∑
= 

















 π

φ-π

φ
+








-






φ+






φφ=

,..5,3,1
22

2
sin

)(
1cossin)2/tan()(

n
n

o
h
xna

nh
x

h
x

P
M

xu

   	
(4)

                ( )∑
= 











π

φ-π

φ
+

φ
φ-

=
,..5,3,1

22

2
2/sin

)()2/cos(
)2/cos(1)2/(

n
n

o na
nP

M
hu 				    (5)

For n = 1 with the maximum moment along the column occurring at mid-span: 

Mat h/2= P[u(h/2) + u1(h/2)] + Mo .=
2
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Figure 1. Imperfect column cases analyzed with equations from Table 1 and the FEM program ABAQUS. a) Column with 
identical rotational restraints and sidesway inhibited; (b) Column hinged at B and with rotational restraint at A and sidesway 
inhibited; (c) Column with identical rotational restraints and sidesway uninhibited; and (d) Column with identical rotational 

restraints and sidesway partially inhibited by lateral spring SD

Expressions (5) and (6) are identical to those reported 
by Timoshenko and Gere [2].

2.1.2.  Column with initial curvature and unequal 
end restraints 

The end moments and the corresponding buckling axial 
loads of the Fig. 1a column are derived next, assuming 

that ∆ − Do = ea = eb = 0 and aκ  ¹ bκ  (or aρ  ¹ bρ ) 
and the results are compared with those presented by 
Timoshenko and Gere [2].

Using Eqs. (2,4, and 5), the end moments Ma and Mb 
can be calculated directly. Now the buckling loads can 
be the obtained by making De, given by Eq. (5), equal 
to zero, obtaining the following characteristic equation:
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For the particular case of ra = ρ, ρb = 0, the moment at 
A is reduced to the following expression:
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Notice that when: 1) r = 0 (i.e., perfectly pinned-pinned 
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and 3) the buckling loads for all modes can be 
calculated from the characteristic equation 1tan/ =φφ  
identical to that reported in the technical literature [2]. 
The bending moment and lateral deflection along the 
column can be obtained using (6) and (7) making  
∆ − Do = 0.

2.2.  Columns with sidesway

The induced end moments, the lateral sway ∆ − Do, 
and the corresponding buckling axial loads of column 
of Figs. 1b and 1c, are derived in this section, and 
the results are compared with those presented by 
Timoshenko and Gere [2]. Using Eqs. (6) and (7), 
the end moments Ma and Mb, and lateral sway ∆ − Do 
can be calculated directly for columns with sidesway 
partially inhibited and the corresponding buckling loads 
obtained by making De, given by Eq. (5), equal to zero, 
as previously explained.

For the particular case of columns with different end 
restraints (ra ¹ rb) and S∆ = 0, the characteristic equation 
is reduced to
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  Now, when ea ¹ eb, the moments Ma and Mb, and lateral 

sway obtained using Eq. (6) are as follows:                   
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For the particular case of a column with clamped ends (ra = rb = 1), the moments Ma and Mb become
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The buckling loads for all modes can be calculated from 
the characteristic equation ∞=φ 2/tan  or π=φ  (n 
= 1, 3, 5…) identical to that which is reported in the 

technical literature. In the particular case of a cantilever 
column with aρ = ρ and bρ = 0, the end moments and 
lateral sway are reduced to:
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For the particular case of a perfectly clamped cantilever column (i.e., ρ = 1) with initial imperfections:
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These results are identical to those obtained from a 
linear elastic (first-order) analysis.

