
Dyna, year 79, Nro. 172, pp. 101-107. Medellin, april, 2012. ISSN 0012-7353

EVOLUTIONARY MULTI-OBJECTIVE SCHEDULING PROCEDURES
IN NON-STANDARDIZED PRODUCTION PROCESSES

PROCEDIMIENTOS DE PROGRAMACIÓN EVOLUTIVA MULTI-
OBJETIVO EN PROCESOS PRODUCTIVOS NO ESTANDARIZADOS

MARIANO FRUTOS
Doctor en Ingeniería, Universidad Nacional del Sur y CONICET, Argentina, mfrutos@uns.edu.ar

FERNANDO TOHMÉ
Doctor en Economía, Universidad Nacional del Sur y CONICET, Argentina, ftohme@criba.edu.ar

Received for review December 9 th, 2010, accepted January 24th, 2012, final version February, 9 th, 2012

ABSTRACT: Scheduling problems can be seen as multi-objective optimization problems (MOPs), involving the simultaneous satisfaction
of several goals related to the optimal design, coordination, and management of tasks. The complexity of the goal functions and of the
combinatorial methods used to find analytical solutions to them is quite high. The search for solutions (Pareto-optima) is better served by
the use of genetic algorithms (GAs). In this paper, we analyze the performance of the non-dominated sorting genetic algorithm II (NSGAII),
strength Pareto evolutionary algorithm II (SPEAII), and their predecessors, NSGA and SPEA, when these are devoted to scheduling tasks
in non-standardized production activities.

KEYWORDS: Job-shop scheduling, multi-objective optimization, Pareto frontier, memetic algorithm, local search

RESUMEN: En los problemas de programación de la producción que involucran diseñar, coordinar, administrar y controlar todas las
operaciones presentes en el proceso productivo, aparecen numerosos problemas de optimización multi-objetivo (MOPs). Los MOPs constan
de varias funciones que suelen ser complejas y evaluarlas puede ser muy costoso. La optimización multi-objetivo es la disciplina que
trata de encontrar las soluciones, denominadas Pareto óptimas, a este tipo de problemas. La compleja resolución de los MOPs es debida
a las dimensiones del problema, al carácter combinatorio de los algoritmos y a la naturaleza de los objetivos los cuales están vinculados
a la eficiencia del sistema. En las últimas décadas muchos MOPs vinculados a la producción han sido tratados con éxito con técnicas de
resolución basadas en algoritmos genéticos (GAs). En este trabajo se evalúa a NSGAII (Non-dominated Sorting Genetic Algorithm II),
SPEAII (Strength Pareto Evolutionary algorithm II) y a sus antecesores, NSGA y SPEA, en el proceso de planificación de la producción
no estandarizada.

PALABRAS CLAVE: Programación job-shop, optimización multi-objetivo, frontera de Pareto, algoritmo memético, búsqueda local

1. INTRODUCTION

The scheduling of job-shop (i.e., non-standardized)
production activities requires for one to assign in the
best possible way the resources used in those processes
[1–4]. This, in turn, demands efficient procedures to
optimize decisions in those contexts [5,6]. This job-
shop scheduling problem (JSSP) has been classified as
NP-Hard, meaning that no polynomial algorithm has
been found for solving it. Worse yet, the time required
to find a solution grows exponentially with the size of
the problem [7,8]. Different alternative presentations of
the problem have been advanced, in order to accelerate
the search for solutions [9–12]. A common feature of
most JSSPs is the presence of at least two conflicting

goals that have to be simultaneously optimized [13].
Such multi-objective optimization problems usually
have many different solutions.

If we assume that, without loss of generality, all the
objectives have to be minimized, a multi-objective
optimization problem (MOP) requires finding a
vector x x xn

T* * *[,...,]= 1 satisfying q inequality
const ra in ts g x i qi () , ,..., ³ =0 1 and p equal i ty
const ra in ts h x i pi () , ,...,

= =0 1 tha t minimizes

 f x f x f xk
T() [(),..., ()]= 1 , where the vector of decision

variables is x x xn
T= [,...,]1 .

