
Dyna, year 79, Nro. 173, pp. 43-52.  Medellin, june, 2012.  ISSN 0012-7353

A PROPOSAL FOR HANDLING NON-FUNCTIONAL ASPECTS 
WITH A MODEL-DRIVEN ENGINEERING APPROACH

UNA PROPUESTA PARA MANEJAR ASPECTOS NO FUNCIONALES 
CON UN ENFOQUE DE INGENIERÍA DIRIGIDA POR MODELOS

DENISSE MUÑANTE
M.Sc, Universidad Nacional Mayor de San Marcos, UNMSM, Lima, Peru, denisseyessica.munantearzapalo@univ-pau.fr

PHILIPPE ANIORTE
Ph.D, Laboratoire d’Informatique de l’Université de Pau et des Pays de L’Adour, LIUPPA, Pau, France

Received to review March 09th, 2011, accepted January 27th, 2012, final version May 18th, 2012

ABSTRACT: Information systems (ISs) are composed of functional requirements (FRs) and non-functional requirements (NFRs). An 
NFR does not determine the function of the system itself, but the quality characteristics of an IS; for example, error handling, auditing, and 
access control. Non-functional requirements are often included in the coding phase of the IS, and these generally are present in various 
parts of the source code (i.e., they are scattered and tangled), which implies a difficult concept and even more difficult maintenance. In 
addition, we know that maintenance works are becoming more frequent due to both the technological and the functional changes of the IS. 
In this paper we present a proposal to define and include the NFR in the early stages of the analysis and the design of IS development. 
On the one hand, we use the aspect-oriented software development approach (AOSD) to model and maintain the NFRs as aspects. 
On the other hand, we use the model-driven engineering approach (MDE) to formalize this approach. For this, we create a 
unified modeling language (UML) profile. Then, we make use of MDE transformation mechanisms to obtain the complete model 
(with functional and non-functional aspects), and finally, a source code is generated; but this step is beyond the scope of this paper.

KEYWORDS: meta-modeling, aspect-oriented software development, model-driven engineering, UML profiles, weaving methods.

RESUMEN: Los sistema de información (SIs) están conformados por requerimientos funcionales (RFs) y requerimientos 
no funcionales (RNFs). Un RNF no determina una función del sistema en sí, sino encapsula una característica de un SI; por 
ejemplo, el manejo de errores, la auditoria y el control de acceso. A menudo los RNFs son incluidos en la fase de codificación 
del SI, y estos, por lo general, están presentes en diversas partes del código fuente; (i.e., están dispersos y enmarañados), lo cual 
implica una difícil concepción y mas aún un difícil mantenimiento. Por otro lado, sabemos que las labores de mantenimiento 
se hacen cada vez mas frecuentes debido tanto a los cambios tecnológicos como a los cambios funcionales del propio SI.
En este articulo presentamos una propuesta para definir e incluir al RNF en fases tempranas de análisis y de diseño en el desarrollo de un 
SI. Por un lado, usamos el enfoque de desarrollo de software orientado a aspectos (AOSD según su acrónimo en inglés) para modelizar los 
RNFs como aspectos y facilitar las labores de mantenimiento. Por otro lado, utilizamos el enfoque de ingeniería dirigida por modelos (MDE 
según su acrónimo en inglés) para formalizar esta propuesta. Para esto creamos un perfil del lenguaje de modelado unificado (UML según 
su acrónimo en inglés). Luego, haciendo uso de mecanismos de transformación de MDE obtenemos el modelo completo (con los aspectos 
funcionales y no funcionales), el que finalmente se derivará al código fuente, pero este último paso está fuera del alcance de este artículo.

PALABRAS CLAVE: meta-modelamiento, desarrollo de software orientado a aspectos, ingeniería dirigida por modelos, perfiles UML, 
métodos de entrelazado.

1.  INTRODUCTION 

Today’s information systems (ISs) support a variety of 
human fields such as medicine, commerce, learning, 
etc., where the ISs manage information, processes, and 
work-flows that support human activity. Therefore, it 
is important to require the quality of the systems. The 
quality properties of an IS are represented by non-
functional requirements (NFRs) [13]. 