3.  SENSITIVITY STUDIES AND VERIFICATION 
WITH ABAQUS

A series of sensitivity studies were carried to study 
the variations of the induced moment at end A Ma, the 
maximum lateral deflection along the span, as well as 
the ratio Ma/Mmax (i.e., negative moment at end A to the 
maximum positive moment along the column) for the 
column cases shown by Figs. 1(a)–(d) as the axial load 
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is increased from zero to critical load (normalized with 
regard to Pe = p2EI/h2) with the fixity factor ρ varying 
from 0 to 1 (i.e., from perfectly-hinged to clamped-end 
conditions)

Figures 2–9 show these three variations in detail for the 
slender columns of Fig. 1, with an initial imperfection 
at midspan of a = h/1000 (assuming sinusoidal and 
parabolic initial shapes) and out-of-plumb Do= h/500. 
The four column cases were analyzed using the 
proposed closed-form expressions listed in Table 1 
and the FEM computer program ABAQUS. The FEM 
model consisted of 300 segments (B22H elements form 
the ABAQUS library), requiring 500 iterations and 
about 4 min of CPU time in a standard Pentium 4 PC.

Based on the results shown in Figs. 2–5 for columns 
of Fig. 1(a)–(b) with sidesway inhibited (i.e., ∆ − Do = 0), 
the following conclusions can be drawn:

1) The induced moments, lateral deflections and critical 
loads  are not affected by the initial out-of-plumb Do 

as indicated by Eqs. (1–7). This is true as long as Do/h 
is small (< 0.1).

2) As expected, the end moments, maximum moment 
along the span, and lateral deflections are highly 
affected by the degree of fixity at the end supports and 
the magnitude and shape of the initial imperfection 
along the member.

3) The results obtained using the proposed closed-
form expressions listed in Table 1 (see Ref. [1]) and 
the FEM computer program ABAQUS are in excellent 
agreement.

Based on the results shown in Figs. 6–9 for columns 
of Fig. 1c–d with sidesway uninhibited and partially 
inhibited (i.e., ∆ − Do ≠  0),  the following conclusions 
can be drawn:

1) The induced moments, lateral deflections, and 
critical loads  are affected by the initial out-of- plumb 
Do as indicated by Eqs. (8)–(12).

Figure 2. Effects of end fixity on the second-order response of column of Fig. 3a (assuming sinusoidal initial shape with a = 
h/1000, Do = h/500). Variations of: (a) Ma/Pea; (b) uat h/2/h); and (c) Ma/Mmax with P/Pe (where Pe = p2EI/h2)
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Figure 3. Effects of end fixity on the second-order response of column of Fig. 3a (assuming parabolic initial shape with a = 
h/1000, Do = h/500). Variations of (a) Ma/Pea; (b) uat h/2/h; and (c) Ma/Mmax with P/Pe (where Pe = p2EI/h2)

Figure 4. Effects of end fixity on the second-order response of the Fig. 3b column (assuming sinusoidal initial shape with a 
= h/1000, Do = h/500). Variations of (a) Ma/Pea; (b) umax/ h); and (c) Ma/Mmax with P/Pe (where Pe = p2EI/h2)
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Figure 5. Effects of end fixity on the second-order response of column of Fig. 3b (assuming a parabolic initial shape with a 
= h/1000, Do = h/500). Variations of: (a) Ma/Pea; (b) uat h/2/h); and (c) Ma/Mmax with P/Pe (where Pe = p2EI/h2).

Figure 6. Effects of end fixity on the second-order response of the Fig. 3c column (assuming a sinusoidal initial shape with 
a = h/1000, Do = h/500). Variations of: (a) Ma/ Pea; (b) (D - Do)/h; and (c) Ma/Mmax with P/Pe (where Pe = p2EI/h2)
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Figure 7. Effects of end fixity on the second-order response of the Fig. 3c column (assuming a parabolic initial shape with a 
= h/1000, Do = h/500). Variations of: (a) Ma/Pea; (b) (D - Do)/h; and (c) Ma/Mma with P/Pe (where Pe = p2EI/h2)

Figure 8. Effects of end fixity on the second-order response of the Fig. 3d column (assuming sinusoidal initial shape with a 
= h/1000, Do = h/500, and SD = 10EI/h. Variations of: (a) Ma/Pea; (b) (D - Do)/h; and (c) Ma/Mmax with P/Pe (where Pe = p2EI/

h2)
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Figure 9. Effects of end fixity on the second-order response of the Fig. 3d column (assuming a parabolic initial shape with a 
= h/1000, Do = h/500, and SD = 10EI/h3). Variations of: (a) Ma/Pea; (b) uat h/2/h; and (c) Ma/Mmax. with P/Pe (where Pe = p2EI/

h2).