The class of values that satisfy the constraints defines
a region of feasible solutions, denoted Ω . That is, any

Frutos & Tohmé102

 is a possible solution to the MOP. Then,
is Pareto optimal if there is no other feasible that
improves on any goal without worsening another one.
Feasible solutions can be partially ordered in terms of
Pareto dominance: a vector u u un

T= [,...,]1 dominates
another vector v v vn

T= [,...,]1 (denoted � ≺ �u v) if and
only if i {1,...,k }∀ ∈ , i i i iu v i {1,...,k } : u v≤ ∧ ∃ ∈ < .

This al lows us to define, for a MOP with
objective function

f x() , the optimal Pareto set
. Finally, this

set leads to the definition of the Pareto frontier of the
problem: FP f x x P* *{ (), }= Î

 . The main goal in the
analysis of MOPs is to find the corresponding Pareto
frontier. Since it can contain a large number of points,
a good solution consists only of a few points, as close
as possible from the exact Pareto frontier and uniformly
distributed along its contour.

Quite useful tools for the search of this approximate
Pareto frontier are evolutionary algorithms [14,15].
In particular, genetic algorithms (GAs) are easy to
program and implement [16]. Nevertheless, the high
rate of convergence of GAs is costly, since this induces
the loss of diversity in the solutions, which is reflected
in poorly distributed Pareto frontiers. But if a GA is
complemented by an efficient local search method, it
yields a procedure that solves multi-objective problems
requiring a low number of evaluations of the fitness
function. This kind of combined algorithm is called a
multi-objective memetic algorithm [17].

2 . A M U LT I - O B J E C T I V E M E M E T I C
ALGORITHM

We introduce the reader here to a multi-objective
memetic algorithm that operates on chromosomes
representing the sequence of operations to carry out
on different machines, one chromosome for each
machine. Each chromosome is coded as an ordered
list of integers, representing the order in which the
jobs will be performed. That is, with values between
0 and n!-1 (n is the total number of jobs to be done),
we represent the sequence of jobs in a given machine.
For m = 3 (m is the number of machines) and n = 3,
0→123, 1→132, 2→213, 3→231, 4→312 and 5→321.
The initial population consists of individuals in which
the chromosomes have randomly assigned genes. The

algorithm starts by decoding and evaluating these
individuals. Two functions are evaluated: makespan
(the time required to finish all the jobs) [18] (Eq. 1)
and tardiness (the longest delay in finishing a job) [19]
(Eq. 2).

 1 max jO C max (C)→ = (1)

 2 max jO T max (T)→ = (2)

Here Cj is the date in which job j is finished, while Tj is
the delay of job j with respect to its intended finishing
date. Tj is computed up from Eq. 3, in which dj is the
due date of delivery.

 { }j j jT max (C d),0= − (3)

in turn, dj is determined according to Eq. 4, where i
jτ

is operation i’s processing time for the j job. Here we
take β to be 0.20.

m
i

j j
i 1

d (1)β τ
=

= + ∑ (4)

The evaluation determines the criticality of each
machine [20]. According to the evaluation, basic
genetic operations are applied on the chromosomes.
After that, an improvement operator is applied on the
individuals, according to the meta-heuristic method
known as simulated annealing (SA) [21]. This technique
searches locally for better solutions. SA allows for one
to search in less favorable areas of the state space,
according to the density of potential solutions found.
After this step, the resulting individuals are pooled
together and subject to non-dominated sorting genetic
algorithm II (NSGAII) [22]. NSGAII applies an elitist
strategy together with an explicit mechanism to ensure
diversity. The elitist procedure consists of choosing
the better individuals from the union of the parent and
children populations. Fig. 1 describes the operation of
the multi-objective memetic algorithm.

3 . C O M PA R I N G N S G A I I TO O T H E R
ALGORITHMS

We consider three multi-objective evolutionary
algorithms (MOEAs) and compare them to NSGAII.
The MOEAs are: non-dominated sorting genetic
algorithm (NSGA) [23], strength Pareto evolutionary

Dyna 172, 2012 103

algorithm (SPEA) [24], and strength Pareto evolutionary
algorithm II (SPEAII) [25].

