
Dyna, year 79, Nro. 172, pp. 94-100. Medellin, april, 2012. ISSN 0012-7353

DEFINITION OF A SEMANTIC PLATAFORM FOR AUTOMATED
CODE GENERATION BASED ON UML CLASS DIAGRAMS AND

DSL SEMANTIC ANNOTATIONS

DEFINICIÓN DE UNA PLATAFORMA SEMÁNTICA PARA
LA GENERACIÓN AUTOMÁTICA DE CÓDIGO BASADA EN

DIAGRAMAS DE CLASES UML Y ANOTACIONES SEMÁNTICAS
EN UN DSL

ANDRÉS MUÑETÓN
M.Sc, Universidad Pontificia Bolivariana, Medellín, andres.muneton@upb.edu.co

CARLOS ZAPATA
Ph.D. Universidad Nacional de Colombia, Medellín, cmzapata@unal.edu.co

Received for review July 6 th, 2011, accepted November 12th, 2011, final version January, 11th, 2012

ABSTRACT: In this paper, we propose a semantic service platform for implementing the steps of a semantic- and model-driven architecture
(MDA)-based method for automated code generation. The code generation is achieved by semantically relating operations in unified modeling
language (UML) class diagrams with implemented operations. The relationship among operations is achieved by finding implemented operations
with the same post-condition of the operation under implementation. The resultant code is a sequence of invocations to the implemented
operations which, acting as a whole, achieve the post-condition of the operation under implementation. Semantics is specified by means of a
domain-specific language (DSL), also defined in this paper. Services of the platform and the method are shown in execution in a case study.

KEYWORDS: Code generation, automation, MDA, semantic, platform, software engineering.

RESUMEN: En este trabajo se propone una plataforma semántica de servicios que implementan los pasos de un método para la
generación automática de código. El método se basa en información semántica y en MDA (model-driven architecture). La generación de
código se logra relacionando semánticamente operaciones en diagramas de clases en UML (unified modeling language) con operaciones
implementadas. La relación entre operaciones se hace consultando operaciones implementadas que tengan la misma postcondición
de la operación bajo implementación. El código resultante es una secuencia de invocaciones a operaciones implementadas que, en
conjunto, alcancen la postcondición de la operación bajo implementación. La semántica se especifica mediante un DSL (domain-
specific language), también definido en este artículo. Los servicios de la plataforma y el método se prueban mediante un caso de estudio.

PALABRAS CLAVE: Generación de código, automatización, MDA, semántica, plataforma, ingeniería de software.

1. INTRODUCTION

Automation in software development is a very important
topic of research and application. By using automated
activities, the development process makes the team
more agile so that they may spend time in more crucial
activities besides manual processes. In other words,
automation supports the engineering approach to software
development. Some examples of automated activities in
software development are: generating source codes, testing
(e.g., unit and user acceptance tests [1]), integrating [2],
and delivering [3].

Current code generation proposals exhibit some problems:
They still offer partial results or they are too formal
to be fully implemented and useful for the industry.
Three main sets of proposals have been identified: code
generation from graph models, code generation from
formal representations, and code generation from a
mixture of graph and textual expressions. Purely graph-
based approaches [4–5] have limitations due to the
expressiveness flaws of graph languages. On the other
hand, formal proposals use formal languages to specify
every aspect of the system and, consequently, generate
the entire code [6]. Also, formal languages are hard to

Dyna 172, 2012 95

learn and apply. Finally, some researchers have opted for
a combination of models and textual specifications [7–8].
However, these proposals are too close to the platform or
suitable only for a very specific domain.

Zapata and Muñetón [9] have proposed a basic method
for code generation from the UML meta-model instances
and semantic annotations. With this method, the code is
intended to be generated by using a set of transformation
rules defined by Muñetón et al. [10] and database single-
semantic operations like “insert,” “update,” and “delete.”

In this paper, we propose a semantic platform for
automated code generation. This platform improves
the previous method of Zapata and Muñetón [9]
in supporting more complex operations by using a
model-driven architecture (MDA)-based structure and
including steps that are more formal.

This paper is structured as follows: In the next section,
we give an overview of proposals and platforms for
code generation. Then, in Sections 3 and 4 we present
the improved method of code generation, and a semantic
platform that implements this method, respectively. Section
5 shows an example of the application of the method in the
platform, and finally, conclusions and future work are stated.

