
Dyna, year 79, Nro. 172, pp. 77-84. Medellin, april, 2012. ISSN 0012-7353

SOLUTION OF THE MATHEMATICAL MODEL OF A NONLINEAR
DIRECT CURRENT CIRCUIT USING PARTICLE SWARM

OPTIMIZATION

SOLUCIÓN DEL MODELO MATEMÁTICO DE UN CIRCUITO
ELECTRÓNICO NO LINEAL EN CORRIENTE DIRECTA

MEDIANTE OPTIMIZACIÓN POR ENJAMBRE DE PARTÍCULAS

IVÁN AMAYA
Ph.D.(c), Universidad Industrial de Santander, iamaya2@gmail.com

JORGE CRUZ
Universidad Industrial de Santander, mrcrois@hotmail.com

RODRIGO CORREA
Ph.D., Professor ,Universidad Industrial de Santander, crcorrea@uis.edu.co

Received for review June 1th, 2011, accepted February 9 th, 2012, final version February, 15th, 2012

ABSTRACT: This article describes a numeric strategy focused on the solution of nonlinear systems of equations, frequently found in the
analysis of electronic circuits. This strategy is based on the use of the particle swarm optimization (PSO) algorithm, as an alternative to
the traditional Newton-Raphson. First, and as a demonstrative example, a circuit composed of two resistors and a diode were considered.
Afterwards, a more complex one comprising one current source, four resistors, and two diodes was implemented. Based on the results,
it was observed that the solution alternative is very attractive for solving these kinds of circuits, regardless of their size and complexity.

KEYWORDS: Particle swarm optimization, mathematical model, non-linear electronic circuit, direct current

RESUMEN: El presente artículo describe una estrategia numérica orientada hacia la solución de sistemas de ecuaciones no lineales que con frecuencia
aparecen en el análisis de circuitos electrónicos. Esta estrategia se fundamenta en el uso del algoritmo de optimización de enjambre de partículas (PSO),
como alternativa al tradicionalNewton-Raphson. Se tomó inicialmente, a título de ejemplo demostrativo, un circuito compuesto de dos resistencias
lineales y un diodo. Seguidamente se utiliza otro ligeramente más complejo, constituido por una fuente de corriente, cuatro resistencias y dos diodos.
Se encontró que el PSO posee mayor robustez frente al método tradicional. Fundamentado en estos resultados, se observó que esta alternativa de
solución tiene características muy atractivas cuando se requiere solucionar este tipo de circuitos independientemente de su tamaño y complejidad.

PALABRAS CLAVE: Optimización mediante enjambre de partículas, modelo matemático, circuito electrónico no lineal, corriente directa.

1. INTRODUCTION

Nonlinear circuits represent a broad range of situations
for electronics engineers. Simple, ideal, and linear models
can work fine for simple digital electronic circuits, which
are composed of integrated circuits (IC). However, the
fact of including a common electronic device, such as a
diode, takes the scope into the non-linear environment.
One approach used to solve this type of system requires the
calculation of an operation point under dc sources. In order
to reachthis point, several techniques can be used, including
Newton-Rapshon’s method for solving a system of nonlinear
equations. However, its restrictions are well known,

including divergences (if the starting point is not chosen
well) and excessive amounts of computation time for bigger
systems (due to the requirement of storing and evaluating the
function and its Jacobian)[1]. In this article, some simulation
results using PSO as an optimization strategy to solve the
non-linear system of equations are shown.

2. FUNDAMENTALS

2.1. Nonlinear dc circuits

Traditional linear circuits can be modeled (and solved)
through strategies such as modal analysis. A nonlinear

Amaya - et al78

dc circuit poses a restriction on the solution, forcing one
to replace the nonlinear components (such as diodes) by
a linearized equivalent circuit. Since this is only valid
for a given point (i.e., an operating condition), a second
calculation needs to be performed, using the previously
achieved information to generate a new solution. This
process needs to be continued until a stable solution
is obtained. Among the most used strategies, thereare
also the analytic, graphical, and numerical ones. The
first solution has some advantages, such as global
knowledge of the variable behavior, but for most non-
linear systems it is almost impossible to achieve. On
the other hand, the graphical approach (e.g., the load
line method) is good for visualizing the effects of the dc
source and the load resistance in the circuit’s operating
points. However, it has the drawback of being only
able to provide approximate values, whose margin of
error is associated with the plot’s resolution. Numerical
techniques, however, offer an approximation method
whose error can be user-defined. An approach of this
kind that has been traditionally used is the piecewise-
linear method, which can be solved analytically or
graphically, but whose downside resides in providing
multiple solutions that need to be evaluated in order
to determine whether they are valid or virtual (i.e., not
valid) ones.

Another methodology that has been used in this field is
the Newton-Rapshon method (NR) for solving systems
of equations, which can be applied to the nonlinear
model or to its linearized equivalent [2–6]. Since this
approach is an iterative one, the error margin can be
defined by the user, therefore adjusting the solution to
a desired precision. Baldick [7]qualitatively analyzed
the computational effort of three alternatives, which
can be used for solving the same example illustrated in
this article. They are the NR, chord, and quasi-Newton
methods. According to his analysis, the NR method
requires relatively few iterations but the computational
effort per iteration is high. The chord method requires
less effort per iteration, on average, than NR, but the
total one may be bigger due to the increased number
of iterations required to achieve a desired accuracy.
Quasi-Newton methods often have the best overall
performance because of the reduced effort per iteration
compared to the NR method. Nevertheless, a precise
analysis must include the type of functions to be solved
and by no means is a general rule.

2.2. Particle swarm optimization (PSO)

PSO was born in 1995 thanks to Eberhart and
Kennedy[8], who studied the social behavior of some
animal groups when looking for new sources of food.
Unlike other evolutionary approaches (e.g.,genetic
algorithms), PSO is cooperative, sharing information
with neighboring particles [9,10]. Neighborhoods
may have different topologies, so this is a key point
for branches and variations. In its traditional form,
the neighborhood is composed of all the particles
in the swarm, so every better point found will be
communicated to them. Another key point is related
to the way its basic equations (position and speed)
are updated, traditionally given by (1) and (2), where
, represent pointers for each position and time step,
respectively; is a particle’s position; its speed; an
inertia factor to limit the effect of its previous speed; are
the self and swarm trust factors; are random numbers
(uniformly distributed) between zero and one; is the
best position each particle has found, see (3); and is
the best position of the entire swarm, which can be
calculated with (4). Since several articles have been
published about the use of PSO, and due to space
restrictions, a deeper explanation of the method is not
provided. However, the interested reader can find useful
information in [8,9].

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

(1)

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

(2)

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

(3)

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

(4)

One way to implement this algorithm is:

1.	 Assign a random initial position and zero speed
for each particle.

2.	 Evaluate the objective function (user-defined) and
find

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

3.	 Update the position and speed for each particle
with (1) and(2).

Dyna 172, 2012 79

4.	 Evaluate the objective function.

5.	 Compare, for each particle, the evaluated value and

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 If it is lower, then update

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

6.	 Select the best particle and compare it to

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

If lower, then update

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

7.	 Compare

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 with convergence criteria. If it
does not comply, return to 3.

If the solution of a system of equations could
be transformed into an optimization problem,
metaheuristic approaches would be useful to quickly
and accurately find an answer, thus optimizing
computer resources. Therefore, this study is carried out
in order to analyze how PSO can be useful for solving
this electronic engineeringproblem. The following
theorem shows how it is possible to transform the
solution of the nonlinear equations system into an
optimization one [11].

Theorem: Real Roots

LetXbe a subset of

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 and consider the system (3),
where, for each i, fi is a function whose domain contains
X, and whose range is within the real numbers. Let

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 be defined by (3), (note that f is properly
defined).

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

(5)

besides:

Proposition 1.Suppose that (3)has solution in and let

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 Therefore,

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 satisfies (3)if,
and only if,

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 minimizes f.

Proof. If

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 satisfies (3), then

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 for each

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 Therefore,

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 and since

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 for every

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

, then

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 is a minimum for

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

.