Generate the initial population (P0) of size N

Decode and evaluate O1(x) and O2(x) for each x ∈P0

Assign values ri and di to each x ∈P0

Select parents from P0

0Q = Crossover (P0)

0Q′ = Mutate (0Q)

0Q′′ = Search locally (0Q′)

for i = 0 to (G – 1) do

Decode and evaluate O1(x) and O2(x) for each x ∈ iQ′′

Assign values ri and di to each x ∈ iQ′′

Select the N best individuals from Pi ∪ iQ′′

Create the next generation Pi+1

Select parents from Pi+1

i 1Q + = Crossover (Pi+1)

i 1Q +′ = Mutate(i 1Q +)

i 1Q +′′ = Search locally (i 1Q +′)

end for

end

Figure 1. Multi-objective memetic algorithm

NSGA classifies individuals by layers of undominated
individuals, giving each one in a layer the same value
of fitness. This value is proportional to the entire
population considered. Once obtained a top layer,
it is dismissed and a new layer is considered. The
process continues until all the population is classified.
Since the individuals in the top layer have the highest
degree of fitness, they get more attention than the rest
of the population. SPEA creates a file containing the
undominated solutions found previously. This file is
updated, including new undominated solutions, and
deleting the solutions that become dominated. For
each one a strength value is computed, proportional to
the number of solutions dominated by the individual.
The fitness of each member is obtained by computing

the strengths of those which dominate it. SPEAII
improves over its predecessor by assigning to each
possible solution a fitness value that depends both on
the number of individuals dominated and the number of
those dominating it. It uses also the “closest neighbor”
method to assess the density of solutions and guiding
the search more efficiently.

4. EXPERIMENTS AND RESULTS

The algorithms discussed above were implemented in
a platform and programming language-independent
interface for search algorithms (PISA) [26]. PISA is an
interface that allows for one to program search algorithms,
splitting them in two modules: the variator and the
selector. The variator module captures all the specifics of
the optimization problem, and its goal is to decode and
evaluate the fitness of individuals. The selector module, in
turn, is independent of the details of the problem and runs
the selection process. Both modules communicate through
text files that allow for one to implement the algorithms
independently of the underlying programming language
and the operations system.

The experiments were run adding a local search stage to
each of the aforementioned algorithms. An exploratory
analysis showed that the process of improvement of
solutions tends to stabilize around the 200th generation.
This allowed us to restrict the experiments to stop at
the 500th generation, leaving ample room for a late
improvement. The experiments were run on a 3.00 GHZ
CPU with 1.00 GB RAM. The parameters imposed on the
experiments were as follows: the size of the population
was 200; the number of generations, 500; the crossover
type, uniform; the probability of a crossover, 0.90; the
mutation type, two-swap; the probability of mutation,
0.01; the local search type, simulated annealing and;
finally, the probability of local search was 0.01. We
present the results for problems la01, la02, la03, la04,
la05, la06, la07, la08, la09, and la10 [27] in which the
goal is to minimize makespan and delay. The procedure is
the usual one in these cases [28]. Each algorithm was run
10 times. For each of them, ten classes of undominated
solutions were obtained: P1, P2,…, P10. A super-population
PT = P1 ∪ P2∪ ...∪ P10 was created for each algorithm.
From each super-population the undominated solutions
were extracted to form the Pareto frontiers YNSGA , YSPEA ,
YSPEAII, and YNSGAII. The outcomes can be seen by observing
Figs. 2 to 11.

Frutos & Tohmé104

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Dyna 172, 2012 105

Figure 8.

Figure 9.

Figure 10.

Figure 11.

To approximate the optimal Pareto frontier we take
YBK = YNSGA ∪ YSPEA ∪ YSPEAII ∪ YNSGAII (YBK for
best known solutions) and eliminate the dominated
solutions. The comparison takes into account which
solutions of each algorithm belong to YBK and the
solutions from one algorithm dominating the solutions
of another: A solution is effective if it belongs to YBK
and is not dominated by another one in YBK.

5. COMPARISON PROCEDURE

The algorithms were compared in terms of the resulting
values of makespan and delay. For problems la01 (Fig. 2),
la04 (Fig. 5), la08 (Fig. 9), la09 (Fig. 10), and la10 (Fig.
11), it can be seen that NSGA, SPEA, NSGAII, and SPEAII
have all their solutions in YBK. In these cases, no algorithm
improves over the others. For la02 (Fig. 3) 100% of the
solutions of NSGAII are in YBK. Even if SPEAII is 100%
effective, not all of its solutions are in YBK. SPEA reaches
92.8% of its effectiveness, since from 14 solutions only 1
of them is dominated by an element of YBK. We can see that
NSGAII and SPEAII dominate NSGA in 2 solutions and
SPEA in 1. Besides, SPEA dominates NSGA in 1 solution.
In la03 (Fig. 4), 100% of the solutions of NSGAII are in
YBK. Despite the 100% effectiveness of SPEAII, not every
alternative of YBK obtains one of its solutions. NSGAII and
SPEAII dominate NSGA and SPEA in 1 solution. For la05
(Fig. 6), it can be seen that NSGAII has all its solutions
in YBK. Even if NSGA has 100% of effectiveness, not all
of its solutions are in YBK. NSGAII dominates SPEA and
SPEAII in 1 solution.