2. RELATED WORK

From a state-of-the-art review in code generation,
three main sets of proposals have been identified: code
generation from graph models, code generation from
formal representations, and code generation from a
mixture of graph and textual expressions—both in formal
representations or using domain-specific languages
(DSLs). This section presents some approaches for each
type. At the end of the section, we will discuss the main
issues concerning these approaches.

There are several proposals for accomplishing automatic
code generation by using graph transformations,
most of them under the MDA scope. Cooper et al.
[4] allow code generation from models to aspects in
AspectJ, a java implementation of aspect-oriented
programming (AOP). The transformation among
models is accomplished by means of Extensible
Markup Language (XML) specifications and meta-
models of XML and AspectJ. The code is generated
from the XML specifications and the aspects are

controlled in the system by throwing and handling
exceptions. Nassar et al. [5] propose a method for
code generation by merging use-case-based view
point models, logic, component, and deployment.
The models are stereotyped according to elements of
VUML (View-based Unified Modeling Language)
and, then, transformed into code by using predefined
rules specified in the ATLAS Transformation Language
(ATL). The aim of the generated code is to manage the
different views of the system, excluding business logic.

In contrast to graph transformation approaches, some
proposals use a formal language as a source model for
code generation. They use formal languages due to their
well-defined semantic. This is the case of PADL2Java
[6], which defines transformation rules to generate
code in Java from specifications in an algebraic formal
language called PADL. The system is completely
specified on PADL, easing the process for generating
both structural and behavioral codes.

Finally, some researchers have opted for a combination
of models and textual specifications, and the benefits of
both. Fang [7] combines modeling patterns and action
semantic with MDA to create applications for a specific
platform, called EJB. Patterns and platform are expressed
with UML and action semantic representations. The latter
is based on the UML meta-model. Although the use of
meta-models could allow for the extension of the method
to other platforms, the strong link between patterns and
the platform could make this step difficult. Also, in some
cases the code obtained from patterns is structural and
not behavioral. Sánchez et al. [8] shows a graphic DSL
for the home automation domain. The structure of the
DSL is composed of so-called functional units, common
functionalities on the domain (e.g., light power on/off or
lighting level regulation associated to services like dimmers
and timers.) A program with DSL consists of a sequence
of services and its actions. The code generated is fully
executable due to the defined behavior exhibited by every
functional unit, which acts as a code template. The DSL
has an internal XML representation, the main source of
the transformation rules. The proposal is domain-platform
independent because its structure is flexible enough to allow
for the implementation of new services and functional units
in several devices and platforms.

The use of formal specifications for modeling the
code generation process has some drawbacks.

Muñetón & Zapata96

Designers and developers are accustomed to use graph
models, especially in UML—the de facto standard
for modeling—and, additionally, formal languages
could be harder to learn and apply. Also, the need for
writing the entire code of the system in a source model
is a negative factor, no matter whether the code was
written using a formal language or the benefits of it.
On the other hand, purely graphical approaches have
limitations too, due to the flaws of graph languages.
Despite its evolution to languages closer to code—
UML, for example—it is still difficult to express any
aspect of a system with enough level of detail for code
generation. The recent approaches show that MDA
is still in a stage of development, especially in core
aspects such as the platform independent model (PIM)-
to-platform specific model (PSM) transformation.

The principal flaw of the aforementioned proposals is
related to behavioral code—the code of the methods—
which is not generated or predefined as a template.
Formal methods have exceptions to this fact, because
they can generate the entire code of a system, but
starting from a complete source code in a formal
language. DSLs act as alternatives, but the approaches
analyzed are either too close to the platform or they are
suitable only for a very specific domain.

The following sections show a novel approach for code
generation which combines UML graphs and semantic
annotations. This improvement allows for one to generate
structural and behavioral codes and uses a DSL for making
the annotations easy enough to learn and understand for
developers, designers, and business stakeholders.

3. METHOD FOR THE CODE GENERATION BY
MEANS OF SEMANTIC RELATIONSHIPS

The proposed method for code generation is based on
MDA, as it considers the PIM and PSM models. Also, the
Meyer design by contract [11] is included, especially the
use of pre- and post-conditions to represent the semantic
of operations. The pre-conditions of an operation are the
restrictions for executing it, while post-conditions are the
properties of the state of the system immediately after
the execution of the operation.

In addition to the aforementioned properties, in this method
we introduce semantic annotations for model-to-model and
model-to-platform relationships, specified in a DSL.