Now, if

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 minimizes

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 but does not satisfy (3), then

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

must be a positive number since

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 for every

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

. Given that the system has a solution in , there

exists an

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 that makes

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 and

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

. Therefore,

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 which violates

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 being the
minimum for

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

. Note that the general condition on the
consistency of the system is vital since it is always possible
to construct

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 for a given system and, if

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 minimizes it,
it does not imply that a solution exists. Therefore, finding
the roots for a system of nonlinear equations over a given
set

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 can be transformed into an optimization problem
(minimization for this case) of the function

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 over the set

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

. An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and the set

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

Step 1: Build

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

Step 2: Minimize

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

 over

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

.

Step 3: Let

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

 a minimum for

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

. If

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

 then

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

satisfies (3). Otherwise, it does not have solution on

is related to the way its basic equations (position
and speed) are updated, traditionally given by (1)
and (2) , where , represent pointers for each
position and time step, respectively; is a
particle’s position; its speed; an inertia
factor to limit the effect of its previous speed;
 are the self and swarm trust factors;
are random numbers (uniformly distributed)
between zero and one; is the best position
each particle has found, see (3); and is the
best position of the entire swarm, which can be
calculated with (4). Since several articles have
been published about the use of PSO, and due to
space restrictions, a deeper explanation of the
method is not provided. However, the interested
reader can find useful information in [8], [9].

 (1)

(2)

 (3)

 (4)

One way to implement this algorithm is:

1. Assign a random initial position and zero
speed for each particle.

2. Evaluate the objective function (user-
defined) and find .

3. Update the position and speed for each
particle with (1) and (2).

4. Evaluate the objective function.
5. Compare, for each particle, the evaluated

value and . If it is lower, then update
 .

6. Select the best particle and compare it to
 . If lower, then update .

7. Compare with convergence criteria. If
it does not comply, return to 3.

If the solution of a system of equations could be
transformed into an optimization problem,
metaheuristic approaches would be useful to
quickly and accurately find an answer, thus
optimizing computer resources. Therefore, this
study is carried out in order to analyze how PSO

can be useful for solving this electronic
engineering problem. The following
theorem shows how it is possible to
transform the solution of the nonlinear
equations system into an optimization one
[11].

Theorem: Real Roots

Let X be a subset of and consider the
system (3), where, for each i, fi is a
function whose domain contains X, and
whose range is within the real numbers.
Let be defined by (3), (note
that f is properly defined).

(5)

besides:

Proposition 1. Suppose that (3) has
solution in and let
 . Therefore,
satisfies (3) if, and only if, minimizes f.

Proof. If satisfies (3), then for
each Therefore,
and since for every , then
 is a minimum for .

Now, if minimizes but does not
satisfy (3), then must be a positive
number since for every .
Given that the system has a solution in ,
there exists an that makes
 and . Therefore,
 which violates being the
minimum for . Note that the general
condition on the consistency of the system
is vital since it is always possible to
construct for a given system and, if
minimizes it, it does not imply that a
solution exists. Therefore, finding the
roots for a system of nonlinear equations
over a given set can be transformed into
an optimization problem (minimization
for this case) of the function over the set

.

Based on this theorem, a PSO algorithm was used to
generate a real root of the system with a given precision
of

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

, instead of using it to generate the starting
point for Newton’s direct root method.

3. EXPERIMENTS AND RESULTS

3.1. Simple Circuit

Figure 1 shows the test circuit for a simple case, where
only one nonlinear element is used. This was used as a
test, to verify that the algorithm provided correct results.
The mathematical model that reflects its behavior is given
by (6), where

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

 is the saturation current of the diode,

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

 its thermal voltage,

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

 its current operating point,
and

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

 its current. After combining the equations, the
objective function shown in (7) is obtained.

Figure 1. Simple nonlinear dc circuit used for comparing
PSO and NR approaches.

Amaya - et al80

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

(6)

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

 . An algorithm containing this is as follows:

Algorithm 1

Input: The nonlinear equations system (3) and
the set
Step 1: Build
Step 2: Minimize over .
Step 3: Let a minimum for . If
then satisfies (3). Otherwise, it does not have
solution on .

Based on this theorem, a PSO algorithm was
used to generate a real root of the system with a
given precision of , instead of using it
to generate the starting point for Newton’s direct
root method.

3. EXPERIMENTS AND RESULTS

3.1 Simple Circuit

Figure 1 shows the test circuit for a simple case,
where only one nonlinear element is used. This
was used as a test, to verify that the algorithm
provided correct results. The mathematical model
that reflects its behavior is given by (6), where
 is the saturation current of the diode, its
thermal voltage, its current operating point,
and its current. After combining the
equations, the objective function shown in (7) is
obtained.

Figure 1. Simple nonlinear dc circuit used for
comparing PSO and NR approaches.

(6)

(7)

Figure 2 shows the average convergence
time for three different starting search
spaces. Even though the graphic suggests
that there is dependence, it can be seen
from Figure 3, that this is not true, since it
really is an effect of the combination of
the averages for each swarm size.

Figure 2. Average convergence time for each
initial search space

Figure 3. Average convergence time for each
initial search space, discriminated by each
swarm size

Table 1 shows three test configurations,
which were used to determine a parameter
sensibility analysis over the PSO method,
striving to analyze the way in which the
convergence time varied. Figure 4
summarizes the data obtained, showing
how PSO behaves under different
parameters and amount of particles. It can

(7)

Figure 2 shows the average convergence time for three
different starting search spaces. Even though the graphic
suggests thatthere is dependence, it can be seen from
Figure 3, that this is not true, since it really is an effect
of the combination of the averages for each swarm size.

Figure 2. Average convergence time for each initial
search space

Figure 3. Average convergence time for each initial

search space, discriminated by each swarm size

Table 1 shows three test configurations, which were used
to determine a parameter sensibility analysis over the
PSO method, striving to analyze the way in which the
convergence time varied. Figure 4 summarizes the data
obtained, showing how PSO behaves under different
parameters and amount of particles. It can be seen that
especially for big swarms, the effects over

be seen that especially for big swarms, the effects
over and are noticed. Figure 5 shows the
variation in convergence time for a point close to
the solution and a further one. Once again it is
seen that the starting search space does not
heavily affect the response time (especially for
big swarms).
Table 1. Test configurations used for parameter
sensibility analysis. SI units are assumed

Test Set Circuit Parameters

1

2

3

Figure 4. Time variation for each set of parameters
and three different swarm sizes

Figure 5. Average convergence time variation as a
function of the swarm size, for two different starting
search spaces

3.2 More complex circuit

Based on [7], and considering that results are
already available, a test circuit was chosen. The
non-linear model that reflects its behavior is
given by the system of Eqs. (8), where each of

the variables, as well as the electronic
circuit, is shown in Figure 6.

(8)

Figure 6. More complex nonlinear dc circuit
used for comparing PSO and NR approaches

It is known that,

(9)

and,

 (10)

Since the idea is to compare results
against validated data, the same constants
that Baldick proposed, were chosen [7]:

(11)

Once again, the equations are combined
into a single expression, representing the
objective function (12). A computer with
the following specifications was used to
solve the system:

 and

be seen that especially for big swarms, the effects
over and are noticed. Figure 5 shows the
variation in convergence time for a point close to
the solution and a further one. Once again it is
seen that the starting search space does not
heavily affect the response time (especially for
big swarms).
Table 1. Test configurations used for parameter
sensibility analysis. SI units are assumed

Test Set Circuit Parameters

1

2

3

Figure 4. Time variation for each set of parameters
and three different swarm sizes

Figure 5. Average convergence time variation as a
function of the swarm size, for two different starting
search spaces

3.2 More complex circuit

Based on [7], and considering that results are
already available, a test circuit was chosen. The
non-linear model that reflects its behavior is
given by the system of Eqs. (8), where each of

the variables, as well as the electronic
circuit, is shown in Figure 6.