Frutos & Tohmé106

For la06 (Fig. 7), we have that only NSGAII has 100%
of its solutions in YBK. NSGAII dominates NSGA,
SPEA and SPEAII in 1 solution. In the case of la07 (Fig.
8), we see that all of the solutions of SPEAII belong to
YBK. Although NSGAII has 100% effectiveness, not
all of its solutions are in YBK. NSGAII and SPEAII
dominate NSGA and SPEA in 1 solution. We can see
that NSGAII reaches, in most cases, all the solutions
in YBK. SPEAII also exhibits a good performance,
although not a performance as good as NSGAII.
NSGA and SPEA, instead, reach less solutions for YBK.
In summary, NSGAII seems to be a better alternative,
and justifies its selection as the core GA in our memetic
algorithm.

6. CONCLUSIONS

We presented a multi-objective memetic algorithm to
solve job-shop scheduling problems (JSSPs) based
on NSGAII and simulated annealing. To assess how
well this algorithm behaves on this class of NP-hard
problems, we run it on a family of well-known JSSPs,
arising in non-standardized production contexts.
Furthermore, we consider alternative memetic
algorithms in which NSGAII is replaced by other multi-
objective evolutionary algorithms (MOEAs). In most
of the problems, the quality of the solutions found by
NSGAII is equal or higher than the results of SPEAII.
On the other hand, NSGAII definitely improves over
NSGA and SPEA. We can conclude that the multi-
objective memetic algorithm here is a good approach
for solving JSSPs. Future work involves running this
algorithm over other kinds of problems.

ACKNOWLEDGMENTS

This work was funded by two research grants: PIP
112-200801-00804 of the Consejo Nacional de
Investigaciones Científicas y Técnicas (CONICET)
and PGI 24/J039 of the Universidad Nacional del Sur.
We want also thank Dr. Ana C. Olivera for her constant
help during this research.

REFERENCES

[1] Adams, J., Balas, E. and Zawack, D., The Shifting
Bottleneck Procedure for job-shop scheduling, Management
Science, 34 (3), pp. 391-401, 1998.

[2] Park, B. J., Choi, H. R. and Kim, H. S., A Hybrid genetic
algorithm for the job-shop scheduling problems, Computers
and Industrial Engineering, 45 (4), pp. 597-613, 2003.

[3] Sánchez, F. J., López, J. M., Fernández, J. L. y Páez,
F. J., Diseño del interior del habitáculo asistencial de una
UVI móvil usando técnicas de optimización basadas en
programación lineal, DyNA, 83 (5), pp. 313-320, 2008.

[4] Tsai, C. F. and Lin, F. C., A new hybrid heuristic
technique for solving job-shop scheduling problem,
Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications, Second IEEE
International Workshop, 2003.

[5] Ribas, I., Companys, R. y Mateo, M., Programación
bi-criterio para máquinas en paralelo, DYNA, 84 (5), pp.
429-440, 2009.

[6] Chinyao, L. and Yuling, Y., Genetic algorithm-based
heuristics for an open shop scheduling problem with setup,
processing, and removal times separated, Robotics and
Computer-Integrated Manufacturing, 25 (2), pp. 314-322,
2009.

[7] Ullman, J. D., NP-complete scheduling problems.
Journal of Computer System Sciences, 10, pp. 384-393,
1975.

[8] Papadimitriou, C. H., Computational complexity,
Addison–Wesley, USA, 1994.

[9] Heinonen, J. and Pettersson, F., Hybrid ant colony
optimization and visibility studies applied to a job-shop
scheduling problem, Applied Mathematics and Computation,
187 (2), pp. 989-998, 2007.