The steps of the method are: (i) PIM model creation; (ii)
solution-independent semantics (SIS) annotation to PIM;
(iii) solution-specific semantics (SES) annotation to PIM;
(iv) relationship settlement between the semantically
annotated PIM and the platform; and (v) code generation.

The first step of the method is the creation of the PIM
model. Since the model-to-code transformation rules act
on instances of the UML meta-model, PIM must be a well-
formed class diagram. Next, in step two, the intention of
each operation is expressed with a solution independent
semantic (SIS)—similar to the programming-by-intention
initiative—in which the developer starts writing sentences
for expressing the objective he/she expects to reach,
instead of specifying how it could be reached [12].
Then, the intention is the “what” and the solution is the
“how” of the operation. In contrast, SES of the PIM+SES
construction, or step three, expresses a concrete solution for
the operations of the models; in this step, the model is still
independent of the implementation platform. Both steps two
and three act independently of each other. Consequently,
they could be executed in any order. In the next step, the
model semantically specified is related to the platform
for allowing code generation. This step requires a target
platform with semantic specifications to be accomplished,
and the rules defined by Muñetón et al. [10]. The connection
between PIM and PSM is a variation of MDA because no
transformation rules are needed, but a relationship between
models. Section 6 illustrates this with a case study.

A formal representation of the method is:

cg: Msem, Psem → C

where “Msem = (Msis, Mses)”, is the semantic specified
model, “Psem” is the platform with its semantic
specification, “C” is the set of the generated code, and
“bg” is the behavioral code generation function. Given
this, “bg” can be represented as:

bg: {mop1, mop2, mop3, …, mopn}, {pop1, pop2,
pop3, …, popm} → {Iop1, Iop2, Iop3, …, Iopn}

where “mop”i is an operation of the semantic model,
“pop”i an operation of the platform, and “Iop”i is the
set of implementations of operation i. “Iop”i is defined
as a finite sequence of invocations to implemented
operations of domain or platform:

Iopi=(invoke(op1), invoke(op2), invoke(op3),…,
invoke(opn)

Dyna 172, 2012 97

Semantic annotations of “Msem” and “Psem” are
specified by using a DSL, whose Extended Backus-
Naur Form (EBNF) is given below:

s e m a n t i c = ‘ S I S ’ | ‘ S E S ’ , ‘ t o ’ ,
identifier,’:’,’precondition=’, empty | assertion,
‘postcondition=’,assertion;

assertion = subject, space, predicate, space, object;

subject = instantiation | identifier;

predicate = ‘in’ | ‘not-in’ | ‘type-of’ ;

object = ‘Collection’ | dbtable;

instantiation = identifier, ‘(‘, [arguments], ‘):’, type;

identifier = letter, {letter | capitalizedLetter};

type = capitalizedLetter, {letter | capitalizedLetter};

arguments = identifier, {‘,’, identifier};

dbtable = ‘DB(table=’, identifier, ‘)’;

letter = ‘a’..’z’;

capitalizedLetter = ‘A’..’Z’;

space = ‘ ‘;

empty = ‘’;

A semantic specification has two assertions: a “pre-
condition” and a “post-condition.” An “assertion” is
composed by three elements: “subject,” “predicate,”
and “object.” In this paper, the domain of the DSL
is restricted by the predicates: “in,” “not-in,” and
“type-of.” Also, we use operations to add and remove
elements on collections and to insert and update records

of a database table.

4. SEMANTIC COMPUTING PLATFORM FOR
AUTOMATIC CODE GENERATION

In this section we present the platform architecture for
allowing the implementation of the method introduced
in the previous section. The structure is based on the
semantic computing architecture [13] that considers
five core layers and two transversal ones: security and
management.

Each layer in the platform has a concrete objective
reached by services, which are intended to have a
general purpose in the original proposal. The data to be
processed in the platform are analyzed and converted
to semantics in the information analysis layer. These
semantics are related to the content in the next layer
of semantic integration. With the output of this layer,
the services of the semantic services layer can perform
activities; e.g., generate code. A set of services could be
related to create a more powerful service by means of
the service integration layer. Finally, there are services
in a semantic interface layer for allowing a natural
interaction with the final user.

Figure 1 shows the semantic computing architecture
with concrete services for code generation: SIS
analyzer, SES analyzer, integrator, and code generator.
Furthermore, two repositories of code were added: a
code corpus and the API. In this paper, we are only
focusing on the central components of the platform,
excluding the management and security layers.

