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ABSTRACT: The resource-constrained project scheduling problem (RCPSP) is a classic and important problem in project management 
and has gotten much attention from researchers. In this paper, we consider the case in which the cost of activities has to be minimized. This 
variant of the problem can be found mainly in construction management supply chains. Its characteristics show that this objective function 
is non-regular and that the problem is NP-hard. This paper presents a memetic algorithm to solve this problem. Computational experiments 
are carried out using well-known instances from the PSPLIB. Results obtained validate the effectiveness of the proposed algorithm and 
allow us to understand the algorithm’s behavior.
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RESUMEN: La programación de proyectos con recursos restringidos (RCPSP, por su nombre en inglés) es un problema clásico e importante 
en la gerencia de proyectos, y que ha recibido mucha atención de parte de los investigadores. Este artículo considera el caso en el cual se 
desea minimizar el costo de las actividades. Esta variante del problema se encuentra principalmente en la gerencia de cadenas de suministro 
para proyectos de construcción. Sus características muestran que la función es no-regular y que el problema es NP-completo. Este artículo 
presenta un algoritmo memético pare resolver el problema. Experimentos computacionales son ejecutados empleando las famosas instancias 
de la librería PSPLIB. Los resultados obtenidos validan la efectividad y eficiencia del algoritmo propuesto.

PALABRAS CLAVE: Programación de proyectos, Costo de actividades, Algoritmo memético.

1.  INTRODUCTION

In the late 50s, the development of PERT (project 
evaluation and review technique) and CPM (critical 
path method) techniques allowed projects to be 
portrayed by network diagrams where jobs or activities 
are represented by arcs, events are represented by 
nodes, and the inter-relations between the jobs or 
activities are defined by the network structure [1]. 
However, project scheduling with these techniques 
deals only with the time aspect without consideration 
of resource restrictions and/or cash flows. Yet, in 

many real-life situations, delays in the execution time 
of certain activities occur when resources required by 
these activities are not available in sufficient quantities 
during the time interval when they are scheduled 
to be executed. This particular problem is known 
in the literature as the resource-constrained project 
scheduling problem (RCPSP) [2].

The RCPSP is a classic and important problem in 
project management that has attracted the attention 
of many researchers. The performance measures 
of RCPSPs include time-based objectives (i.e., 
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minimizing makespan, tardiness, or completion time) 
and cost-based objectives (maximizing net present 
value or minimizing total cost of activities including the 
costs of resource consumption, overhead, and tardiness 
penalties) [3,4]. According to the complexity theory, 
the RCPSP is known to be NP-hard [5], which means 
that it is not possible to find optimal solutions for large-
sized instances in a reasonable computational time. The 
approaches to solve the RCPSPs are classified in the 
literature into two categories: exact and approximate. 
Exact (optimal) approaches are integer programming 
models, implicit enumeration with branch and bound, 
and dynamic programming. These approaches are able 
to solve small-size instances. For medium- to large-sized 
instances, approximate procedures are preferred—such 
as heuristic and meta-heuristic algorithms. State-of-the-
art surveys can be found in [6–11].

In the literature we can find that there has been abundant 
research on RCPSPs, but very little attention has been 
given to the case of minimizing the cost of activities 
in projects. This variant of the problem can be found 
mainly in construction management supply chains 
[12]. Only the works of Liu and Wang [12] and Liu and 
Zheng [4] have considered this problem by proposing 
genetic algorithms for the single- and multiple-project 
case, respectively. As the reader can observe in such 
references, we do regret that the work of Liu and 
Zheng [4]did not propose an extended experimental 
study, while the work of Liu and Wang [12]carried out 
a computational experiment for only one project. This 
deficiency makes it very difficult to compare newly 
proposed algorithms against theirs.

Since genetic algorithms have demonstrated themselves 
to be good resolution procedures for various types of 
RCPSPs [2], it is worth noting that the combination 
of both population-based and trajectory-based meta-
heuristics might allow for a better resolution procedure 
for RCPSPs. In addition, since memetic algorithms 
have shown themselves to be efficient and effective 
when solving different types of planning, scheduling, 
and timetabling problems [13], this paper proposes the 
use of a memetic algorithm to solve the RCPSP with 
minimization of the activities’ cost.

This paper is organized as follows. Section 2 describes 
formally and in detail the problem under study. Section 

3 is devoted to the presentation of the proposed memetic 
algorithm. The results of computational experiments 
are presented in Section 4. The paper ends in Section 
5 with some concluding remarks.