In the conception and elicitation of an IS, we obtain 
the functional (FRs) and non-functional requirements 
(NFRs). The first ones represent functions offered by 
the system, while the latter, the objective of our work, 
provide the quality attributes to the first, which will make 
the IS robust enough to deal with external problems. 
In many cases, the quality attributes are unnoticed by 
final users, but its absence often has negative impacts. 
These quality attributes could be: confidentiality, 



Muñante & Aniorte44

security, interoperability, maintainability, re-usability, 
verifiability, usability, or others [3].

Generally an NFR affects various parts of an 
application, being scattered and tangled, making it 
difficult to understand and maintain the system. The 
aspect-oriented approach (AOSD) deals with this 
phenomenon called cross-cutting concerns. AOSD 
focuses on the identification, specification, and 
representation of cross-cutting concerns in aspects [17]. 
An aspect is a modularized and isolated cross-cutting 
concern [3,9] for improving the understandability, 
maintainability, and re-usability of the system [10]. Due 
to these advantages, AOSD has been adopted by many 
researchers; so works on legacy, business, financial, 
distribution, and service systems [1,2,6,19] in analysis 
[12,13], design [4,6,14,19,22], development [1,3,18] 
and architectural [11,17] phases can be found. 

Non-functional requirements can be elicited in early 
software development [12,13,17], which allows us 
to take them into account at the right moment in the 
IS.  We believe that the NFR conception has to be 
included in analysis and design phases; in order to do 
this, we have to use formal models. The model-driven 
engineering approach (MDE) systematically uses 
models as first class entities for all stages in the life 
cycle of software development [5]. An MDE case study 
to derive from a unified modeling language (UML) 
class diagram for Oracle9i entities is shown in [25]. The 
works [2,4,6,12,13,17] use MDE to formalize AOSD 
concepts with a static behaviour, while the proposals 
[14,19,22] have a dynamic behaviour which is closer 
to reality.

We present a proposal for handling NFRs in the 
design phase of software development, using the 
AOSD principles which are formalized by an MDE 
approach. Our proposal is the so-called model-driven 
aspects design (DADM, according to its acronym in 
Spanish). In the literature, there are similar approaches 
[3,4,6,11,14,17,19,22,24], but none of them allows 
us to model NFRs into  design business models with 
a dynamic behaviour (sequence diagrams). This is 
why we create a UML profile as a meta-model. Meta 
modeling is a technique which defines the abstract 
syntax of models and relationships among its elements. 
For example, the UML meta model is defined in 
MOF of which the model exchange format is XMI 

[5], to define aspect models. The models represent 
the system requirements called base models, while 
those created from our proposal are called aspect 
models. Both models are defined separately; we use 
a weaving process to integrate them. The authors of 
[5,15,18] study model to text (M2T) transformation, 
while proposals [9,10,22] present research on model 
to model (M2M) transformation, which are close to 
our objective.

The remainder of this paper is organised as follows: In 
Section 2, we present our proposal DADM, Section 3 
shows a case study to implement our work. The related 
works and conclusions are detailed in Sections 4 and 
5, respectively.  

2.  MODEL-DRIVEN ASPECTS DESIGN (DADM) 

There are three types of aspect-oriented approaches. 
This classification depends on the level of the weaving 
process: We have model-level, code-level, and 
executable-level weaving processes [4]. We consider that 
the first one has two major advantages: i) It is platform-
independent; it does not depend on an aspect-oriented 
language (AspectJ, AspectWerkz, Aspect#, Aspyct, 
etc. are shown in http://www.aosd.net/) for its definition. 
Learning these languages takes time and is costly; 
moreover, they have performance problems [21]. ii) It 
is better understood by people with basic analysis and 
design knowledge. Non-functional requirements must be 
defined by architectural experts in the deployment and 
implementation of systems, but analysts and designers 
know precisely where and when to use them. 

Therefore, we present our proposal, the so-called model-
driven aspects design, using an aspect-oriented approach 
which is based on a model-level weaving process. Figure 
1 shows the DADM overview. On the one hand, we 
have the base model (analysis and design diagrams) 
corresponding to FRs; that is, the reason of this system; 
and on the other hand, we have the aspect model 
(extended analysis and design diagrams) corresponding 
to NFRs. Both models are isolated which means that 
when one of them changes, it does not have an impact 
on the other. If an aspect needs to be updated, then we 
will update it only once; the combination of aspect 
and base models is an automatic and non-error prone 
process; because of this, we use a weaving process of 
which the final product is a weaved model (base model + 



Dyna 173, 2012 45

aspect model). Finally, we use a transformation process 
to obtain a source code and an executable.