(8)

Figure 6. More complex nonlinear dc circuit
used for comparing PSO and NR approaches

It is known that,

(9)

and,

 (10)

Since the idea is to compare results
against validated data, the same constants
that Baldick proposed, were chosen [7]:

(11)

Once again, the equations are combined
into a single expression, representing the
objective function (12). A computer with
the following specifications was used to
solve the system:

 are
noticed. Figure 5 shows the variation in convergence time
for a point close to the solution and a further one. Once again
it is seen that the starting search space does not heavily affect
the response time (especially for big swarms).

Table 1. Test configurations used for parameter sensibility
analysis. SI units are assumed

be seen that especially for big swarms, the effects
over and are noticed. Figure 5 shows the
variation in convergence time for a point close to
the solution and a further one. Once again it is
seen that the starting search space does not
heavily affect the response time (especially for
big swarms).
Table 1. Test configurations used for parameter
sensibility analysis. SI units are assumed

Test Set Circuit Parameters

1

2

3

Figure 4. Time variation for each set of parameters
and three different swarm sizes

Figure 5. Average convergence time variation as a
function of the swarm size, for two different starting
search spaces

3.2 More complex circuit

Based on [7], and considering that results are
already available, a test circuit was chosen. The
non-linear model that reflects its behavior is
given by the system of Eqs. (8), where each of

the variables, as well as the electronic
circuit, is shown in Figure 6.

(8)

Figure 6. More complex nonlinear dc circuit
used for comparing PSO and NR approaches

It is known that,

(9)

and,

 (10)

Since the idea is to compare results
against validated data, the same constants
that Baldick proposed, were chosen [7]:

(11)

Once again, the equations are combined
into a single expression, representing the
objective function (12). A computer with
the following specifications was used to
solve the system:

Figure 4. Time variation for each set of

parameters and three different swarm sizes

Figure 5. Average convergence time variation as a

function of the swarm size, for two different starting
search spaces

Dyna 172, 2012 81

3.2. More complex circuit

Based on [7], and considering that results are already
available, a test circuit was chosen. The non-linear
model that reflects its behavior is given by the system
of Eq.(8), where each of the variables, as well as the
electronic circuit, is shown in Figure 6.

be seen that especially for big swarms, the effects
over and are noticed. Figure 5 shows the
variation in convergence time for a point close to
the solution and a further one. Once again it is
seen that the starting search space does not
heavily affect the response time (especially for
big swarms).
Table 1. Test configurations used for parameter
sensibility analysis. SI units are assumed

Test Set Circuit Parameters

1

2

3

Figure 4. Time variation for each set of parameters
and three different swarm sizes

Figure 5. Average convergence time variation as a
function of the swarm size, for two different starting
search spaces

3.2 More complex circuit

Based on [7], and considering that results are
already available, a test circuit was chosen. The
non-linear model that reflects its behavior is
given by the system of Eqs. (8), where each of

the variables, as well as the electronic
circuit, is shown in Figure 6.

(8)

Figure 6. More complex nonlinear dc circuit
used for comparing PSO and NR approaches

It is known that,

(9)

and,

 (10)

Since the idea is to compare results
against validated data, the same constants
that Baldick proposed, were chosen [7]:

(11)

Once again, the equations are combined
into a single expression, representing the
objective function (12). A computer with
the following specifications was used to
solve the system:

(8)

Figure 6. More complex nonlinear dc circuit used for

comparing PSO and NR approaches

It is known that

be seen that especially for big swarms, the effects
over and are noticed. Figure 5 shows the
variation in convergence time for a point close to
the solution and a further one. Once again it is
seen that the starting search space does not
heavily affect the response time (especially for
big swarms).
Table 1. Test configurations used for parameter
sensibility analysis. SI units are assumed

Test Set Circuit Parameters

1

2

3

Figure 4. Time variation for each set of parameters
and three different swarm sizes

Figure 5. Average convergence time variation as a
function of the swarm size, for two different starting
search spaces

3.2 More complex circuit

Based on [7], and considering that results are
already available, a test circuit was chosen. The
non-linear model that reflects its behavior is
given by the system of Eqs. (8), where each of

the variables, as well as the electronic
circuit, is shown in Figure 6.

(8)

Figure 6. More complex nonlinear dc circuit
used for comparing PSO and NR approaches

It is known that,

(9)

and,

 (10)

Since the idea is to compare results
against validated data, the same constants
that Baldick proposed, were chosen [7]:

(11)

Once again, the equations are combined
into a single expression, representing the
objective function (12). A computer with
the following specifications was used to
solve the system:

(9)

and,

be seen that especially for big swarms, the effects
over and are noticed. Figure 5 shows the
variation in convergence time for a point close to
the solution and a further one. Once again it is
seen that the starting search space does not
heavily affect the response time (especially for
big swarms).
Table 1. Test configurations used for parameter
sensibility analysis. SI units are assumed

Test Set Circuit Parameters

1

2

3

Figure 4. Time variation for each set of parameters
and three different swarm sizes

Figure 5. Average convergence time variation as a
function of the swarm size, for two different starting
search spaces

3.2 More complex circuit

Based on [7], and considering that results are
already available, a test circuit was chosen. The
non-linear model that reflects its behavior is
given by the system of Eqs. (8), where each of

the variables, as well as the electronic
circuit, is shown in Figure 6.

(8)

Figure 6. More complex nonlinear dc circuit
used for comparing PSO and NR approaches

It is known that,

(9)

and,

 (10)

Since the idea is to compare results
against validated data, the same constants
that Baldick proposed, were chosen [7]:

(11)

Once again, the equations are combined
into a single expression, representing the
objective function (12). A computer with
the following specifications was used to
solve the system:

(10)

Since the idea is to compare results against validated
data, the same constants that Baldick proposed, were
chosen[7]:

be seen that especially for big swarms, the effects
over and are noticed. Figure 5 shows the
variation in convergence time for a point close to
the solution and a further one. Once again it is
seen that the starting search space does not
heavily affect the response time (especially for
big swarms).
Table 1. Test configurations used for parameter
sensibility analysis. SI units are assumed

Test Set Circuit Parameters

1

2

3

Figure 4. Time variation for each set of parameters
and three different swarm sizes

Figure 5. Average convergence time variation as a
function of the swarm size, for two different starting
search spaces

3.2 More complex circuit

Based on [7], and considering that results are
already available, a test circuit was chosen. The
non-linear model that reflects its behavior is
given by the system of Eqs. (8), where each of

the variables, as well as the electronic
circuit, is shown in Figure 6.

(8)

Figure 6. More complex nonlinear dc circuit
used for comparing PSO and NR approaches

It is known that,

(9)

and,

 (10)

Since the idea is to compare results
against validated data, the same constants
that Baldick proposed, were chosen [7]:

(11)

Once again, the equations are combined
into a single expression, representing the
objective function (12). A computer with
the following specifications was used to
solve the system:

(11)

Once again, the equations are combined into a single
expression, representing the objective function (12). A
computer with the following specifications was used
to solve the system:

Manufacturer: TOSHIBA

Model: Satellite A665

Processor: Intel(R) Core(TM) i7 CPU, Q 740 @
1.73GHz, 1.73GHz

Installed memory (RAM): 6.00GB

OS: Microsoft(R) Windows(TM) 7 Home Premium

System type: 64-bit OS

Manufacturer: TOSHIBA
Model: Satellite A665
Processor: Intel(R) Core(TM) i7 CPU, Q 740 @
1.73GHz, 1.73GHz
Installed memory (RAM): 6.00GB
OS: Microsoft(R) Windows(TM) 7 Home
Premium
System type: 64-bit OS

(12)

Commercial software (Matlab™), with the
Newton-Raphson method, was used to obtain the
solution of the test circuit, providing the values
of (13).

(13)

On the other hand, PSO was implemented, with
the same commercial software and in the same
computer, giving the values shown in (14).

(14)

Figure 7. Approximation error for the PSO
implementation of the test circuit and difference of
(between the Newton-Raphson and PSO methods)

Figure 8. Average convergence time for each
initial search space.