[10] Merkle, D. and Middendorf, M., A new approach to
solve permutation scheduling problems with ant colony
optimization, Applications of Evolutionary Computing,
Proceedings of the EvoWorkshops 2001, 2037, pp. 484-
494, 2001.

[11] Wu, C. G., Xing, X. L., Lee, H. P., Zhou, C. G. and
Liang, Y. C., Genetic algorithm application on the Job-Shop
Scheduling Problem, Machine Learning and Cybernetics,
Proceedings of the 2004 International Conference, 4, pp.
2102-2106, 2004.

[12] De Giovanni, L. and Pezzella, F., An improved
genetic algorithm for the distributed and flexible Job-Shop
scheduling problem, European Journal of Operational
Research, 200 (2), pp. 395-408, 2010.

Dyna 172, 2012 107

[13] Frutos, M. y Tohmé, F., Desarrollo de un procedimiento
genético diseñado para programar la producción en un
sistema de manufactura tipo Job-Shop, In Proceedings del
VI Congreso Español sobre Meta-heurísticas, Algoritmos
Evolutivos y Bioinspirados, Málaga, 2009.

[14] Coello, C. A., Van Veldhuizen, D. A. and Lamont, G.
B., Evolutionary algorithms for solving multi-objective
problems, Kluwer Academic Publishers, New York, 2002.

[15] Cortés, D., Coello, C. A. and Cortés, N. C., Use of
an artificial immune system for Job-Shop Scheduling, In
Proceedings of the Second International Conference on
Artificial Immune Systems, Edinburgh, Scotland, Springer-
Verlag, Lecture Notes in Computer Science, 2787, pp. 1-10,
2003.

[16] Goldberg, D. E., Genetic algorithms in search,
optimization and machine learning, Addison–Wesley,
Massachusetts, 1989.

[17] Ishibuchi, H., Yoshida, T. and Murata, T., Balance
between genetic search and local search in memetic algorithms
for Multiobjective Permutation Flow-shop Scheduling, IEEE
Transactions on Evolutionary Computation, 7 (2), pp. 204-
223, 2003.

[18] Cheng, C. C. and Smith, S. F., Applying constraint
satisfaction techniques to job-shop scheduling, Annals of
Operations Research, 70, pp. 327-357, 1997.

[19] Armentano, V. A. and Scrich, C. R., Tabu search for
minimizing total tardiness in a job-shop, Int. J. Production
Economics, 63, pp. 131-140, 2000.

[20] Lin, Y., Pfund, M. and Fowler, J., Heuristics for
minimizing regular performance measures in unrelated
parallel machine scheduling problems, Computers &
Operations Research, 38 (6), pp. 901-916, 2011.

[21] Dowsland, K. A., Simulated annealing, modern
heuristic techniques for combinatorial problems, Ed. C R
Reeves, Blackwell Scientific Pub, Oxford, 1993.

[22] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., A
fast and elitist multi-objective genetic algorithm: NSGAII,
IEEE Transactions on Evolutionary Computation, 6 (2), pp.
182-197, 2002.

[23] Srinivas, N., Multiobjetive optimization using
nondominated sorting in genetic algorithms, Master thesis,
Indian Institute of Technology, Kuanpur, India, 1994.

[24] Zitzler, E. and Thiele, L., Multiobjective evolutionary
algorithms: A comparative case study and the strength Pareto
approach, IEEE Trans. Evolutionary Computation, 3 (4), pp.
257-271, 1999.

[25] Zitzler, E., Laumanns, M. and Thiele, L., SPEAII:
Improving the strength Pareto evolutionary algorithm for
multiobjective optimization, In Giannakoglou, Tsahalis,
Periaux, Papailiou, and Fogarty (eds), Evolutionary Methods
for Design, Optimisations and Control, pp. 19-26, 2002.

[26] Bleuler, S., Laumanns, M., Thiele, L. and Zitzler, E.,
PISA: A platform and programming language independent
interface for search algorithms, In Proceedings of the
Evolutionary Multi-Criterion Optimization, 494-508, 2003.

[27] Beasley, J. E., OR-Library: Distributing test problems
by electronic mail, Journal of the Operational Research
Society, 41 (11), pp. 1069-1072, 1990.

[28] Jaszkiewicz, A., A comparative study of multiple-
objective metaheuristics on the bi-objective set covering
problem and the Pareto memetic algorithm, Annals of
Operations Research, 131 (14), pp. 135-158, 2004.