Figure 1. DADM overview

Our work uses the MDE principles to formalise the 
aspect-oriented concepts using models as primary 
entities. Therefore, we create a meta-model that 
provides a modeling language to represent aspects. 
Then, we define the aspect models based on the 
meta-model mentioned. Finally, we create a weaving 
process to combine base models (FRs) and aspect 
models (NFRs).  An additional stage would be to 
create a transformation process, but this step is beyond 
our scope, as mentioned. These steps are derived 
from the ones presented in http://openembedd.inria.fr. 
OpenEmbeDD is an Eclipse-based MDE platform that 
supports each stage mentioned.

We detail each stage as follows: 

2.1   Creating a meta-model 

We use UML because it is the most widely used and it 
is easier for analysts and designers. A UML does not 
support the aspect definition (http://www.uml.org/), this 
is why we create a profile to add the aspect-oriented 
concepts. Then, we create and modify UML diagrams 
according to aspect concepts. These elements are built 
on OpenEmbeDD (see http://www.topcased.org/ for more 
details).

2.1.1 Join points

The join points are where the concerns cross-cut system 
modules. Scattered, tangled, or crosscutting concerns 
are used for many system modules; therefore, a 
crosscutting concern has one or more joining points [9]. 

In DADM, this concept can be represented by the use 
case diagrams of a UML, where a use case corresponds 
to the “module” or the process of a system. In order to 
do this, DADM adds two elements: i) The aspect use 
cases that describe crosscutting concerns and describe 
the NFRs for this work. Those are represented by use 
cases with <<aspect>> stereotype.  ii) The join points 
links that are associations between base use cases and 
aspect use cases, represented by associations with 
<<joinPoint>> stereotypes.

Figure 2. Aspect-oriented use case diagram 

Figure 2 shows an example of a use case diagram with 
the two elements. For example, the “UseCase1” use 
case has a join point with “AspectX”, that is to say, 
the use case uses this aspect. This diagram does not 
specify how and where to use the aspects; only use 
cases need aspects for their performance (use cases 
could work without aspects, but the aspects add some 
quality properties).

2.1.2  Pointcuts

Pointcuts are used to specify the exact places where an 
aspect cross-cuts a system. They use the previously-
mentioned join points as a reference [9]. In DADM, this 
concept can be represented by UML sequence diagrams. 
These diagrams are more precise in specifying the place 
where an aspect cross-cuts a system. Model-driven 
aspects design stereotypes of the UML messages with 
<<pointCut>>, this stereotype can receive many 
parameters as it required (the parameters are detailed 
in the next section). 



Muñante & Aniorte46

Figure 3 shows an example of a sequence diagram 
with pointcuts. We consider that this sequence diagram 
describes the design of the “UseCase2” use case (shown 
in Fig. 2) which has two join points with “AspectX” and 
“AspectY” stereotypes, therefore the sequence diagram 
can use both aspects. For example, “Method1” has a 
pointcut with “AspectX”, and “Method2” has a pointcut 
with “AspectY”. These pointcuts are interpreted as the 
crossing places between messages and aspects, but not 
as the crossing places’ behaviour.

Figure 3. Aspect-oriented sequence diagram

2.1.3 Advice

A pointcut indicates where an aspect cross-cuts a 
system, but not the crossing’s behaviour. So, an 
advice concept was included. Advice can be attached 
before, after, instead of, or around a pointcut [9]. In 
DADM, this concept describes the aspects themselves. 
While the two previous concepts indicate where the 
interaction between aspects and a system takes place, 
this element specifically describes an aspect (i.e., what 
it does and how it behaves within the system). DADM 
adds a new diagram called the weaving rule diagram, 
this diagram is similar to the UML sequence diagram 
as shown in Fig. 4.

Figure 4. Weaving rule diagram

A weaving rule diagram shows how an aspect behaves 
within a system. The system is represented by two UML 
life line elements with <<Before>> and <<After>> 
stereotypes and a message with the <<msgInvolved>> 
stereotype. The three elements correspond to elements 
belonging to the sequence diagram with the pointCut 
stereotype (detailed above).