Figure 1. Semantic platform with services for automated code generation, adapted from [13]

Muñetón & Zapata98

The representation of the DSL sentences can be easily
understood by the final user, because the services of
the semantic analysis layer make a syntactic analysis,
without using an interface of interaction. This is why
there are no services in the semantic interface layer.

The services of the semantic integration layer allow for
the implementation of steps (ii), (iii), and (iv) of the
code generation method. The models and the semantic
integrator service match models with semantics and other
models. This is the case of the PIM+SIS and PIM+SES
relationships. The platform-specific constructions are
achieved by the code corpus service and the semantic API
service, which are related to code repositories.

There are two types of code generation services: domain
operation and platform operation code generators. The
domain operation code generator produces the code of
the signature of the user model operations and the code
of the body. (This task is carried out with the help of the
platform operation code generators). For each platform
operation there is a code generator.

Finally, the service integration layer coordinates the
interaction of the platform services.

5. CASE STUDY

In this section we show an implementation of the
method presented in Section 4 by means of a case
study based on the process of an invoice. An invoice
has one or more details, and each detail has a product
and a quantity. An invoice has three operations—
addDetail, deleteDetail, and save—which add a detail
to the invoice details, delete a detail from the details
of the invoice, and save the invoice in database,
respectively.

5.1. PIM Model Creation

According to the method, the first step is to create a
PIM model. Figure 2 shows a class diagram that acts
as the PIM of the invoice case study.

5.2. PIM and SIS Relationship

Next, a semantic-independent solution is assigned to
the PIM in order to obtain the PIM+SIS model. This is
specified by using the DSL as seen in Fig. 2.

Figure 2. PIM diagram for the case study

SIS to addDetail:

precondition=detail(product, quantity):Detail not in
details

postcondition=detail(product, quantity) in details

The previous SIS specifies the intention of addDetail:
“to add a detail to the details.”

5.3. PIM and SES Relationship

In this step, a semantic specific to the solution is used
to specify that “details” is intended to be a collection.

SES to ddDetail:

precondition=

postcondition=details typeof Collection

SES relates the operation with a solution, not with the
platform. Then, collection is not a concrete platform
class, but a grouping of data items.

5.4. Platform Relationship

The combination of SIS and SES for the addDetail
operation is the semantic: “addDetail must add a
detail, which is an object composed by a product and
a quantity, in a collection called details.”

Once this semantic is obtained, the next step is focused
on finding an implemented operation whose contract
could be related with the contract of “addDetail.” In this
case, the operation is the “add” of the Java platform.
The post-condition of “add” is “e in :Collection”, an
abstract representation for adding elements into a
specific collection. The relationship between semantics

Dyna 172, 2012 99

is more clear if “e” is replaced by detail(product,
quantity), and :Collection by details.

SES to add:

precondition=

postcondition=e in :Collection

5.5. Code Generation

Finally, the code is generated from the previous
relationships.

void addDetail(Product product, int quantity){

Detail detail=new Detail(product, quantity);

details.add(detail);

}

The code is generated according to the transformation
rules defined by Zapata and Muñetón [9]. The body
of “addDetail” is an invocation of “add” operation.
This sentence is generated by a code generator service
associated with the “add” operation.

The code for saving an invoice and removing a detail
is generated in a similar way.

The semantic specification of “deteleDetail” and the
generated code are:

SIS to removeDetail:

precondition=detail(product,quantity):Detail in details

postcondition=detail(product,quantity):Detail notin
details

SES to removeDetails:

precondition=

postcondition=details typeof Collection

The full semantic of “deleteDetail” is “deleteDetail
must remove a detail of the collection details.” The
“remove” operation of the java.util.Collection interface
has a contract that matches the deleteDetail semantic:

SES to remove:

precondition=e in :Collection

postcondition=e notin :Collection

The generated code is:

public void deleteDetail(Product product, int
quantity){

Detail detail=new Detail(product,quantity);

details.remove(detail);

}

The method for code generation checks the existence
of the identifiers generated in the code. In the case of
“addDetail” and “deleteDetail,” the “detail” object has
to be created because it does not exist as an argument
of the operation.

Nowadays it is uncommon to write the entire code
to interact with the database. The main reason is the
existence of a lot of frameworks and tools that hide
this code from the programmer by automatically
generating the source code. This is the case of hibernate
or the Java Persistence API. However, in this work we
decide to show, due to pragmatic aspects, the semantic
specification of the “save” operation.