Figure 9. Average convergence time for each
initial search space, discriminated by each
swarm size

The constants used during the simulations
were and . For 2000
particles, the solution was found in an
average time of 98.59 seconds and in 586
iterations. Figure 7 shows the
approximation error (i.e., squared function
values) for each of the four analysis
points. As it can be seen, the error margin
was always lower than , which
was the user defined precision. In a
similar fashion, the difference between the
results given by the Newton-Raphson
approach and the PSO one, were also in
this margin, as can be seen in Figure 7.

Furthermore, more complex tests were
performed on the PSO algorithm,
checking for variation in convergence
time and required number of iterations,
mainly. To do so, several runs of the
program were executed, varying
parameters such as swarm size and
starting search space. As can be seen in
Figure 8, this does not affect the
convergence time (nor the required
number of iterations), or at least, not
linearly. The previously mentioned figure

(12)

Commercial software (Matlab™), with the Newton-
Raphson method, was used to obtain the solution of
the test circuit, providing the values of (13).

Manufacturer: TOSHIBA
Model: Satellite A665
Processor: Intel(R) Core(TM) i7 CPU, Q 740 @
1.73GHz, 1.73GHz
Installed memory (RAM): 6.00GB
OS: Microsoft(R) Windows(TM) 7 Home
Premium
System type: 64-bit OS

(12)

Commercial software (Matlab™), with the
Newton-Raphson method, was used to obtain the
solution of the test circuit, providing the values
of (13).

(13)

On the other hand, PSO was implemented, with
the same commercial software and in the same
computer, giving the values shown in (14).

(14)

Figure 7. Approximation error for the PSO
implementation of the test circuit and difference of
(between the Newton-Raphson and PSO methods)

Figure 8. Average convergence time for each
initial search space.

Figure 9. Average convergence time for each
initial search space, discriminated by each
swarm size

The constants used during the simulations
were and . For 2000
particles, the solution was found in an
average time of 98.59 seconds and in 586
iterations. Figure 7 shows the
approximation error (i.e., squared function
values) for each of the four analysis
points. As it can be seen, the error margin
was always lower than , which
was the user defined precision. In a
similar fashion, the difference between the
results given by the Newton-Raphson
approach and the PSO one, were also in
this margin, as can be seen in Figure 7.

Furthermore, more complex tests were
performed on the PSO algorithm,
checking for variation in convergence
time and required number of iterations,
mainly. To do so, several runs of the
program were executed, varying
parameters such as swarm size and
starting search space. As can be seen in
Figure 8, this does not affect the
convergence time (nor the required
number of iterations), or at least, not
linearly. The previously mentioned figure

(13)

On the other hand, PSO was implemented, with the
same commercial software and in the same computer,
giving the values shown in (14).

Manufacturer: TOSHIBA
Model: Satellite A665
Processor: Intel(R) Core(TM) i7 CPU, Q 740 @
1.73GHz, 1.73GHz
Installed memory (RAM): 6.00GB
OS: Microsoft(R) Windows(TM) 7 Home
Premium
System type: 64-bit OS

(12)

Commercial software (Matlab™), with the
Newton-Raphson method, was used to obtain the
solution of the test circuit, providing the values
of (13).

(13)

On the other hand, PSO was implemented, with
the same commercial software and in the same
computer, giving the values shown in (14).

(14)

Figure 7. Approximation error for the PSO
implementation of the test circuit and difference of
(between the Newton-Raphson and PSO methods)

Figure 8. Average convergence time for each
initial search space.

Figure 9. Average convergence time for each
initial search space, discriminated by each
swarm size

The constants used during the simulations
were and . For 2000
particles, the solution was found in an
average time of 98.59 seconds and in 586
iterations. Figure 7 shows the
approximation error (i.e., squared function
values) for each of the four analysis
points. As it can be seen, the error margin
was always lower than , which
was the user defined precision. In a
similar fashion, the difference between the
results given by the Newton-Raphson
approach and the PSO one, were also in
this margin, as can be seen in Figure 7.

Furthermore, more complex tests were
performed on the PSO algorithm,
checking for variation in convergence
time and required number of iterations,
mainly. To do so, several runs of the
program were executed, varying
parameters such as swarm size and
starting search space. As can be seen in
Figure 8, this does not affect the
convergence time (nor the required
number of iterations), or at least, not
linearly. The previously mentioned figure

(14)

Amaya - et al82

Figure 7. Approximation error for the PSO

implementation of the test circuit and difference of

Manufacturer: TOSHIBA
Model: Satellite A665
Processor: Intel(R) Core(TM) i7 CPU, Q 740 @
1.73GHz, 1.73GHz
Installed memory (RAM): 6.00GB
OS: Microsoft(R) Windows(TM) 7 Home
Premium
System type: 64-bit OS

(12)

Commercial software (Matlab™), with the
Newton-Raphson method, was used to obtain the
solution of the test circuit, providing the values
of (13).

(13)

On the other hand, PSO was implemented, with
the same commercial software and in the same
computer, giving the values shown in (14).

(14)

Figure 7. Approximation error for the PSO
implementation of the test circuit and difference of
(between the Newton-Raphson and PSO methods)

Figure 8. Average convergence time for each
initial search space.

Figure 9. Average convergence time for each
initial search space, discriminated by each
swarm size

The constants used during the simulations
were and . For 2000
particles, the solution was found in an
average time of 98.59 seconds and in 586
iterations. Figure 7 shows the
approximation error (i.e., squared function
values) for each of the four analysis
points. As it can be seen, the error margin
was always lower than , which
was the user defined precision. In a
similar fashion, the difference between the
results given by the Newton-Raphson
approach and the PSO one, were also in
this margin, as can be seen in Figure 7.

Furthermore, more complex tests were
performed on the PSO algorithm,
checking for variation in convergence
time and required number of iterations,
mainly. To do so, several runs of the
program were executed, varying
parameters such as swarm size and
starting search space. As can be seen in
Figure 8, this does not affect the
convergence time (nor the required
number of iterations), or at least, not
linearly. The previously mentioned figure

(between the Newton-Raphson and PSO methods)

Figure 8. Average convergence time for each initial search

space.

Figure 9. Average convergence time for each initial search

space, discriminated by each swarm size

The constants used during the simulations were

Manufacturer: TOSHIBA
Model: Satellite A665
Processor: Intel(R) Core(TM) i7 CPU, Q 740 @
1.73GHz, 1.73GHz
Installed memory (RAM): 6.00GB
OS: Microsoft(R) Windows(TM) 7 Home
Premium
System type: 64-bit OS

(12)

Commercial software (Matlab™), with the
Newton-Raphson method, was used to obtain the
solution of the test circuit, providing the values
of (13).

(13)

On the other hand, PSO was implemented, with
the same commercial software and in the same
computer, giving the values shown in (14).

(14)

Figure 7. Approximation error for the PSO
implementation of the test circuit and difference of
(between the Newton-Raphson and PSO methods)

Figure 8. Average convergence time for each
initial search space.

Figure 9. Average convergence time for each
initial search space, discriminated by each
swarm size

The constants used during the simulations
were and . For 2000
particles, the solution was found in an
average time of 98.59 seconds and in 586
iterations. Figure 7 shows the
approximation error (i.e., squared function
values) for each of the four analysis
points. As it can be seen, the error margin
was always lower than , which
was the user defined precision. In a
similar fashion, the difference between the
results given by the Newton-Raphson
approach and the PSO one, were also in
this margin, as can be seen in Figure 7.

Furthermore, more complex tests were
performed on the PSO algorithm,
checking for variation in convergence
time and required number of iterations,
mainly. To do so, several runs of the
program were executed, varying
parameters such as swarm size and
starting search space. As can be seen in
Figure 8, this does not affect the
convergence time (nor the required
number of iterations), or at least, not
linearly. The previously mentioned figure

and

Manufacturer: TOSHIBA
Model: Satellite A665
Processor: Intel(R) Core(TM) i7 CPU, Q 740 @
1.73GHz, 1.73GHz
Installed memory (RAM): 6.00GB
OS: Microsoft(R) Windows(TM) 7 Home
Premium
System type: 64-bit OS

(12)

Commercial software (Matlab™), with the
Newton-Raphson method, was used to obtain the
solution of the test circuit, providing the values
of (13).