2.  PROBLEM DESCRIPTION

The RCPSP with activity costs can be described as 
follows [12]: A single project consists of a set of j 
= 1,...,J activities that have to be executed without 
preemption. Each activity has a duration of dj units of 
time. Because of technological requirements, there are 
precedence relations between some of the activities 
enforcing that an activity j = 2,...,J may not be started 
before all its immediate predecessors i∈Pj (with Pj 
being the set of immediate predecessors of activity j) 
have been finished. In the description of the activity-
on-node (AON) method, the structure of the project 
is a graph where the nodes representing the activities 
and the arcs represent the precedence relations between 
activities. The network is acyclic and numerically 
labeled, where an activity always has a higher label 
than its predecessors. Without loss of generality, we 
can assume that 1 is the only start activity and J is the 
only finish activity. There are K-types of renewable 
resources, and activity j needs rjk units of resource kÎK 
during every period of its duration. The static cost of 
activity j is noted as vj. Let Fj be the finish time of 
activity j, and At the set of activities being in progress 
in period t. Let us set h as the cost per period of holding 
completed activities stated as a percent of fixed activity 
cost. The capacity of resource k is noted at Rk and the 
unit price is Ck. The due date of the project is noted as 
H. With a given H, we can get the earliest and latest 
finish times (respectively, ej and lj) of activity j by using 
the critical path method (CPM). The time parameters 
in the problem are assumed to be all integer and non-
negative. Vt is the holding cost for completed activities 
of the project through period t.

The objective function, as shown by Eq. (1), seeks to 
minimize the total cost of project activities by including 
two items. The first item is the sum of the holding cost 
of the completed activities from the start time of the 
project to its finish time (i.e., the dynamic cost related 
with the activities in the project. The second term is 
the amount of the activities’ static cost:
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(1)

During the resolution process, several constraints have 
to be satisfied. For instance, the precedence relations, 
the termination of the project before its due date, and 
the use of renewal resources according to their per-
period availabilities should be satisfied.

With a given resource supplier already known, the 
capacities and unit prices of its resources are decided 
beforehand [12]. Hence, vj in Eq. (1) can be seen as a 
constant. Therefore, the later item in objective function 
(1) is fixed no matter how the project is scheduled. As a 
result, the focus will be placed on the dynamic cost of 
activities. This function is non-regular [12] according to 
the definition proposed in [14]. In addition, as pointed 
out by Liu and Wang [12], the feasible solutions of the 
problem are the same as that of the traditional RCPSP 
with makespan minimization, so that the RCPSP with 
the objective of minimizing the activities’ cost is also 
NP-hard. In order to solve this problem, we propose 
a heuristic procedure that combines strategies from 
both population-based and trajectory-based meta-
heuristics. The proposed memetic algorithm allows 
for one to obtain efficient solutions for RCPSPs with 
a minimization of the cost of the activities.

3.  THE MEMETIC ALGORITHM 

Memetic algorithms (MA) are population-based meta-
heuristics, which means that the algorithm maintains 
a population of candidates for the problem at hand 
(i.e., a pool comprising several tentative solutions) 
[13]. In the terminology of evolutionary computation, 
each of these candidate solutions is called individual; 
however, the term agent is more appropriate for the 
nature of MA since the former term suggests a passive 
entity simply subject to evolutionary rules, while the 
latter term implies the existence of an active behavior 
reflected in several components of the algorithm such 
as (but not exclusively as) local search adds-on. One 
of the most distinctive components of MA is the use 
of local improvers, which are used as a mechanism for 
improving solutions on a local (and even autonomous) 
basis. 

The proposed memetic algorithm will be named MAPS/
Cost in which “MAPS” stands for memetic algorithm 
for project scheduling and “Cost” means that the 
objective function is the minimization of cost. This 
section presents the main issues regarding the design 
of the proposed MA model:

•	 Generation of initial population. Schedule 
generation schemes (SGS) are an integral part 
of heuristic procedures for resource-constrained 
project scheduling problems [15]. Such schemes, 
when building a solution, work sequentially from 
the beginning by generating a partial solution. At 
the end, when the set of candidate activities to be 
scheduled is empty, the SGS has built a feasible 
sequence. There are two types of schemes to build 
a solution: the serial one focused in the schedule 
generation by increasing the sequenced activities, 
and the parallel scheme, focused on schedule 
generation by increasing time. The serial scheme 
(SSGS) is used in the proposed algorithm. It is 
composed of n phases, with n being the number 
of activities to be scheduled. Step by step, each 
activity is selected and scheduled by taking into 
account precedence constraints and resource 
availability. This scheme works from two sets of 
disjunctive activities: the set of already-scheduled 
activities and the set of activities that can be 
scheduled [8]. This last set is characterized by the 
fact that in each phase it can incorporate activities 
that were not in it in the precedent phase. 