SIS to save:

precondition=invoice:Invoice notin invoices

postcondition=invoice:Invoice in invoices

SES to save:

precondition=

postcondition=invoices typeof DB(table=invoices)

The full semantic for the “save” operation is: “save
must insert a detail, and object composed by a product
and a quantity, in a database table called invoices”.

The platform “execute” operation has a contract that
match the save contract.

SES to execute:

precondition=

postcondition=e in DB(table=es)

The code generated for save is:

void save(){

Connection con=DriverManager.getConnection();

Muñetón & Zapata100

PreparedStatement ps=con.preparedStatement();

ps.execute();

}

The code generation is still incomplete. Parameters
of some operations, such as getConnection() and
preparedStatatement(), are not obtained. Consequently,
the save operation is not executable and it may be
considered for future work.

The semantic specifications of the operations invoked
in the body of “save” are:

SES to preparedStatement:

precondition=:PreparedStatement is void

postcondition=:PreparedStatement isnot void

SES to getConnection:

precondition=:Connection is void

postcondition=:Connection isnot void

6. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a set of services,
structured on a semantic platform, to generate the code
of operations from UML class diagrams.

A method for code generation was also proposed. The
method is based on MDA and Meyer’s Design by
Contract. Instead of diagram transformations, such as
MDA, the method relates to models by using semantic
annotations. The semantic annotations have two
types: solution-independent and solution-dependent.
The former allows for one to specify the intention of
the operation, avoiding technical aspects, which are
indicated with the solution specific semantic.

To facilitate the semantic specification of the operations,
a DSL was defined. The DSL is easy to learn and apply,
allowing for its use by technical and non-technical
members of the development team.

As future work, the method for code generation must
be improved by considering the arguments of the
platform operations in the generated code. The bodies
of such operations require the use of conditionals and
loops, and the addition of error handling.

REFERENCES

[1] Crispin, L. and Gregory, J., Agile Testing: A practical
Guides for Testers and Agile Teams, Addison-Wesley
Professional, Boston, MA, 2009.

[2] Duvall, P., Matyas, S. and Glover, A., Continuous
Integration: Improving Software Quality and Reducing Risk,
Addison-Wesley Professional, Boston, MA, 2007.

[3] Humble, J. and Farley, D., Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment
Automation, Addison-Wesley Professional; 1 edition.
Boston, MA, 2010.

[4] Bennett, J., Cooper, K. and Dai, L., Aspect-oriented
model-driven skeleton code generation: A graph-based
transformation approach, Science of Computer Programming,
75, pp. 689-725, 2010.

[5] Nassar, M., Anwar, A., Ebersold, S., Elasri, B., Coulette,
B. and Kriouile, A., Code Generation in VUML Profile: A
Model Driven Approach, IEEE/ACS International Conference
on Computer Systems and Applications, pp. 412 – 419, 2009.

[6] Bontà, E. and Bernardo, M., PADL2Java: A Java Code
Generator for Process Algebraic Architectural Descriptions,
IEEE/ACS International Conference on Computer Systems
and Applications, pp. 412 – 419, 2009.

[7] Cheng, f. MDA Implementation Based on Patterns
and Action Semantics, Third International Conference on
Information and Computing, 25-28, 2010.

[8] Sánchez, P., Jiménez, M., Rosique, F., Álvarez, B. and
Iborra, A., A framework for developing home automation
systems: From requirements to code, The Journal of Systems
and Software. Vol. 84, pp. 1008–1021, 2011.

[9] Zapata, C.M. and Muñetón, A., Generación del cuerpo
de los métodos a partir de la semántica de las operaciones
del diagrama de clases, Revista Ingeniería e Investigación.
Vol 28, No. 3, pp. 58-63. 2008.

[10] Muñetón, A., Zapata, C.M. and Arango, F., Reglas
para la Generación Automática de Código Definidas Sobre
Metamodelos Simplificados de los Diagramas de Clases,
Secuencias y Máquina de Estados de UML 2.0, Dyna, Vol.
74, No. 153, pp. 267-283, 2007.

[11] Meyer, B., Object-Oriented Software Construction,
Prentice Hall, Santa Barbara, California, 1997.

[12] Martin, R., Clean Code: A Handbook of Agile Software
Craftsmanship, Prentice Hall, Boston, MA, 2008.

[13] Sheu. P., Semantic Computing, Wiley-IEEE Press, 2010.