(13)

On the other hand, PSO was implemented, with
the same commercial software and in the same
computer, giving the values shown in (14).

(14)

Figure 7. Approximation error for the PSO
implementation of the test circuit and difference of
(between the Newton-Raphson and PSO methods)

Figure 8. Average convergence time for each
initial search space.

Figure 9. Average convergence time for each
initial search space, discriminated by each
swarm size

The constants used during the simulations
were and . For 2000
particles, the solution was found in an
average time of 98.59 seconds and in 586
iterations. Figure 7 shows the
approximation error (i.e., squared function
values) for each of the four analysis
points. As it can be seen, the error margin
was always lower than , which
was the user defined precision. In a
similar fashion, the difference between the
results given by the Newton-Raphson
approach and the PSO one, were also in
this margin, as can be seen in Figure 7.

Furthermore, more complex tests were
performed on the PSO algorithm,
checking for variation in convergence
time and required number of iterations,
mainly. To do so, several runs of the
program were executed, varying
parameters such as swarm size and
starting search space. As can be seen in
Figure 8, this does not affect the
convergence time (nor the required
number of iterations), or at least, not
linearly. The previously mentioned figure

. For 2000 particles, the solution was found
in an average time of 98.59 seconds and in 586 iterations.
Figure 7 shows the approximation error (i.e., squared
function values) for each of the four analysis points. As
it can be seen, the error margin was always lower than

Manufacturer: TOSHIBA
Model: Satellite A665
Processor: Intel(R) Core(TM) i7 CPU, Q 740 @
1.73GHz, 1.73GHz
Installed memory (RAM): 6.00GB
OS: Microsoft(R) Windows(TM) 7 Home
Premium
System type: 64-bit OS

(12)

Commercial software (Matlab™), with the
Newton-Raphson method, was used to obtain the
solution of the test circuit, providing the values
of (13).

(13)

On the other hand, PSO was implemented, with
the same commercial software and in the same
computer, giving the values shown in (14).

(14)

Figure 7. Approximation error for the PSO
implementation of the test circuit and difference of
(between the Newton-Raphson and PSO methods)

Figure 8. Average convergence time for each
initial search space.

Figure 9. Average convergence time for each
initial search space, discriminated by each
swarm size

The constants used during the simulations
were and . For 2000
particles, the solution was found in an
average time of 98.59 seconds and in 586
iterations. Figure 7 shows the
approximation error (i.e., squared function
values) for each of the four analysis
points. As it can be seen, the error margin
was always lower than , which
was the user defined precision. In a
similar fashion, the difference between the
results given by the Newton-Raphson
approach and the PSO one, were also in
this margin, as can be seen in Figure 7.

Furthermore, more complex tests were
performed on the PSO algorithm,
checking for variation in convergence
time and required number of iterations,
mainly. To do so, several runs of the
program were executed, varying
parameters such as swarm size and
starting search space. As can be seen in
Figure 8, this does not affect the
convergence time (nor the required
number of iterations), or at least, not
linearly. The previously mentioned figure

, which was the user defined precision. In a
similar fashion, the difference between the results given
by the Newton-Raphson approach and the PSO one, were
also in this margin, as can be seen in Figure 7.

Furthermore, more complex tests were performed on the
PSO algorithm, checking for variation in convergence
time and required number of iterations, mainly. To do
so, several runs of the program were executed, varying

parameters such as swarm size and starting search space.
As can be seen in Figure 8, this does not affect the
convergence time (nor the required number of iterations),
or at least, not linearly. The previously mentioned figure
was obtained as an average of three different swarm sizes
(100, 1000, and 2000 particles).In order to dismiss swarm
size as a normalizing factor, a plot for each one of them
is presented in Figure 9. Once again, it can be easily seen
that the data throughout the starting search spaces is quite
close, so it does not seriously affect PSO.

As a next step, the parameters of the nonlinear dc circuit
were varied, striving to analyze whether the convergence
data (i.e.,time and iterations) are somewhat constant or if
they heavily depend on the system. The parameter

was obtained as an average of three different
swarm sizes (100, 1000, and 2000 particles). In
order to dismiss swarm size as a normalizing
factor, a plot for each one of them is presented in
Figure 9. Once again, it can be easily seen that
the data throughout the starting search spaces is
quite close, so it does not seriously affect PSO.

As a next step, the parameters of the nonlinear dc
circuit were varied, striving to analyze whether
the convergence data (i.e., time and iterations)
are somewhat constant or if they heavily depend
on the system. The parameter

 was varied

between , the resistances were
varied in the range , the source
current between , and the saturation
current in the range . Figure 10
and Figure 11 show the results obtained for both
convergence time and required iterations, but
only for some of the combinations. Several
things are important to remark upon here. The
first one is that for most cases, the computation
time goes up (while the number of iterations goes
down) as the number of particles is increased.
This is interesting because one would expect that
by requiring lower iterations, the convergence
time will reduce accordingly. However, by using
a bigger swarm, the computational effort for
calculating and updating each particle’s position
and speed is increased, thus taking longer to
converge. Another important thing to remark
here is the result obtained with the test set
number four, which achieved its lowest
convergence time for a mid-sized swarm. This
indicates that there must be an optimum swarm
size, which provides the lowest convergence
time. However, is likely to heavily depend on the
circuit itself, and in its electronic components, so
an optimization algorithm should be
implemented in future researches.

Figure 10. Time variation for each set of parameters
and three different swarm sizes

Figure 11. Number of iterations variation for
each set of parameters and three different
swarm sizes

Figure 12. Average convergence time
variation as a function of the swarm size, for
three different starting search spaces

A third remark is about the rate of
increase in the convergence time. It can be
seen, from test sets one, three, and four,
that increasing the resistances by an order
of magnitude does not imply the same
increase in the computation time (i.e., the
computation time does not increase
linearly with the resistance values). On
the other hand, the parameter

 does

not seem to have a strong impact on the
convergence time (and by extension on
the number of required iterations), as can
be seen from test sets 5–9. With test sets
11–13, a normal electronics engineering
analysis for the circuit, which proposes
that is the most critical element, can be
proven. This is obvious, since by varying
this element, the current that flows
through it will also vary, and therefore the
voltage changes, affecting the whole
circuit.

Striving to find an optimum number of
particles for the circuit and to compare

was varied between

was obtained as an average of three different
swarm sizes (100, 1000, and 2000 particles). In
order to dismiss swarm size as a normalizing
factor, a plot for each one of them is presented in
Figure 9. Once again, it can be easily seen that
the data throughout the starting search spaces is
quite close, so it does not seriously affect PSO.

As a next step, the parameters of the nonlinear dc
circuit were varied, striving to analyze whether
the convergence data (i.e., time and iterations)
are somewhat constant or if they heavily depend
on the system. The parameter

 was varied

between , the resistances were
varied in the range , the source
current between , and the saturation
current in the range . Figure 10
and Figure 11 show the results obtained for both
convergence time and required iterations, but
only for some of the combinations. Several
things are important to remark upon here. The
first one is that for most cases, the computation
time goes up (while the number of iterations goes
down) as the number of particles is increased.
This is interesting because one would expect that
by requiring lower iterations, the convergence
time will reduce accordingly. However, by using
a bigger swarm, the computational effort for
calculating and updating each particle’s position
and speed is increased, thus taking longer to
converge. Another important thing to remark
here is the result obtained with the test set
number four, which achieved its lowest
convergence time for a mid-sized swarm. This
indicates that there must be an optimum swarm
size, which provides the lowest convergence
time. However, is likely to heavily depend on the
circuit itself, and in its electronic components, so
an optimization algorithm should be
implemented in future researches.

