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ABSTRACT: Scheduling problems can be seen as multi-objective optimization problems (MOPs), involving the simultaneous satisfaction 
of several goals related to the optimal design, coordination, and management of tasks. The complexity of the goal functions and of the 
combinatorial methods used to find analytical solutions to them is quite high. The search for solutions (Pareto-optima) is better served by 
the use of genetic algorithms (GAs). In this paper, we analyze the performance of the non-dominated sorting genetic algorithm II (NSGAII), 
strength Pareto evolutionary algorithm II (SPEAII), and their predecessors, NSGA and SPEA, when these are devoted to scheduling tasks 
in non-standardized production activities.
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RESUMEN: En los problemas de programación de la producción que involucran diseñar, coordinar, administrar y controlar todas las 
operaciones presentes en el proceso productivo, aparecen numerosos problemas de optimización multi-objetivo (MOPs). Los MOPs constan 
de varias funciones que suelen ser complejas y evaluarlas puede ser muy costoso. La optimización multi-objetivo es la disciplina que 
trata de encontrar las soluciones, denominadas Pareto óptimas, a este tipo de problemas. La compleja resolución de los MOPs es debida 
a las dimensiones del problema, al carácter combinatorio de los algoritmos y a la naturaleza de los objetivos los cuales están vinculados 
a la eficiencia del sistema. En las últimas décadas muchos MOPs vinculados a la producción han sido tratados con éxito con técnicas de 
resolución basadas en algoritmos genéticos (GAs). En este trabajo se evalúa a NSGAII (Non-dominated Sorting Genetic Algorithm II), 
SPEAII (Strength Pareto Evolutionary algorithm II) y a sus antecesores, NSGA y SPEA, en el proceso de planificación de la producción 
no estandarizada.
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1.  INTRODUCTION

The scheduling of job-shop (i.e., non-standardized) 
production activities requires for one to assign in the 
best possible way the resources used in those processes 
[1–4]. This, in turn, demands efficient procedures to 
optimize decisions in those contexts [5,6]. This job-
shop scheduling problem (JSSP) has been classified as 
NP-Hard, meaning that no polynomial algorithm has 
been found for solving it. Worse yet, the time required 
to find a solution grows exponentially with the size of 
the problem [7,8]. Different alternative presentations of 
the problem have been advanced, in order to accelerate 
the search for solutions [9–12]. A common feature of 
most JSSPs is the presence of at least two conflicting 

goals that have to be simultaneously optimized [13]. 
Such multi-objective optimization problems usually 
have many different solutions.

If we assume that, without loss of generality, all the 
objectives have to be minimized, a multi-objective 
optimization problem (MOP) requires finding a 
vector x x xn

T* * *[ ,..., ]= 1  satisfying q  inequality 
const ra in ts  g x i qi ( ) , ,..., ³ =0 1 and p  equal i ty 
const ra in ts h x i pi ( ) , ,...,

= =0 1  tha t  minimizes 


  f x f x f xk
T( ) [ ( ),..., ( )]= 1 , where the vector of decision 

variables is x x xn
T= [ ,..., ]1 . 

The class of values that satisfy the constraints defines 
a region of feasible solutions, denoted Ω . That is, any 
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 is a possible solution to the MOP. Then,  
is Pareto optimal if there is no other feasible  that 
improves on any goal without worsening another one. 
Feasible solutions can be partially ordered in terms of 
Pareto dominance: a vector u u un

T= [ ,..., ]1  dominates 
another vector v v vn

T= [ ,..., ]1  (denoted � ≺ �u v ) if and 
only if i {1,...,k }∀ ∈ , i i i iu v i {1,...,k } : u v≤ ∧ ∃ ∈ < .

This al lows us to define,  for a MOP with 
objective function



f x( ) , the optimal Pareto set 
. Finally, this 

set leads to the definition of the Pareto frontier of the 
problem: FP f x x P* *{ ( ), }= Î



  . The main goal in the 
analysis of MOPs is to find the corresponding Pareto 
frontier. Since it can contain a large number of points, 
a good solution consists only of a few points, as close 
as possible from the exact Pareto frontier and uniformly 
distributed along its contour.

Quite useful tools for the search of this approximate 
Pareto frontier are evolutionary algorithms [14,15]. 
In particular, genetic algorithms (GAs) are easy to 
program and implement [16]. Nevertheless, the high 
rate of convergence of GAs is costly, since this induces 
the loss of diversity in the solutions, which is reflected 
in poorly distributed Pareto frontiers. But if a GA is 
complemented by an efficient local search method, it 
yields a procedure that solves multi-objective problems 
requiring a low number of evaluations of the fitness 
function. This kind of combined algorithm is called a 
multi-objective memetic algorithm [17].