Other elements are added to this work, they correspond 
to the definition aspect for defining the following types 
of aspect behaviour: before, after, instead of, or around. 
These elements are:

•	 Operator with <<err>> stereotype: used for error 
handling, similar to programming languages such 
as Java which uses try	catch	finally sentences. 

•	 Operator with <<sec>> nameSec: parameter* 
stereotype: used to define a set of sequential 
messages with a given name and zero or more 
parameters (this diagram is similar to the UML 
sequence diagram). This sequence can be invoked 
from a weaving rule diagram or another sequence.

•	 <<parameter>> namePar: typePar:  represents 
a parameter which can be used by a weaving rule. 
It is important to mention that all parameters 
which are used by the weaving diagram have to 
be indicated in the pointCut stereotype message in 
the sequence diagram when we invoke the aspect.

•	 <<return>> valueReturn: represents a return 
value of a sequence.

Figure 4 shows an example of a weaving rule diagram. 
The rule states that after executing the stereotyped 
message with msgInvolved, it needs to execute 
sequential messages represented by an SEC fragment 
named sec1 and uses a param parameter (this sequence 
must be built using a UML sequence diagram that uses 
parameters. This kind of diagram is not shown because 
the example is only illustrative).

2.2.  Defining aspect models

Our work considers three NFRs, which were designed 
based on the evidence presented. For reasons of limited 
space, we only show models for error handling. Audit 
and access control models are not presented in this paper.

Within the same method, we find at least two 



Dyna 173, 2012 47

behaviours: normal and exceptional. Error handling 
covers three issues: detection, publishing, and the 
recording of exceptions [3]. According to this, we 
show a weaving rule diagram, a class diagram, and a 
sequence diagram to define error handling.

2.2.1.  Weaving rule diagram 

Figure 5 shows the weaving rule diagram for “error 
handling”. Here, we use an err operator, where we 
invoke a “Message1” message in the try section. This 
represents the functional message (the msgInvolved 
stereotype is not visible for TopCased), and we invoke 
the “ErrorHandling1” sequence in the catch section, 
which designs the error handling itself (the sequence 
name is not visible for TopCased). This diagram 
is used as a template because its elements will be 
replaced by the “true” elements in the weaving process 
running. That is to say, “Message1” will be replaced 
by a functional message.  Life lines with Before and 
After stereotypes will be replaced by classes which 
invoke and include functional messages, respectively. 
Finally “ErrorHandling1” will be replaced by the 
corresponding sequence. 

Figure 5. Weaving rule diagram for error handling

2.2.2 Class diagram

Figure 6 shows a class diagram for “error handling”. 
This diagram has three classes: Error represents an error 
generated in a system, LogError represents a means of 
registering the error, and InterfaceError represents an 
interface which publishes the error. In addition, we also 
present datatypes to define error registry types (TypeLog 
can be: text file, system log, or a database record) and 
defines interfaces that publish the error (TypeUI can be: 

web page, desktop form, or e-mail).

Figure 6. Class diagram for error handling

2.2.3 Sequence diagram

Figure 7 shows the sequence diagram for “error 
handling” where the classes mentioned interact. When 
an error occurs, it is registered in LogError and shown 
by InterfaceError. 

Figure 7. Sequence diagram for error handling

2.3.   Creating a weaving process

It is necessary to create a weaving process which 
defines how to combine base models and aspect models 
to obtain a weaved model that includes both. Table 1 
shows a rule for each DADM defined stereotype. These 
rules are built in OpenEmbeDD, according to its syntax 
(see http://www.eclipse.org/atl/ for more details). 

Table 1.  Weaving rule for each stereotype

Stereotype Base class Weaving rule

aspect use case Use cases with this stereotype 
must not be included.

joinPoint association Associations with this stereotype 
must not be included.

pointCut message
This message needs to be replaced 
by the corresponding weaving rule 
diagram.



Muñante & Aniorte48

before life line

This life line needs to be replaced 
by the life line that invokes 
the message with the pointCut 
stereotype. 

after life line

This life line needs to be replaced 
by the life line where the message 
with the pointCut stereotype 
comes from.

msgInvolved message
This message needs to be replaced 
by the message with the pointCut 
stereotype.

err fragment This operator remains in weaved 
model.

sec fragment
This operator needs to be replaced 
by the referenced set of sequential 
messages.