Figure 10. Time variation for each set of parameters
and three different swarm sizes

Figure 11. Number of iterations variation for
each set of parameters and three different
swarm sizes

Figure 12. Average convergence time
variation as a function of the swarm size, for
three different starting search spaces

A third remark is about the rate of
increase in the convergence time. It can be
seen, from test sets one, three, and four,
that increasing the resistances by an order
of magnitude does not imply the same
increase in the computation time (i.e., the
computation time does not increase
linearly with the resistance values). On
the other hand, the parameter

 does

not seem to have a strong impact on the
convergence time (and by extension on
the number of required iterations), as can
be seen from test sets 5–9. With test sets
11–13, a normal electronics engineering
analysis for the circuit, which proposes
that is the most critical element, can be
proven. This is obvious, since by varying
this element, the current that flows
through it will also vary, and therefore the
voltage changes, affecting the whole
circuit.

Striving to find an optimum number of
particles for the circuit and to compare

, the resistances
were varied in the range

was obtained as an average of three different
swarm sizes (100, 1000, and 2000 particles). In
order to dismiss swarm size as a normalizing
factor, a plot for each one of them is presented in
Figure 9. Once again, it can be easily seen that
the data throughout the starting search spaces is
quite close, so it does not seriously affect PSO.

As a next step, the parameters of the nonlinear dc
circuit were varied, striving to analyze whether
the convergence data (i.e., time and iterations)
are somewhat constant or if they heavily depend
on the system. The parameter

 was varied

between , the resistances were
varied in the range , the source
current between , and the saturation
current in the range . Figure 10
and Figure 11 show the results obtained for both
convergence time and required iterations, but
only for some of the combinations. Several
things are important to remark upon here. The
first one is that for most cases, the computation
time goes up (while the number of iterations goes
down) as the number of particles is increased.
This is interesting because one would expect that
by requiring lower iterations, the convergence
time will reduce accordingly. However, by using
a bigger swarm, the computational effort for
calculating and updating each particle’s position
and speed is increased, thus taking longer to
converge. Another important thing to remark
here is the result obtained with the test set
number four, which achieved its lowest
convergence time for a mid-sized swarm. This
indicates that there must be an optimum swarm
size, which provides the lowest convergence
time. However, is likely to heavily depend on the
circuit itself, and in its electronic components, so
an optimization algorithm should be
implemented in future researches.

Figure 10. Time variation for each set of parameters
and three different swarm sizes

Figure 11. Number of iterations variation for
each set of parameters and three different
swarm sizes

Figure 12. Average convergence time
variation as a function of the swarm size, for
three different starting search spaces

A third remark is about the rate of
increase in the convergence time. It can be
seen, from test sets one, three, and four,
that increasing the resistances by an order
of magnitude does not imply the same
increase in the computation time (i.e., the
computation time does not increase
linearly with the resistance values). On
the other hand, the parameter

 does

not seem to have a strong impact on the
convergence time (and by extension on
the number of required iterations), as can
be seen from test sets 5–9. With test sets
11–13, a normal electronics engineering
analysis for the circuit, which proposes
that is the most critical element, can be
proven. This is obvious, since by varying
this element, the current that flows
through it will also vary, and therefore the
voltage changes, affecting the whole
circuit.

Striving to find an optimum number of
particles for the circuit and to compare

, the source
current between

was obtained as an average of three different
swarm sizes (100, 1000, and 2000 particles). In
order to dismiss swarm size as a normalizing
factor, a plot for each one of them is presented in
Figure 9. Once again, it can be easily seen that
the data throughout the starting search spaces is
quite close, so it does not seriously affect PSO.

As a next step, the parameters of the nonlinear dc
circuit were varied, striving to analyze whether
the convergence data (i.e., time and iterations)
are somewhat constant or if they heavily depend
on the system. The parameter

 was varied

between , the resistances were
varied in the range , the source
current between , and the saturation
current in the range . Figure 10
and Figure 11 show the results obtained for both
convergence time and required iterations, but
only for some of the combinations. Several
things are important to remark upon here. The
first one is that for most cases, the computation
time goes up (while the number of iterations goes
down) as the number of particles is increased.
This is interesting because one would expect that
by requiring lower iterations, the convergence
time will reduce accordingly. However, by using
a bigger swarm, the computational effort for
calculating and updating each particle’s position
and speed is increased, thus taking longer to
converge. Another important thing to remark
here is the result obtained with the test set
number four, which achieved its lowest
convergence time for a mid-sized swarm. This
indicates that there must be an optimum swarm
size, which provides the lowest convergence
time. However, is likely to heavily depend on the
circuit itself, and in its electronic components, so
an optimization algorithm should be
implemented in future researches.

Figure 10. Time variation for each set of parameters
and three different swarm sizes

Figure 11. Number of iterations variation for
each set of parameters and three different
swarm sizes

Figure 12. Average convergence time
variation as a function of the swarm size, for
three different starting search spaces

A third remark is about the rate of
increase in the convergence time. It can be
seen, from test sets one, three, and four,
that increasing the resistances by an order
of magnitude does not imply the same
increase in the computation time (i.e., the
computation time does not increase
linearly with the resistance values). On
the other hand, the parameter

 does

not seem to have a strong impact on the
convergence time (and by extension on
the number of required iterations), as can
be seen from test sets 5–9. With test sets
11–13, a normal electronics engineering
analysis for the circuit, which proposes
that is the most critical element, can be
proven. This is obvious, since by varying
this element, the current that flows
through it will also vary, and therefore the
voltage changes, affecting the whole
circuit.

Striving to find an optimum number of
particles for the circuit and to compare

, and the saturation current
in the range

was obtained as an average of three different
swarm sizes (100, 1000, and 2000 particles). In
order to dismiss swarm size as a normalizing
factor, a plot for each one of them is presented in
Figure 9. Once again, it can be easily seen that
the data throughout the starting search spaces is
quite close, so it does not seriously affect PSO.

As a next step, the parameters of the nonlinear dc
circuit were varied, striving to analyze whether
the convergence data (i.e., time and iterations)
are somewhat constant or if they heavily depend
on the system. The parameter

 was varied

between , the resistances were
varied in the range , the source
current between , and the saturation
current in the range . Figure 10
and Figure 11 show the results obtained for both
convergence time and required iterations, but
only for some of the combinations. Several
things are important to remark upon here. The
first one is that for most cases, the computation
time goes up (while the number of iterations goes
down) as the number of particles is increased.
This is interesting because one would expect that
by requiring lower iterations, the convergence
time will reduce accordingly. However, by using
a bigger swarm, the computational effort for
calculating and updating each particle’s position
and speed is increased, thus taking longer to
converge. Another important thing to remark
here is the result obtained with the test set
number four, which achieved its lowest
convergence time for a mid-sized swarm. This
indicates that there must be an optimum swarm
size, which provides the lowest convergence
time. However, is likely to heavily depend on the
circuit itself, and in its electronic components, so
an optimization algorithm should be
implemented in future researches.

Figure 10. Time variation for each set of parameters
and three different swarm sizes

Figure 11. Number of iterations variation for
each set of parameters and three different
swarm sizes

Figure 12. Average convergence time
variation as a function of the swarm size, for
three different starting search spaces

A third remark is about the rate of
increase in the convergence time. It can be
seen, from test sets one, three, and four,
that increasing the resistances by an order
of magnitude does not imply the same
increase in the computation time (i.e., the
computation time does not increase
linearly with the resistance values). On
the other hand, the parameter

 does

not seem to have a strong impact on the
convergence time (and by extension on
the number of required iterations), as can
be seen from test sets 5–9. With test sets
11–13, a normal electronics engineering
analysis for the circuit, which proposes
that is the most critical element, can be
proven. This is obvious, since by varying
this element, the current that flows
through it will also vary, and therefore the
voltage changes, affecting the whole
circuit.

Striving to find an optimum number of
particles for the circuit and to compare

. Figure 10 and Figure 11
show the results obtained for both convergence time and
required iterations, but only for some of the combinations.
Several things are important to remark upon here. The
first one is that for most cases, the computation time
goes up(while the number of iterations goes down) as
the number of particles is increased. This is interesting
because one would expect that by requiring lower
iterations, the convergence time will reduce accordingly.
However, by using a bigger swarm, the computational
effort for calculating and updating each particle’s position
and speed is increased, thus taking longer to converge.
Another important thing to remark here is the result
obtained with the test set number four, which achieved
its lowest convergence time for a mid-sized swarm. This
indicates that there must be an optimum swarm size,
which provides the lowest convergence time. However,
is likely to heavily depend on the circuit itself, and in
its electronic components, so an optimization algorithm
should be implemented in future researches.

