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ABSTRACT: This article describes a numeric strategy focused on the solution of nonlinear systems of equations, frequently found in the 
analysis of electronic circuits. This strategy is based on the use of the particle swarm optimization (PSO) algorithm, as an alternative to 
the traditional Newton-Raphson. First, and as a demonstrative example, a circuit composed of two resistors and a diode were considered. 
Afterwards, a more complex one comprising one current source, four resistors, and two diodes was implemented. Based on the results, 
it was observed that the solution alternative is very attractive for solving these kinds of circuits, regardless of their size and complexity. 

KEYWORDS: Particle swarm optimization, mathematical model, non-linear electronic circuit, direct current

RESUMEN: El presente artículo describe una estrategia numérica orientada hacia la solución de sistemas de ecuaciones no lineales que con frecuencia 
aparecen en el análisis de circuitos electrónicos. Esta estrategia se fundamenta en el uso del algoritmo de optimización de enjambre de partículas (PSO), 
como alternativa al tradicionalNewton-Raphson. Se tomó inicialmente, a título de ejemplo demostrativo, un circuito compuesto de dos resistencias 
lineales y un diodo. Seguidamente se utiliza otro ligeramente más complejo, constituido por una fuente de corriente, cuatro resistencias y dos diodos. 
Se encontró que el PSO posee mayor robustez frente al método tradicional. Fundamentado en estos resultados, se observó que esta alternativa de 
solución tiene características muy atractivas cuando se requiere solucionar este tipo de circuitos independientemente de su tamaño y complejidad.

PALABRAS CLAVE: Optimización mediante enjambre de partículas, modelo matemático, circuito electrónico no lineal, corriente directa.

1.  INTRODUCTION

Nonlinear circuits represent a broad range of situations 
for electronics engineers. Simple, ideal, and linear models 
can work fine for simple digital electronic circuits, which 
are composed of integrated circuits (IC). However, the 
fact of including a common electronic device, such as a 
diode, takes the scope into the non-linear environment. 
One approach used to solve this type of system requires the 
calculation of an operation point under dc sources. In order 
to reachthis point, several techniques can be used, including 
Newton-Rapshon’s method for solving a system of nonlinear 
equations. However, its restrictions are well known, 

including divergences (if the starting point is not chosen 
well) and excessive amounts of computation time for bigger 
systems (due to the requirement of storing and evaluating the 
function and its Jacobian)[1]. In this article, some simulation 
results using PSO as an optimization strategy to solve the 
non-linear system of equations are shown. 

2.  FUNDAMENTALS

2.1.  Nonlinear dc circuits

Traditional linear circuits can be modeled (and solved) 
through strategies such as modal analysis. A nonlinear 
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dc circuit poses a restriction on the solution, forcing one 
to replace the nonlinear components (such as diodes) by 
a linearized equivalent circuit. Since this is only valid 
for a given point (i.e., an operating condition), a second 
calculation needs to be performed, using the previously 
achieved information to generate a new solution. This 
process needs to be continued until a stable solution 
is obtained. Among the most used strategies, thereare 
also the analytic, graphical, and numerical ones. The 
first solution has some advantages, such as global 
knowledge of the variable behavior, but for most non-
linear systems it is almost impossible to achieve. On 
the other hand, the graphical approach (e.g., the load 
line method) is good for visualizing the effects of the dc 
source and the load resistance in the circuit’s operating 
points. However, it has the drawback of being only 
able to provide approximate values, whose margin of 
error is associated with the plot’s resolution. Numerical 
techniques, however, offer an approximation method 
whose error can be user-defined. An approach of this 
kind that has been traditionally used is the piecewise-
linear method, which can be solved analytically or 
graphically, but whose downside resides in providing 
multiple solutions that need to be evaluated in order 
to determine whether they are valid or virtual (i.e., not 
valid) ones.

Another methodology that has been used in this field is 
the Newton-Rapshon method (NR) for solving systems 
of equations, which can be applied to the nonlinear 
model or to its linearized equivalent [2–6]. Since this 
approach is an iterative one, the error margin can be 
defined by the user, therefore adjusting the solution to 
a desired precision. Baldick [7]qualitatively analyzed 
the computational effort of three alternatives, which 
can be used for solving the same example illustrated in 
this article. They are the NR, chord, and quasi-Newton 
methods. According to his analysis, the NR method 
requires relatively few iterations but the computational 
effort per iteration is high. The chord method requires 
less effort per iteration, on average, than NR, but the 
total one may be bigger due to the increased number 
of iterations required to achieve a desired accuracy. 
Quasi-Newton methods often have the best overall 
performance because of the reduced effort per iteration 
compared to the NR method. Nevertheless, a precise 
analysis must include the type of functions to be solved 
and by no means is a general rule.