3.  CASE STUDY

Before formally presenting the case study, it is important 
to present a scheme that shows how DADM works. Figure 
8 shows how we separate the base module and the aspect 
into models; on the other hand, we also see how to include 
the aspect-oriented concepts like Aspect, Join Point, and 
PointCut. Finally, we simulate a weaving process to combine 
both models. This is represented by arrows: the objects 
where the arrows begin are replaced by the objects where 
the arrows end. We reiterate once the weaving process is 
executed and we will obtain a new model which combines 
functional and non-functional concerns. 

The weaving process, as mentioned, runs automatically, 
but there are stages which are manual and these are 
not given in detail here. These steps are performed by 
an analyst and will be used to develop this case study. 
Therefore, we present a methodology for using DADM 
with four steps: The first step is modeling the base 
functionality that represents the FRs of the system. The 
second step is including the aspects using join point 
and pointcut elements on the use case and sequence 
diagrams of the base model, respectively. The third step 
is executing the weaving process to obtain a complete 
model that includes NFRs and FRs. Finally, the last 
step is executing the transformation process to obtain 
a source code that corresponds to the system. The last 
step will not be considered for this case study because 
we are not elaborating a transformation process. It is 
not within the scope of our work. 

Now that we know how our proposal works and how to 
use it, we proceed to the development of the case study:

3.1.  Case Study Definition 

We have chosen the case study proposed by aosd.net (http://
aosd.net/): This system helps to identify, evaluate, and 
handle a crisis situation (such as an accident, a robbery, 
a natural disaster, etc.) orchestrating communication 
between all entities in order to handle the crisis.

 
Figure 8. Running DADM



Dyna 173, 2012 49

We develop the “Execute Mission” functionality of a 
“Crisis Management System for Car Crash” to reduce 
the scope of the case study. This functionality allows 
the super observer to store and execute a mission to 
rescue victims [23].

3.2.  Development of the case study using DADM

3.2.1.  Modeling the functionality base

We model the base functionality “execute the mission” 
for a “Crisis Management System for a Car Crash”. 
This functionality is defined by a use case diagram, a 
class diagram, and a sequence diagram shown in Fig. 
9. (These diagrams were proposed by aosd.net [23]). 

3.2.2.  Including the “error handling” aspect

We include the aspect into the mentioned base 
functionality; because of this, the use case diagram and 
the sequence diagram shown in Fig. 9 are modified to 
include the error handling aspect as shown in Fig. 10. 

Note that due to limited space, we have cut the diagrams of 
Fig. 9 since our objective is to show the new elements for 
inclusion of the aspects. In Fig. 10a, it is easy to distinguish 
the aspect and joint point elements, while for Fig. 10b we 
added message properties to distinguish the pointCut element.

3.2.3.  Executing weaving process

Finally, we execute the weaving process to obtain a 
resulting model in an xmi file. We compare this result with 
another xmi file output from a model that includes the base 
functionality and the aspect, which was built manually. 
The result of this comparison indicates that it is similar 
to our DADM proposal, although executed manually. The 
advantage is that our proposal makes maintenance easier, 
is less time consuming, and more readable.

4.  RELATED WORKS  

[3] shows a study about including quality attribute 
applications in the developing phase. Our work does 
it in design phase. 

 
Figure 9. Diagrams for “Mission Execution” functionality of the “Crisis Management” system: (a) use case diagram, (b) 

class diagram, (c) Sequence diagram



Muñante & Aniorte50

Figure 10. Inclusion of aspects into base functionality: (a) Inclusion of “Aspect” and “JoinPoint” concepts into use case 
diagram presented in Fig. 9a. (b) Inclusion of “PointCut” concept into sequence diagram presented in Fig. 9b

[6,19, and 25] present frames to model aspects for 
dispersed services, web services, and learning systems, 
respectively. Our proposition allows for one to model 
aspects for the NFRs of an IS.

[4] presents a UML profile for AspectJ language. This 
profile gives a complete integration of all AspectJ’s 
elements, whereas we take aspect-oriented concepts 
to abstract them into a profile and to model language-
independent aspects.

The work presented in [14] shows a UML notation to 
design aspect-oriented applications. That paper uses 
UML class diagrams to include aspects, while we use 
UML sequence diagrams to allow one to define the 
dynamic behaviour related to aspects.