Figure 10. Time variation for each set of parameters and
three different swarm sizes

Dyna 172, 2012 83

Figure 11. Number of iterations variation for each set of

parameters and three different swarm sizes

Figure 12. Average convergence time variation as a

function of the swarm size, for three different starting
search spaces

A third remark is aboutthe rate of increase in the
convergence time. It can be seen, from test sets one,
three, and four, that increasing the resistances by an
order of magnitude does not imply the same increase
in the computation time (i.e.,the computation time
does not increase linearly with the resistance values).
On the other hand, the parameter

was obtained as an average of three different
swarm sizes (100, 1000, and 2000 particles). In
order to dismiss swarm size as a normalizing
factor, a plot for each one of them is presented in
Figure 9. Once again, it can be easily seen that
the data throughout the starting search spaces is
quite close, so it does not seriously affect PSO.

As a next step, the parameters of the nonlinear dc
circuit were varied, striving to analyze whether
the convergence data (i.e., time and iterations)
are somewhat constant or if they heavily depend
on the system. The parameter

 was varied

between , the resistances were
varied in the range , the source
current between , and the saturation
current in the range . Figure 10
and Figure 11 show the results obtained for both
convergence time and required iterations, but
only for some of the combinations. Several
things are important to remark upon here. The
first one is that for most cases, the computation
time goes up (while the number of iterations goes
down) as the number of particles is increased.
This is interesting because one would expect that
by requiring lower iterations, the convergence
time will reduce accordingly. However, by using
a bigger swarm, the computational effort for
calculating and updating each particle’s position
and speed is increased, thus taking longer to
converge. Another important thing to remark
here is the result obtained with the test set
number four, which achieved its lowest
convergence time for a mid-sized swarm. This
indicates that there must be an optimum swarm
size, which provides the lowest convergence
time. However, is likely to heavily depend on the
circuit itself, and in its electronic components, so
an optimization algorithm should be
implemented in future researches.

Figure 10. Time variation for each set of parameters
and three different swarm sizes

Figure 11. Number of iterations variation for
each set of parameters and three different
swarm sizes

Figure 12. Average convergence time
variation as a function of the swarm size, for
three different starting search spaces

A third remark is about the rate of
increase in the convergence time. It can be
seen, from test sets one, three, and four,
that increasing the resistances by an order
of magnitude does not imply the same
increase in the computation time (i.e., the
computation time does not increase
linearly with the resistance values). On
the other hand, the parameter

 does

not seem to have a strong impact on the
convergence time (and by extension on
the number of required iterations), as can
be seen from test sets 5–9. With test sets
11–13, a normal electronics engineering
analysis for the circuit, which proposes
that is the most critical element, can be
proven. This is obvious, since by varying
this element, the current that flows
through it will also vary, and therefore the
voltage changes, affecting the whole
circuit.

Striving to find an optimum number of
particles for the circuit and to compare

does not seem
to have a strong impact on the convergence time (and
by extension on the number of required iterations), as
can be seen from test sets 5–9. With test sets 11–13, a
normal electronics engineering analysis for the circuit,
which proposes that

was obtained as an average of three different
swarm sizes (100, 1000, and 2000 particles). In
order to dismiss swarm size as a normalizing
factor, a plot for each one of them is presented in
Figure 9. Once again, it can be easily seen that
the data throughout the starting search spaces is
quite close, so it does not seriously affect PSO.

As a next step, the parameters of the nonlinear dc
circuit were varied, striving to analyze whether
the convergence data (i.e., time and iterations)
are somewhat constant or if they heavily depend
on the system. The parameter

 was varied

between , the resistances were
varied in the range , the source
current between , and the saturation
current in the range . Figure 10
and Figure 11 show the results obtained for both
convergence time and required iterations, but
only for some of the combinations. Several
things are important to remark upon here. The
first one is that for most cases, the computation
time goes up (while the number of iterations goes
down) as the number of particles is increased.
This is interesting because one would expect that
by requiring lower iterations, the convergence
time will reduce accordingly. However, by using
a bigger swarm, the computational effort for
calculating and updating each particle’s position
and speed is increased, thus taking longer to
converge. Another important thing to remark
here is the result obtained with the test set
number four, which achieved its lowest
convergence time for a mid-sized swarm. This
indicates that there must be an optimum swarm
size, which provides the lowest convergence
time. However, is likely to heavily depend on the
circuit itself, and in its electronic components, so
an optimization algorithm should be
implemented in future researches.

Figure 10. Time variation for each set of parameters
and three different swarm sizes

Figure 11. Number of iterations variation for
each set of parameters and three different
swarm sizes

Figure 12. Average convergence time
variation as a function of the swarm size, for
three different starting search spaces

A third remark is about the rate of
increase in the convergence time. It can be
seen, from test sets one, three, and four,
that increasing the resistances by an order
of magnitude does not imply the same
increase in the computation time (i.e., the
computation time does not increase
linearly with the resistance values). On
the other hand, the parameter

 does

not seem to have a strong impact on the
convergence time (and by extension on
the number of required iterations), as can
be seen from test sets 5–9. With test sets
11–13, a normal electronics engineering
analysis for the circuit, which proposes
that is the most critical element, can be
proven. This is obvious, since by varying
this element, the current that flows
through it will also vary, and therefore the
voltage changes, affecting the whole
circuit.

Striving to find an optimum number of
particles for the circuit and to compare

 is the most critical element,
can be proven. This is obvious, since by varying this
element, the current that flows through it will also
vary, and therefore the voltage

was obtained as an average of three different
swarm sizes (100, 1000, and 2000 particles). In
order to dismiss swarm size as a normalizing
factor, a plot for each one of them is presented in
Figure 9. Once again, it can be easily seen that
the data throughout the starting search spaces is
quite close, so it does not seriously affect PSO.

As a next step, the parameters of the nonlinear dc
circuit were varied, striving to analyze whether
the convergence data (i.e., time and iterations)
are somewhat constant or if they heavily depend
on the system. The parameter

 was varied

between , the resistances were
varied in the range , the source
current between , and the saturation
current in the range . Figure 10
and Figure 11 show the results obtained for both
convergence time and required iterations, but
only for some of the combinations. Several
things are important to remark upon here. The
first one is that for most cases, the computation
time goes up (while the number of iterations goes
down) as the number of particles is increased.
This is interesting because one would expect that
by requiring lower iterations, the convergence
time will reduce accordingly. However, by using
a bigger swarm, the computational effort for
calculating and updating each particle’s position
and speed is increased, thus taking longer to
converge. Another important thing to remark
here is the result obtained with the test set
number four, which achieved its lowest
convergence time for a mid-sized swarm. This
indicates that there must be an optimum swarm
size, which provides the lowest convergence
time. However, is likely to heavily depend on the
circuit itself, and in its electronic components, so
an optimization algorithm should be
implemented in future researches.

Figure 10. Time variation for each set of parameters
and three different swarm sizes

Figure 11. Number of iterations variation for
each set of parameters and three different
swarm sizes

Figure 12. Average convergence time
variation as a function of the swarm size, for
three different starting search spaces

A third remark is about the rate of
increase in the convergence time. It can be
seen, from test sets one, three, and four,
that increasing the resistances by an order
of magnitude does not imply the same
increase in the computation time (i.e., the
computation time does not increase
linearly with the resistance values). On
the other hand, the parameter

 does

not seem to have a strong impact on the
convergence time (and by extension on
the number of required iterations), as can
be seen from test sets 5–9. With test sets
11–13, a normal electronics engineering
analysis for the circuit, which proposes
that is the most critical element, can be
proven. This is obvious, since by varying
this element, the current that flows
through it will also vary, and therefore the
voltage changes, affecting the whole
circuit.