2 .   A M U LT I - O B J E C T I V E  M E M E T I C 
ALGORITHM

We introduce the reader here to a multi-objective 
memetic algorithm that operates on chromosomes 
representing the sequence of operations to carry out 
on different machines, one chromosome for each 
machine. Each chromosome is coded as an ordered 
list of integers, representing the order in which the 
jobs will be performed. That is, with values between 
0 and n!-1 (n is the total number of jobs to be done), 
we represent the sequence of jobs in a given machine. 
For m = 3 (m is the number of machines) and n = 3, 
0→123, 1→132, 2→213, 3→231, 4→312 and 5→321. 
The initial population consists of individuals in which 
the chromosomes have randomly assigned genes. The 

algorithm starts by decoding and evaluating these 
individuals. Two functions are evaluated: makespan 
(the time required to finish all the jobs) [18] (Eq. 1) 
and tardiness (the longest delay in finishing a job) [19] 
(Eq. 2).

 1 max jO C  max ( C )→ =                             (1)

 2 max jO T max (T )→ =                            (2)

Here Cj is the date in which job j is finished, while Tj is 
the delay of job j with respect to its intended finishing 
date. Tj is computed up from Eq. 3, in which dj is the 
due date of delivery.

 { }j j jT max ( C d ),0= −                      (3)

in turn, dj is determined according to Eq. 4, where i
jτ  

is operation i’s  processing time for the j job. Here we 
take β to be 0.20.

 

m
i

j j
i 1

d (1 )β τ
=

= + ∑                          (4)

The evaluation determines the criticality of each 
machine [20]. According to the evaluation, basic 
genetic operations are applied on the chromosomes. 
After that, an improvement operator is applied on the 
individuals, according to the meta-heuristic method 
known as simulated annealing (SA) [21]. This technique 
searches locally for better solutions. SA allows for one 
to search in less favorable areas of the state space, 
according to the density of potential solutions found. 
After this step, the resulting individuals are pooled 
together and subject to non-dominated sorting genetic 
algorithm II (NSGAII) [22]. NSGAII applies an elitist 
strategy together with an explicit mechanism to ensure 
diversity. The elitist procedure consists of choosing 
the better individuals from the union of the parent and 
children populations. Fig. 1 describes the operation of 
the multi-objective memetic algorithm.

3 .  C O M PA R I N G  N S G A I I  TO  O T H E R 
ALGORITHMS

We consider three multi-objective evolutionary 
algorithms (MOEAs) and compare them to NSGAII. 
The MOEAs are: non-dominated sorting genetic 
algorithm (NSGA) [23], strength Pareto evolutionary 
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algorithm (SPEA) [24], and strength Pareto evolutionary 
algorithm II (SPEAII) [25].

Generate the initial population (P0) of size N

Decode and evaluate O1(x) and O2(x) for each  x ∈P0

Assign values ri and di to each x ∈P0

Select parents from P0

0Q  = Crossover (P0)

0Q′  = Mutate ( 0Q )

0Q′′ = Search locally ( 0Q′ )

for i = 0 to (G – 1) do

Decode and evaluate O1(x) and O2(x) for each x ∈ iQ′′

Assign values ri and di to each x ∈ iQ′′

Select the N best individuals from Pi ∪ iQ′′

Create the next generation Pi+1 

Select parents from  Pi+1

i 1Q +  = Crossover (Pi+1)

i 1Q +′  = Mutate( i 1Q + )

i 1Q +′′  = Search locally ( i 1Q +′ )

end for

end

Figure 1. Multi-objective memetic algorithm

NSGA classifies individuals by layers of undominated 
individuals, giving each one in a layer the same value 
of fitness. This value is proportional to the entire 
population considered. Once obtained a top layer, 
it is dismissed and a new layer is considered. The 
process continues until all the population is classified. 
Since the individuals in the top layer have the highest 
degree of fitness, they get more attention than the rest 
of the population. SPEA creates a file containing the 
undominated solutions found previously. This file is 
updated, including new undominated solutions, and 
deleting the solutions that become dominated. For 
each one a strength value is computed, proportional to 
the number of solutions dominated by the individual. 
The fitness of each member is obtained by computing 

the strengths of those which dominate it. SPEAII 
improves over its predecessor by assigning to each 
possible solution a fitness value that depends both on 
the number of individuals dominated and the number of 
those dominating it. It uses also the “closest neighbor” 
method to assess the density of solutions and guiding 
the search more efficiently.

4.  EXPERIMENTS AND RESULTS

The algorithms discussed above were implemented in 
a platform and programming language-independent 
interface for search algorithms (PISA) [26]. PISA is an 
interface that allows for one to program search algorithms, 
splitting them in two modules: the variator and the 
selector. The variator module captures all the specifics of 
the optimization problem, and its goal is to decode and 
evaluate the fitness of individuals. The selector module, in 
turn, is independent of the details of the problem and runs 
the selection process. Both modules communicate through 
text files that allow for one to implement the algorithms 
independently of the underlying programming language 
and the operations system. 