2.2.  Particle swarm optimization (PSO)

PSO was born in 1995 thanks to Eberhart and 
Kennedy[8], who studied the social behavior of some 
animal groups when looking for new sources of food. 
Unlike other evolutionary approaches (e.g.,genetic 
algorithms), PSO is cooperative, sharing information 
with neighboring particles [9,10]. Neighborhoods 
may have different topologies, so this is a key point 
for branches and variations. In its traditional form, 
the neighborhood is composed of all the particles 
in the swarm, so every better point found will be 
communicated to them. Another key point is related 
to the way its basic equations (position and speed) 
are updated, traditionally given by (1) and (2), where 
,  represent pointers for each position and time step, 
respectively;  is a particle’s position; its speed; an 
inertia factor to limit the effect of its previous speed; are 
the self and swarm trust factors; are random numbers 
(uniformly distributed) between zero and one; is the 
best position each particle has found, see (3); and is 
the best position of the entire swarm, which can be 
calculated with (4). Since several articles have been 
published about the use of PSO, and due to space 
restrictions, a deeper explanation of the method is not 
provided. However, the interested reader can find useful 
information in [8,9].
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One way to implement this algorithm is: 

1. Assign a random initial position and zero 
speed for each particle.  

2. Evaluate the objective function (user-
defined) and find             . 

3. Update the position and speed for each 
particle with  (1) and (2). 

4. Evaluate the objective function. 
5. Compare, for each particle, the evaluated 

value and       . If it is lower, then update 
      . 

6. Select the best particle and compare it to 
     . If lower, then update      . 

7. Compare       with convergence criteria. If 
it does not comply, return to 3. 

If the solution of a system of equations could be 
transformed into an optimization problem, 
metaheuristic approaches would be useful to 
quickly and accurately find an answer, thus 
optimizing computer resources. Therefore, this 
study is carried out in order to analyze how PSO 

can be useful for solving this electronic 
engineering problem. The following 
theorem shows how it is possible to 
transform the solution of the nonlinear 
equations system into an optimization one 
[11]. 

Theorem: Real Roots 

Let X be a subset of    and consider the 
system (3), where, for each i, fi is a 
function whose domain contains X, and 
whose range is within the real numbers. 
Let       be defined by (3), (note 
that f is properly defined). 
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Proposition 1. Suppose that (3) has 
solution in   and let 
                . Therefore,   
satisfies (3)  if, and only if,   minimizes f. 

Proof. If   satisfies (3), then         for 
each            Therefore,        
and since        for every    , then 
  is a minimum for  . 

Now, if   minimizes   but does not 
satisfy (3), then       must be a positive 
number since        for every    . 
Given that the system has a solution in  , 
there exists an      that makes 
        and     . Therefore, 
           which violates   being the 
minimum for  . Note that the general 
condition on the consistency of the system 
is vital since it is always possible to 
construct   for a given system and, if   
minimizes it, it does not imply that a 
solution exists. Therefore, finding the 
roots for a system of nonlinear equations 
over a given set   can be transformed into 
an optimization problem (minimization 
for this case) of the function   over the set 
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Figure 2 shows the average convergence 
time for three different starting search 
spaces. Even though the graphic suggests 
that there is dependence, it can be seen 
from Figure 3, that this is not true, since it 
really is an effect of the combination of 
the averages for each swarm size.  
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Commercial software (Matlab™), with the 
Newton-Raphson method, was used to obtain the 
solution of the test circuit, providing the values 
of  (13).  
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On the other hand, PSO was implemented, with 
the same commercial software and in the same 
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PSO algorithm, checking for variation in convergence 
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so, several runs of the program were executed, varying 

parameters such as swarm size and starting search space. 
As can be seen in Figure 8, this does not affect the 
convergence time (nor the required number of iterations), 
or at least, not linearly. The previously mentioned figure 
was obtained as an average of three different swarm sizes 
(100, 1000, and 2000 particles).In order to dismiss swarm 
size as a normalizing factor, a plot for each one of them 
is presented in Figure 9. Once again, it can be easily seen 
that the data throughout the starting search spaces is quite 
close, so it does not seriously affect PSO. 
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 was varied 