[17] takes non-functional requirements into account, 
decomposing the system. This is similar to DADM, but 
based on architectural concepts. We focus our work on 
design elements (sequential diagrams).

Our work is based on the MATA proposal [22] which 
presents a graph transformation meta-model to model 
aspects. The MATA helps us to work the aspects’ 
dynamic behaviour. We add specificity to MATA to 
abstract aspect-oriented concepts such as: aspects, 
joint points, pointcuts, and advice.

5.  CONCLUSIONS 

In general, NFRs are issues that cross-cut various parts 
of an IS. This is why they are difficult to conceive and 
even more difficult to maintain. Creating NFRs in 
development, deployment, or implementation phases 
makes conceiving and maintenance more difficult. 
Often they are not close to the expectation of final 
users. It is true that NFRs are well-defined on platforms, 
but they could be conceived in early phases where an 
analyst or designer knows precisely where and when 
to use them.

To avoid conception errors, we believe that it is 
necessary to give suitable mechanisms to add earlier 
NFRs separately from the functionality system to 
improve performance in maintenance work. Therefore, 
we have proposed an approach which uses aspect-
oriented principles—to provide independence between 
the system concerns—formalized according to MDE. 
Due to this, our work gives a UML profile such as the 
DADM meta-model to create and include aspects in 
the analysis and the design phases according to the life 
cycle of software development. In addition, we also 
give a weaving process to allow the combination of 
aspect or non-functional models and base or functional 
models. Beyond that, we think it is appropriate to 
keep analysts up to date with the different steps of 
this approach.



Dyna 173, 2012 51

Finally, we have presented a formal case study to 
validate our proposal. The obtained results indicate 
that we obtain the same final model either by using the 
proposed DADM or by doing it manually. The DADM 
advantage is that a DADM offers easier maintenance; for 
example, using DADM will update the base model (for 
functional changes) or aspect model (for non-functional 
changes) only once, while doing it manually would be 
tedious and error prone. It should be noted that the MDE 
transformation model—although beyond the scope of 
this work—could be used to obtain a source code for a 
specific platform. This would make maintenance work, 
due to technological changes, easier.

To conclude, our proposal simplifies maintenance work 
from an early conception onward. Furthermore, early NFRs 
improve error detection and correction. We know that 
correcting errors is less costly in the analysis and design 
phases than in the implantation phases. Several studies 
demonstrate that the detection of errors in the development 
stage costs 10 to 200 times more, since the efforts required 
to correct such errors are very important [26]. 

While our work has given good results, further testing 
on other systems on more complex NFRs is needed 
in order to evaluate the new results and to update our 
proposal, if necessary. 

ACKNOWLEDGEMENTS 

Many thanks to the BILIMERI Convention since 
it allowed for the cooperation necessary between 
UNMSM (Peru) and LIUPPA (France) to finalise this 
paper.

REFERENCES 

[1] Bram, A., Co-Evolution of Source Code and the Build 
System: Impact on the Introduction of AOSD in Legacy 
Systems. Gent - Belgium: Ph.D. Thesis, University of  Gent, 
2007-2008.

[2] Tavares, A.,  Methodological Approaches and Techniques 
for Model Driven Development of Software Product Lines. 
Braga - Portugal: Ph.D. Thesis, University of Minho, 
November 2007.

[3] Paez, N., Utilización de programación orientada 
a aspectos en aplicaciones enterprise. Buenos Aires - 

Argentina: Engineering System Thesis, University of Buenos 
Aires, November 2007.

[4] Evermann J., A Meta-Level Specification and Profile for 
AspectJ in UML. New Zealand: University of Wellington, 
published in Journal of Object Technology, August 2007.

[5] Ruscio,  D., Specification of Model Transformation and 
Weaving in Model Driven Engineering. Aquila - Italy: Ph.D. 
Thesis, Università de L’Aquila, 2007.

[6] Simmonds D., Reddy, R., France R. y Ghosh S., 
Developing Distributed Services Using an Aspect Oriented 
Model Driven Framework.  Colorado - EEUU: Published in 
International Journal of Cooperative Information Systems, 
December 2006.

[7] Reina, A., Torres, J, y Toro, M., Hacia Lenguajes de 
Metamodelado Orientados a Aspectos. Sevilla - Spain: 
Universidad de Sevilla, published in Aspect-Oriented 
Software Development, related to Software Development  
and Database XV Workshop, October 2006.