•	 Solution representation. Since the algorithm can 
be coded using object-oriented programming, the 
following classes are needed: the class activity 
containing the job identification (ID), its duration 
(processing time), the sets of successors and 
predecessors, the processing starting time, and the 
level of resource utilization. In order to compute 
the solution, some temporary variables are needed: 
activity cost, temporal start, and ending time 
(which are used to compute, respectively, the 
[temporal] start and ending times of each activity 
during the execution of the algorithm). The agent is 
composed of two attributes: an array containing the 
sequence of activities and the cost corresponding 
to the value of the objective function. Finally, the 
following parameters are needed to be defined by 
the user: the size of the initial population, crossover 
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and mutation probabilities, terminating condition, 
number of generations, type of crossover (one 
point or two points), and type of cost (cumulative 
or per activity). Figure 1 presents the structure of 
the agent. The representation of the chromosome 
for the RCPSP studied here is based on the concept 
of activity list. This allows coding the sequence 
through a feasible list of precedence relationships 
between activities. An activity list has the form 
. The SSGS can be optimally used to decode an 
activity list and to obtain the sequence [2].

Figure 1. Structure of an agent, adapted from [2]

•	 New generation. Figure 2 presents the main 
routing (cycle) of the proposed memetic algorithm. 
This routine of the algorithm generates sons until 
obtaining two times the agents in the population. 
Two parents are randomly selected from the 
current population. If the probability of performing 
crossover is achieved, then crossover operators 
are applied. Otherwise, parents are duplicated and 
become sons. Mutation operator is applied using 
a swap (interchange), as explained next. Sons 
that do not comply with due dates are considered 
as unfeasible and are therefore eliminated from 
the population. Finally, 50% of the population 
having the worst value of the objective function 
is eliminated.

•	 Crossover operator. Crossover operators applied 
into the proposed algorithm can be of three types: 
one-point crossover, two-point crossover, and 
hybrid. The one-point operator randomly selects 
a point (the same) for both parents. Activities 
before that point are selected from parent 1, and 

those after the point are selected from parent 2. 
The two-point operator works in a similar manner. 
Two-points are randomly selected for both parents. 
Activities before the first point are selected from 
parent 1; those between the two points are selected 
from parent 2; and finally, the activities after the 
second point are selected from parent 1. The hybrid 
crossover assigns a 0.5 probability of performing 
one-point crossover and a 0.5 probability of 
performing the two-point crossover. For the 
purpose of this study, we tested the performance 
of the MA by comparing its behavior using the 
three operators.

Figure 2. Main routine of the proposed memetic 
algorithm
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•	 Mutation operator. This operator seeks to 
introduce genetic diversity into the current 
population. The strategy selected for our algorithm 
is that of interchanging the genes of a whole 
chromosome. Genes are chosen randomly

 
Figure 3. Main routine of the local search procedure 

•	 Local search. Figure 3 shows a flow diagram 

illustrating how local search improvement is 
performed. First, an agent is selected at random. 
Then two activities are selected randomly and 
are interchanged. The next process (generation 
repair, precedence, and capacity) is in charge 
of repairing the newly-created agents from the 
selected parents by respecting precedence and 
capacity constraints. The tasks corresponding to 
“Compute Start Time and End Time”, “Verify 
Due date”, and “Move Right to Compute” that 
compute the objective function were explained 
before. If any improvement is found, the original 
agent is replaced by the best one found; otherwise 
those agents are temporarily stored in the memory. 
Finally, the agent is replaced by a randomly-
selected newly-created agent.