The experiments were run adding a local search stage to 
each of the aforementioned algorithms. An exploratory 
analysis showed that the process of improvement of 
solutions tends to stabilize around the 200th generation. 
This allowed us to restrict the experiments to stop at 
the 500th generation, leaving ample room for a late 
improvement. The experiments were run on a 3.00 GHZ 
CPU with 1.00 GB RAM. The parameters imposed on the 
experiments were as follows: the size of the population 
was 200; the number of generations, 500; the crossover 
type, uniform; the probability of a crossover, 0.90; the 
mutation type, two-swap; the probability of mutation, 
0.01; the local search type, simulated annealing and; 
finally, the probability of local search was 0.01. We 
present the results for problems la01, la02, la03, la04, 
la05, la06, la07, la08, la09, and la10 [27] in which the 
goal is to minimize makespan and delay. The procedure is 
the usual one in these cases [28]. Each algorithm was run 
10 times. For each of them, ten classes of undominated 
solutions were obtained: P1, P2,…, P10. A super-population 
PT = P1 ∪  P2∪ ...∪  P10 was created for each algorithm. 
From each super-population the undominated solutions 
were extracted to form the Pareto frontiers YNSGA , YSPEA , 
YSPEAII, and YNSGAII. The outcomes can be seen by observing 
Figs. 2 to 11.
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Figure 2. 

Figure 3. 

Figure 4. 

Figure 5.  

Figure 6.  

Figure 7. 
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Figure 8. 

Figure 9. 

Figure 10. 

Figure 11. 

To approximate the optimal Pareto frontier we take 
YBK = YNSGA ∪  YSPEA ∪  YSPEAII ∪  YNSGAII (YBK for 
best known solutions) and eliminate the dominated 
solutions. The comparison takes into account which 
solutions of each algorithm belong to YBK and the 
solutions from one algorithm dominating the solutions 
of another: A solution is effective if it belongs to YBK 
and is not dominated by another one in YBK.

5.  COMPARISON PROCEDURE

The algorithms were compared in terms of the resulting 
values of makespan and delay. For problems la01 (Fig. 2), 
la04 (Fig. 5), la08 (Fig. 9), la09 (Fig. 10), and la10 (Fig. 
11), it can be seen that NSGA, SPEA, NSGAII, and SPEAII 
have all their solutions in YBK. In these cases, no algorithm 
improves over the others. For la02 (Fig. 3) 100% of the 
solutions of NSGAII are in YBK. Even if SPEAII is 100% 
effective, not all of its solutions are in YBK. SPEA reaches 
92.8% of its effectiveness, since from 14 solutions only 1 
of them is dominated by an element of YBK. We can see that 
NSGAII and SPEAII dominate NSGA in 2 solutions and 
SPEA in 1. Besides, SPEA dominates NSGA in 1 solution. 
In la03 (Fig. 4), 100% of the solutions of NSGAII are in 
YBK. Despite the 100% effectiveness of SPEAII, not every 
alternative of YBK obtains one of its solutions. NSGAII and 
SPEAII dominate NSGA and SPEA in 1 solution. For la05 
(Fig. 6), it can be seen that NSGAII has all its solutions 
in YBK. Even if NSGA has 100% of effectiveness, not all 
of its solutions are in YBK. NSGAII dominates SPEA and 
SPEAII in 1 solution. 
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For la06 (Fig. 7), we have that only NSGAII has 100% 
of its solutions in YBK. NSGAII dominates NSGA, 
SPEA and SPEAII in 1 solution. In the case of la07 (Fig. 
8), we see that all of the solutions of SPEAII belong to 
YBK. Although NSGAII has 100% effectiveness, not 
all of its solutions are in YBK. NSGAII and SPEAII 
dominate NSGA and SPEA in 1 solution. We can see 
that NSGAII reaches, in most cases, all the solutions 
in YBK. SPEAII also exhibits a good performance, 
although not a performance as good as NSGAII. 
NSGA and SPEA, instead, reach less solutions for YBK. 
In summary, NSGAII seems to be a better alternative, 
and justifies its selection as the core GA in our memetic 
algorithm.

6.  CONCLUSIONS

We presented a multi-objective memetic algorithm to 
solve job-shop scheduling problems (JSSPs) based 
on NSGAII and simulated annealing. To assess how 
well this algorithm behaves on this class of NP-hard 
problems, we run it on a family of well-known JSSPs, 
arising in non-standardized production contexts. 
Furthermore, we consider alternative memetic 
algorithms in which NSGAII is replaced by other multi-
objective evolutionary algorithms (MOEAs). In most 
of the problems, the quality of the solutions found by 
NSGAII is equal or higher than the results of SPEAII. 
On the other hand, NSGAII definitely improves over 
NSGA and SPEA. We can conclude that the multi-
objective memetic algorithm here is a good approach 
for solving JSSPs. Future work involves running this 
algorithm over other kinds of problems.
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