Striving to find an optimum number of
particles for the circuit and to compare

 changes, affecting
the whole circuit.

Striving to find an optimum number of particles for
the circuit and to compare PSO performance with
Newton-Raphson’s method and with commercial
software, the test set one was chosen, but the source
current was modified to

PSO performance with Newton-Raphson’s
method and with commercial software, the test
set one was chosen, but the source current was
modified to . Figure 12 shows the
behavior obtained for different swarms starting at
four different search spaces. It can be seen that
by taking 4 and 10 particles, the computation
time will be minimum for most cases, with the
exception that for points closer to the solution, 4
is the best option. Once again, the starting space
does not affect the convergence time in a severe
way. It is important to note that even if the
computation time gets lower for smaller swarms,
as soon as its size is below the search dimensions
(i.e., unknowns), the algorithm begins to behave
erratically. However, this could be solved by
implementing a modification that optimizes in
some directions and then in the remaining ones.

When compared to NR’s times, it was
encountered that PSO took longer to converge.
However, the data for NR was obtained with
starting points quite close to the solution (where
NR is known for quickly converging). When
started at further points, NR was not able to
converge due to problems of singularity in the
matrices. Therefore, even if PSO is somewhat
slower, it is a technique that allows for solving
problems where the optimum point is unknown.

Finally, a summary of the rate of increase on the
convergence times for PSO and NR was
analyzed. It was found that even if PSO has a
higher convergence time, results with NR were
only possible if one uses a starting point much
too close to the solution. Therefore, for real life
situations where the starting point is not known,
PSO seems to be a really good choice, so a
deeper analysis is underway.

4. CONCLUSIONS

A simple test circuit, comprising one current
source, two linear resistors, and a diode, was
used as an illustrative example, in order to verify
if the algorithm provided the appropriate results,
and to see how did the convergence time vary
when modifying the circuit's components.
Afterwards, a more complex one, comprising one
current source, four resistors, and two diodes,
was implemented, and a proximity between the

results achieved by NR, PSO, and
commercial software (Matlab™), was
evident. It was found that PSO provides a
more robust solution over the traditional
NR method, which requires a point quite
close to the solution. It was also found
that PSO’s computation time is not
seriously affected by the starting search
space, which fortifies it as a viable choice
for situations where complete uncertainty
of the solution is present. On the other
hand, there are two factors that affect
PSO’s convergence time. The first one is
the system parameters, where it was
shown that, depending on the circuit, there
are some that have a higher impact than
the other ones. The second one is that it
heavily depends on the swarm size.
Therefore, the necessity of implementing
an optimization stage, that determines the
best number of particles for each problem,
is noted, as previously mentioned by [12].
Combined with it, PSO makes a valuable
tool for performing dc analysis of more
complicated nonlinear circuits.

5. REFERENCES

[1] GROSAN, C. and ABRAHAM, A.,
A New Approach for Solving Nonlinear
Equations Systems, IEEE Transactions on
Systems, Man, and Cybernetics - Part A:
Systems and Humans, 38,3, 698-714, May.
2008.

[2] APRILLE, T. J. and TRICK, T. N.,
Steady-state analysis of nonlinear circuits with
periodic inputs, Proceedings of the IEEE,
60,1, 108-114, 1972.

[3] NAGEL, L. and ROHRER, R.,
Computer analysis of nonlinear circuits,
excluding radiation (CANCER), IEEE Journal
of Solid-State Circuits, 6,4, 166-182, Aug.
1971.

[4] CHUA, L. O., DESOER, C. A., and
KUH, E. S., Linear and nonlinear circuits.
McGraw-Hill, New York, 1987.

. Figure 12 shows

the behavior obtained for different swarms starting
at four different search spaces. It can be seen that by
taking 4 and 10 particles, the computation time will
be minimum for most cases, with the exception that
for points closer to the solution, 4 is the best option.
Once again, the starting space does not affect the
convergence time in a severe way. It is important to
note that even if the computation time gets lower for
smaller swarms, as soon as its size is below the search
dimensions (i.e.,unknowns), the algorithm begins to
behave erratically. However, this could be solved by
implementing a modification that optimizes in some
directions and then in the remaining ones.

When compared to NR’s times, it was encountered that
PSO took longer to converge. However, the data for
NR was obtained with starting points quite close to the
solution (where NR is known for quickly converging).
When started at further points, NR was not able to
converge due to problems of singularity in the matrices.
Therefore, even if PSO is somewhat slower, it is a
technique that allows for solving problems where the
optimum point is unknown.

Finally, a summary of the rate of increase on the
convergence times for PSO and NR was analyzed. It
was found that even if PSO has a higher convergence
time, results with NR were only possible if one uses a
starting point muchtoo close to the solution. Therefore,
for real life situations where the starting point is not
known, PSO seems to bea really good choice, so a
deeper analysis is underway.

4. CONCLUSIONS

A simple test circuit, comprising one current source,
two linear resistors, and a diode, was used as an
illustrative example, in order to verify if the algorithm
provided the appropriate results, and to see how
did the convergence time vary when modifying the
circuit’s components. Afterwards, a more complex one,
comprising one current source, four resistors, and two
diodes, was implemented, and a proximity between the
results achieved by NR, PSO, and commercial software
(Matlab™), was evident. It was found that PSO
provides a more robust solution over the traditional
NR method, which requires a point quite close to the
solution. It was also found that PSO’s computation
time is not seriously affected by the starting search

Amaya - et al84

space, which fortifies it as a viable choice for situations
where complete uncertainty of the solution is present.
On the other hand, there are two factors that affect
PSO’s convergence time. The first one is the system
parameters, where it was shown that, depending on
the circuit, there are some that have a higher impact
than the other ones. The second one is that it heavily
depends on the swarm size. Therefore, the necessity of
implementing an optimization stage, that determines
the best number of particles for each problem, is noted,
as previously mentioned by[12]. Combined with it,
PSO makes a valuable tool for performing dc analysis
of more complicated nonlinear circuits.

REFERENCES

[1] Grosan, C. and Abraham, A., A New Approach for
Solving Nonlinear Equations Systems, IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and
Humans, 38, (3) pp. 698-714, May. 2008.

[2] Aprille, T. J. and Trick, T. N., Steady-state analysis of
nonlinear circuits with periodic inputs, Proceedings of the
IEEE, 60(1), pp. 108-114, 1972.

[3] Nagel, L. and Rohrer, R., Computer analysis of nonlinear
circuits, excluding radiation (CANCER), IEEE Journal of
Solid-State Circuits, 6(4), pp. 166-182, Aug. 1971.

[4] Chua, L. O., Desoer, C. A. and Kuh, E. S., Linear and
nonlinear circuits. McGraw-Hill, New York, 1987.

[5] Rao, S. S., Engineering Optimization: Theory and
Practice. John Wiley & Sons, Inc., New Jersey, 2009.

[6] Ortega, J. M. and Rheinboldt, W. C., Iterative Solution of
Nonlinear Equations in Several Variables. Academic Press,
New York, 1970.

[7] Baldick, R., Applied Optimization Formulation and
Algorithms for Engineering Systems. Cambridge University
Press, Cambridge, 2006.

[8] Kennedy, J. and Eberhart, R., Particle Swarm
Optimization, Proceedings of ICNN’95 - International
Conference on Neural Networks, Perth, Australia, pp. 1942-
1948, 1995.

[9] Clerc, M., Particle Swarm Optimization. ISTE, London,
2006.

[10] Parsopoulos, K. E. and Vrahatis, M. N., Particle Swarm
Optimization and Intelligence: Advances and Applications.
Information Science Reference, Hershey, 2010.

[11] Amaya, I., Cruz, J., and Correa, R., Real Roots of
Nonlinear Systems of Equations Through a Metaheuristic
Algorithm, Revista Dyna, 170(78), pp. 15-23, 2011.

[12] Begambre, O. and Correa, R., Validación de un
algoritmo híbrido del PSO con el método simplex y de
topología de evolución paramétrica, Revista Dyna, 165(78),
pp. 255-265, 2011.