4.  EXPERIMENTS

The algorithm was programmed using JAVA. For the 
experiments, all instances from the Project Scheduling 
Problem Library (PSPLIB) available on Internet at the 
web page http://129.187.106.231/psplib/ were taken. 
This is a general-instance library widely used for testing 
algorithms for RCPSPs. In our experiment, the library 
was updated in order to include the costs of activities, 
according to the structure proposed in [12] in which 
the static cost of each activity and the due dates of 
each project are given. We considered the whole sets 
of instances in the library. The sets J30, J60, and J90 
correspond to 480 instances with 30, 60, and 90 activities, 
respectively. The set J120 contains 600 project instances 
with 120 activities per project. This gives us a total of 
2,040 problem instances. In order to run the algorithm, 
the conditions presented in Table 1 have been defined. 
The number of generations was set to be 100 for all 
experiments. In addition to the combination of factors 
presented in Table 1, experiments with 50 and 200 
generations (iterations) were also carried out.

The analysis will be carried out only on the behavior of 
the proposed memetic algorithm. Tables 2 and 3 present 
the summary of results for experiments on data sets 
J30, J60, J90, and J120. During execution, the proposed 
MA showed convergence. We can observe that a good 
improvement is obtained between the first and last 
solution. For some instances, the algorithm found a 
good solution from the very first iteration.
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Table 1. Factors and levels for the experiments
Factors Levels
Data sets from PSPLIB J30, J60, J90; J120
Population size 100, 150
Crossover probability 0.9, 0.75, 0.7, 0.5
Mutation probability 0.05, 0.2, 0.1, 0.3
Crossover strategy one-point, two-points, mixed
Terminating criterion 10, 20
Number of generations 100

As explained previously, the problem under study 
here has been considered very little in the literature. 
Only the works of Liu and Wang [12] and Liu and 
Zheng [4] have considered it by proposing genetic 

algorithms for the single- and multiple-project case, 
respectively. The work of Liu and Zheng [4] does not 
propose an extended experimental study, and hence 
it is not possible to compare our proposed memetic 
algorithm against theirs. The work of Liu and Wang 
[12] carries out a computational experiment for only 
one project. Hence, it is not possible for us to compare 
our procedure against those of the literature by means of 
a rigorous experimental study. Since we are presenting 
results for an extended computational experiment 
using standard instances available on the Internet in 
the PSPLIB, we do hope that the results presented here 
will become a reference for further researchers in order 
to improve our results.

Table 2. Summary of results of cumulative cost (average values) with population size 100 for data sets J90 and J120 (the 
objective value at the first iteration is in parentheses)

Crossover Stop 
criterion Pmut

Results for Data Set J30 Results for Data Set J60
Pcross Pcross

0.9 0.75 0.7 0.5 0.9 0.75 0.7 0.5

One-point

10

0.05
1810.64       2257.56      

(1815.60)       (2721.22)      

0.2
  1810.64       2557.56    
  (1810.64)       (2743.31)    

0.1
    1810.64       2564.24  
    (1810.64)       (2748.54)  

0.3
      1810.64       2557.56
      (1810.64)       (2814.24)

20

0.05
1810.64       2557.56      

(1810.64)       (2756.39)      

0.2
  1810.64       2557.56    
  (1810.64)       (2723.26)    

0.1
    1810.64       2557.56  
    (1810.64)       (2707.85)  

0.3
      1810.64       2550.58
      (1810.64)       (2745.06)

Two-point

10

0.05
1810.64       2557.56      

(1810.64)   (2734.01  

0.2
  1810.64       2557.56    

(1826.24)   (2737.5)  

0.1
1810.64   2560.17  

(1915.60)   (2747.96)  

0.3
      1810.64       2557.56

(1815.60) (2803.19)

20

0.05
1810.64       2557.56      

(1917.73)   (2768.89)  

0.2
  1810.64       2557.56    

(1810.64)   (2597.67)  

0.1
1810.64   2564.24  

(1814.18)   (2687.79)  

0.3
      1810.64       2557.56

(1810.64) (2746.51)
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Crossover Stop 
criterion Pmut

Results for Data Set J30 Results for Data Set J60
Pcross Pcross

0.9 0.75 0.7 0.5 0.9 0.75 0.7 0.5

Mixed

10

0.05
1810.64       2557.56      

(1814.18)       (2798.26)      

0.2
  1810.64       2557.56    
  (1810.64)       (2614.24)    

0.1
    1810.64       2557.56  
    (1810.64)       (2757.27)  

0.3
      1810.64       2505.81
      (1810.64)       (2720.64)

20

0.05
1810.64       2557.56      

(1810.64)       (2691.86)      

0.2
  1810.64       2557.56    
  (1810.64)       (2744.48)    

0.1
    1810.64       2557.56  
    (1810.64)       (2749.41)  

0.3
      1810.64       2564.24
      (1810.64)       (2717.15)

Concerning the execution time, Fig. 4 presents a plot 
diagram of the average CPU time for each instance 
of the experiment. From the figure, we can observe 
that resolution time is highly variable, depending on 
the instance size. The average time is 1.131 s, with 

a 95% confidence interval of (431.7, 1830.3) s, and 
a coefficient of variability of 109.2%. These values 
clearly confirm the high variability of the computational 
time.