2) Figs. 6(c) and 9(c) indicate that as the axial load 
increases in the columns of Figs. 1(c)–(d), the end 
moments Ma and Mb tend to become an equal magnitude 
and opposite (i.e., Ma = −Mb).

3) The results obtained using the proposed closed-form 
expressions listed in Table 1 and the FEM computer 
program ABAQUS are in excellent agreement only up 
to the critical axial load; and

4) It was found that for Do/h = 0.002 and 0.10, the 
calculated values for Ma are slightly smaller than those 
from the FEM program ABAQUS using the proposed 
method with differences of about 0.05% and 2.8%, 
respectively. This indicates that the proposed closed-
form expressions for columns with sidesway can be 
used with excellent accuracy as long as Do/h is small 
(<0.1), as stated previously.

Notice that: 1) all curves in Figs. 2(a)–5(a) and 8(a) and 
9(a) have a point in common, indicating that the Figs. 
3(a), 3(b) and 3(d) columns develop the same moment 
at end A when the applied axial load reaches P = Pe = 
p2EI/h2 for rotational fixities ρ > 0; 2) the curves in Figs. 

2–9 can be used to directly calculate the end moment 
(Ma), the lateral deflection uh/2 or (∆ − Do), and the 
maximum moment (Mmax.) for the four column cases 
shown in Fig. 1, assuming that a = h/1000 (sinusoidal 
initial shapes) and out-of-plumbness Do = h/500; and 3). 
Critical loads obtained using the proposed method can 
also be calculated with simplified expressions presented 
previously by Aristizabal-Ochoa (1994) (see Ref. [1]).

4.  SUMMARY AND CONCLUSIONS

Several examples and closed-form solutions are 
presented which illustrate the effects of initial curvature, 
out-of-plumbness, and the end eccentricities on the 
induced bending moments, second-order deflections of 
slender prismatic columns with semirigid connections 
at both ends and with uninhibited, partially-inhibited, 
and totally-inhibited sidesway as the applied axial 
load is increased. The proposed closed-form solutions 
enable the analyst to explicitly evaluate these effects 
on their nonlinear elastic response and lateral stability. 
It is a common practice in the design of columns that 
the effects of initial geometric imperfections are taken 
into account for specific values according to accepted 
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fabrication and erection tolerances. However, to 
investigate these effects when the magnitudes and shape 
of the imperfections are different from those adopted 
by the construction codes becomes a cumbersome task. 
Therefore, the proposed closed-form expressions might 
become a practical tool of great interest to structural 
designers and researchers to further the study of these 
effects in accordance with design practices and code 
specifications.

Analytical results and sensitivity studies indicate that 
the second-order response including the end reactions, 
bending moments, and deflections along a column are 
highly affected by the shape and magnitude of the initial 
imperfections, eccentricities of the applied axial load, 
the end fixities, and lateral bracing. Unlike a perfectly 
straight column, plumbed and loaded concentrically, 
which ideally remains straight up to its critical axial 
load, an imperfect column begins to bend as soon as the 
axial is applied with its end reactions, bending moments 
and deflections along a column, all increasing rapidly 
as the applied axial load increases, and consequently 
reaching inelastic strains at axial loads lower than that 
at the critical value of a perfect column. The larger the 
initial imperfections and the applied axial loads, the 
larger are the end reactions, bending moments, and 
deflections along a column. Thus columns with large 
initial imperfections, particularly those with a relatively 
large camber at midspan, can be expected to become 
unstable and fail at axial loads much below the critical 

load, while relatively straight and plumbed columns 
loaded concentrically will be able to support axial loads 
very close to their ideal critical load. In practice, the 
stability of columns is improved greatly by providing 
lateral support (bracing) against sidesway and large 
bending restraints against end rotations, and by reducing 
the initial imperfections, particularly the initial camber.
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