[8] Figueroa, P. y Isaza, A., Programación por Aspectos. Una 
Introducción. May 2006.

[9] Lengyel, L., Levendovszky, T. y Charaf, H., Aspect-
Oriented Techniques in Metamodel-Based Model 
Transformation. Budapest - Hungary: Sixth International 
Symposium of Hungarian researchers in Computational 
Intelligence, November 2005.

[10] Lengyel, L., Levendovszky, T. y Charaf, H. Aspect-
Oriented Constraint Management in Metamodel-Based 
Model Transformation Steps. Budapest - Hungary: 
Department of Automatize and Applied Computing, 2005.

[11] Kong, J., Zhang, K., Dong, J. y Song, G. A Generative 
Style-driven Framework for Software Architecture Design. 
Texas: Published in 25th Software Engineering Workshop 
of IEEE/NASA, 2005 (SEW’05).

[12] Gonzales, C., Murillo, J. y Amaya, P., Un modelo 
de propiedades y dependencias para el análisis orientado 
a aspectos en MDA. Extremadura - Spain: Software 
Engineering of Quercus Group, University of Extremadura, 
published in Aspect-Oriented Software Development, 2004.

[13] C. De souse, G. y Brelaz De castro, J. Towards a 
Goal-Oriented Requirements Methodology Based on the 
Separation of Concerns Principle. Pernambuco - Brasil: 
Published in Requirement Engineering Workshop, 2003 
(WER’03).



Muñante & Aniorte52

[14] Pawlak, R., Duchien, L. y Florin, G. A UML Notation for 
Aspect-Oriented Software Design. Paris - France: CEDRIC-
CNAM, LIFL, LIP6 and AOPSYS laboratory, March 2002.

[15] Lin, Y., A Model Transformation Approach to 
Automated Model Evolution. Ph.D. Thesis. Alabama – 
EEUU: University of Alabama at Birmingham, 2007.

[16] De souse, F. Modelog: Model-Oriented Development 
with Executable Logical Object Generation. Pernambuco 
- Brazil: Ph.D. Thesis, Federal University of Pernambuco, 
February 2007.

[17] Perez, J. Prisma: Aspect-Oriented Software 
Architectures. Valencia - Spain: Ph.D. Thesis. Polytechnic 
University of Valencia. December 2006.

[18] Lengyel, L., Levendovszky, T., Mezei, G. y Charaf, H. 
Model Transformation with a Visual Control Flow Language. 
Budapest - Hungary: published in International Journal of 
Computer Science, 2006.

[19] Ortiz, G., Hernandez, J., Clemente, P., Amaya, P., How 
to Model Aspect-Oriented Web Services. Extremadura - 
Spain: Software Engineering of Quercus Group, University 
of Extremadura, published in 5th International Conference 
on Web Engineering, 2005 (ICWE’05).

[20] Chevrel, R., The AMMA Platform and the DotNET 
environment. Nantes - France: INRIA, University of Nantes.

[21] Storzer, M., Impact Analysis for AspectJ. Passau - 
Germany: Dissertation, University of Passau, 2007.

[22] Whittle, J. y Jayaraman, p. Mata,: A Tool for Aspect-
Oriented Modeling based on Graph Transformation. 
Published in Aspect-Oriented Modeling Workshop Models, 
2007.

[23] Kienzle, J., Guelfi, N. y Mustafiz, S,. Crisis Management 
Systems A Case Study for Aspect-Oriented Modeling. 
Proposal for participants of aosd.net Workshop, 2009.

[24] Montenegro, C., Gaona, P., Cueva, J  y Martíez, O. 
Application of Model-driven Engineering (MDA) for the 
construction of a tool for Domain-specific Modeling (DSM) 
and the creation of modules in Learning Management 
Systems (LMS) Platform Independent. Medellín – Colombia: 
Published in 169th DYNA, Journal of University National 
of Colombia, October 2011.

[25] Arango, F., Gómez, M. y Zapata, C., Transformation 
from UML class model to Oracle9i using the MDA 
guidelines: A study case. Medellín – Colombia:  Published in 
149th DYNA, Journal of University National of Colombia, 
October 2006.

[26] Johnson, J. Chaos: The dollar drain of IT project failures. 
Application Development Trends 2.