between                  , the resistances were 
varied in the range                , the source 
current between              , and the saturation 
current in the range                 . Figure 10 
and Figure 11 show the results obtained for both 
convergence time and required iterations, but 
only for some of the combinations. Several 
things are important to remark upon here. The 
first one is that for most cases, the computation 
time goes up (while the number of iterations goes 
down) as the number of particles is increased. 
This is interesting because one would expect that 
by requiring lower iterations, the convergence 
time will reduce accordingly. However, by using 
a bigger swarm, the computational effort for 
calculating and updating each particle’s position 
and speed is increased, thus taking longer to 
converge. Another important thing to remark 
here is the result obtained with the test set 
number four, which achieved its lowest 
convergence time for a mid-sized swarm. This 
indicates that there must be an optimum swarm 
size, which provides the lowest convergence 
time. However, is likely to heavily depend on the 
circuit itself, and in its electronic components, so 
an optimization algorithm should be 
implemented in future researches.  
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the circuit and to compare PSO performance with 
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PSO performance with Newton-Raphson’s 
method and with commercial software, the test 
set one was chosen, but the source current was 
modified to          . Figure 12 shows the 
behavior obtained for different swarms starting at 
four different search spaces. It can be seen that 
by taking 4 and 10 particles, the computation 
time will be minimum for most cases, with the 
exception that for points closer to the solution, 4 
is the best option. Once again, the starting space 
does not affect the convergence time in a severe 
way. It is important to note that even if the 
computation time gets lower for smaller swarms, 
as soon as its size is below the search dimensions 
(i.e., unknowns), the algorithm begins to behave 
erratically. However, this could be solved by 
implementing a modification that optimizes in 
some directions and then in the remaining ones.  

When compared to NR’s times, it was 
encountered that PSO took longer to converge. 
However, the data for NR was obtained with 
starting points quite close to the solution (where 
NR is known for quickly converging). When 
started at further points, NR was not able to 
converge due to problems of singularity in the 
matrices. Therefore, even if PSO is somewhat 
slower, it is a technique that allows for solving 
problems where the optimum point is unknown. 

Finally, a summary of the rate of increase on the 
convergence times for PSO and NR was 
analyzed. It was found that even if PSO has a 
higher convergence time, results with NR were 
only possible if one uses a starting point much 
too close to the solution. Therefore, for real life 
situations where the starting point is not known, 
PSO seems to be a really good choice, so a 
deeper analysis is underway.  

4. CONCLUSIONS 

A simple test circuit, comprising one current 
source, two linear resistors, and a diode, was 
used as an illustrative example, in order to verify 
if the algorithm provided the appropriate results, 
and to see how did the convergence time vary 
when modifying the circuit's components. 
Afterwards, a more complex one, comprising one 
current source, four resistors, and two diodes, 
was implemented, and a proximity between the 

results achieved by NR, PSO, and 
commercial software (Matlab™), was 
evident. It was found that PSO provides a 
more robust solution over the traditional 
NR method, which requires a point quite 
close to the solution. It was also found 
that PSO’s computation time is not 
seriously affected by the starting search 
space, which fortifies it as a viable choice 
for situations where complete uncertainty 
of the solution is present. On the other 
hand, there are two factors that affect 
PSO’s convergence time. The first one is 
the system parameters, where it was 
shown that, depending on the circuit, there 
are some that have a higher impact than 
the other ones. The second one is that it 
heavily depends on the swarm size. 
Therefore, the necessity of implementing 
an optimization stage, that determines the 
best number of particles for each problem, 
is noted, as previously mentioned by [12]. 
Combined with it, PSO makes a valuable 
tool for performing dc analysis of more 
complicated nonlinear circuits.  
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two linear resistors, and a diode, was used as an 
illustrative example, in order to verify if the algorithm 
provided the appropriate results, and to see how 
did the convergence time vary when modifying the 
circuit’s components. Afterwards, a more complex one, 
comprising one current source, four resistors, and two 
diodes, was implemented, and a proximity between the 
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space, which fortifies it as a viable choice for situations 
where complete uncertainty of the solution is present. 
On the other hand, there are two factors that affect 
PSO’s convergence time. The first one is the system 
parameters, where it was shown that, depending on 
the circuit, there are some that have a higher impact 
than the other ones. The second one is that it heavily 
depends on the swarm size. Therefore, the necessity of 
implementing an optimization stage, that determines 
the best number of particles for each problem, is noted, 
as previously mentioned by[12]. Combined with it, 
PSO makes a valuable tool for performing dc analysis 
of more complicated nonlinear circuits. 
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