Table 3. Summary of results of cumulative cost (average values) with population size 100 for data sets J90 and J120 (the 
objective value at the first iteration is in parentheses)

Crossover Stop 
criterion Pmut

Results for Data Set J90 Results for Data Set J120
Pcross Pcross

0.9 0.75 0.7 0.5 0.9 0.75 0.7 0.5

One-point

10

0.05
3213.95       4058.69      

(3310.08)       (4546.87)      

0.2
  3213.95       4058.27    
  (3304.84)       (4676.08)    

0.1
    3213.95       4072.88  
    (3372.29)       (4741.31)  

0.3
      3213.95       4084.84
      (3375.97)       (4521.97)

20

0.05
3213.95       4032.68      

(3288.95)       (4524.89)      

0.2
  3213.95       4088.46    
  (3265.50)       (4841.17)    

0.1
    3213.95       4031.57  
    (3275.39)       (4452.85)  

0.3
      3213.95       4059.80
      (3333.91)       (4600.97)
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Crossover Stop 
criterion Pmut

Results for Data Set J90 Results for Data Set J120
Pcross Pcross

0.9 0.75 0.7 0.5 0.9 0.75 0.7 0.5

Two-point

10

0.05
3213.95       4083.45      
(3463.95   (4559.39  

0.2
  3213.95       4041.59    

(3279.07)   (4493.18)  

0.1
3213.95   4151.04  
(3296.12   (4587.06)  

0.3
      3213.95       4132.54

(3393.41) (4431.57)

20

0.05
3213.95       4052.16      

(3293.22)   (4337.55)  

0.2
  3213.95       4053.96    

(3239.15)   (4308.76)  

0.1
3213.95   4070.37  

(3369.96)   (4426,70)  

0.3
      3213.95       4100.42

(3285.46) (4706.54)

Mixed

10

0.05
3213.95       4071.49      

(3308.14)       (4611.54)      

0.2
  3213.95       4052.16    
  (3253.29)       (4424.89)    

0.1
    3213.95       4043.67  
    (3280.43)       (4517.94)  

0.3
      3113.95       4044.92
      (3178.29)       (4788.32)

20

0.05
3213.95       4030.74      

(3267.05)       (4474.55)      

0.2
  3213.95       4092.90    
  (3290.12)       (4325.31)    

0.1
    3213.95       4090.82  
    (3350.97)       (4613.21)  

0.3
      3213.95       4071.63
      (3371.70)       (4458.27)

Figure 4. Plot diagram of the execution time
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5.  CONCLUDING REMARKS

This paper considered the problem of minimizing 
activities’ cost in a resource-constrained project 
scheduling problem. An example of such a problem 
in a real-life situation is the construction supply 
chain. Since this objective function is non-regular 
and the problem is NP-hard, a memetic algorithm 
was proposed in this paper. The idea of analyzing 
the effectiveness of this procedure is based on the 
success it has had when applying the combination of 
strategies from both population-based and trajectory-
based meta-heuristics to solve other scheduling- 
and combinatorial-optimization problems [13]. 
Computational experiments were carried out using 
the well-known instances from the PSPLIB, in order 
to analyze the impact of the algorithm’s parameters in 
the value of the objective function. Further work is to 
compute the optimal values and then to compare the 
relative performance of the proposed MA with other 
procedures from the literature. Other approaches can 
consider the use of sophisticated heuristics such as 
those based on discrete-event simulation (see, for 
example, [16]) or even the use of evolutionary multi-
objective procedures, that have shown themselves to 
be efficient with solving multi-objective optimization 
problems [17], in order to consider, for example, 
cost minimization and on-time project completion. 
According to the review of Yang et al. [18], such works 
could consider regular- and non-regular objective 
functions.
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