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ABSTRACT: A complete column classification and the corresponding stability equations for single stepped columns with sidesway 
inhibited, partially inhibited, and uninhibited, subjected to concentrated axial loads located at the ends and at the intermediate joint including 
semi-rigid connections and shear force effects are presented using three different approaches. The first two approaches are those by Engesser 
and Haringx that include the shear component of the applied axial force proportional to the total slope (dy/dx) and to the angle of rotation of 
the cross section (y) along the member, respectively. The third approach is a simplified formulation based on the classical Euler theory that 
includes the effects of shear deformations but neglects the shear component of the applied axial force along the member. Four different types 
of divergent instability are possible for a single-stepped column subjected to concentric axial loads: 1) buckling with sidesways between 
the two ends and intermediate joint totally inhibited; 2) buckling with sidesway between the two ends totally uninhibited; 3) buckling 
with sidesway between the bottom end and intermediate joint totally inhibited; and 4) buckling with sidesways between the two ends and 
intermediate joint uninhibited or partially inhibited. The stability analysis of a single-stepped column consists of determining the eigenvalue 
of a 2´2 matrix for the first three types of buckling just mentioned and of a 3´3 matrix for members buckling with sidesways between the 
two ends and intermediate joint uninhibited or partially inhibited. The definite criterion on the minimum stiffness of lateral bracings for 
single-stepped columns is also presented. The proposed method is general and can be extended to multi-stepped columns.

KEY WORDS: Bracing, Buckling, Building codes, Columns, Construction, Computer applications, Frames, Loads, Semi-rigid connections, 
Shear deformations, Shoring, Stability, Stepped columns.

RESUMEN: Se presenta una clasificación completa de columnas escalonadas y las ecuaciones correspondientes de estabilidad con derivas 
laterales inhibidas, parcialmente inhibidas, y desinhibidas sometidas a cargas axiales concentradas en los extremos y en el nudo intermedio 
incluyendo los efectos de las conexiones y de las fuerzas a cortante utilizando tres modelos diferentes. Los dos primeros modelos son de 
Engesser y Haringx que incluyen la componente de la fuerza axial aplicada a cortante proporcional a la pendiente total (dy/dx) y al ángulo 
de giro de la sección transversal (y) a lo largo del miembro, respectivamente. El tercer modelo es una formulación simplificada basada en 
la teoría clásica de Euler, que incluye los efectos de las deformaciones por cortante, pero desprecia la componente a cortante de la fuerza 
axial aplicada a lo largo de la columna. Se muestra que hay cuatro tipos diferentes de inestabilidad divergentes posibles para columnas 
con un cambio de sección cuando son sometidas a cargas axiales concéntricas: 1) pandeo con deriva entre los dos extremos y con el 
nudo intermedio totalmente inhibido lateralmente; 2) pandeo con deriva lateral entre los dos extremos totalmente desinhibida; 3) pandeo 
con deriva lateral entre el extremo inferior y el nudo intermedio totalmente inhibida; y 4) pandeo con deriva entre los dos extremos y el 
nudo intermedio desinhibidos o parcialmente inhibidos. El análisis de estabilidad de una columna con un cambio de sección consiste en 
determinar el valor propio de una matriz de 2´2 para los tres primeros tipos de pandeo que acabamos de mencionar y de una matriz de 3´3 
para los miembros con pandeo con derivas entre los dos extremos e intermedios desinhibida conjunto o parcialmente inhibida. Se presenta 
también criterios definidos para determinar la rigidez mínima de los arriostramientos laterales para columnas con un cambio de sección. El 
método propuesto es general y se puede ampliar a columnas con varios cambios de sección.

PALABRAS CLAVE: Arriostramiento, Pandeo, Códigos de construcción, Columnas, Construcción, Aplicaciones informáticas, Marcos, 
Cargas, Conexiones semi-rígidas, Deformaciones por cortante, Apuntalamiento, Estabilidad, Columnas escalonadas.
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1.  INTRODUCTION

The lateral stability (i.e., divergence buckling) of 
columns with intermediate concentrated load or/and 
stepped have been studied by several researchers. 
Anderson and Woodward [1], Iremonger [2], Bert [3], 
and Castiglioni [4] have treated the stability problem 
of stepped columns in a simplified manner. Similarly, 
Shrivastava [5] has treated the problem of a prismatic 
column under varying axial load. The stability analysis 
and types of buckling of an Euler-Bernoulli beam-
column with semirigid connections having intermediate 
concentrated load and/or stepped cross sections were 
presented by Aristizabal-Ochoa [6].

Peng [7] presented a method for calculating the design 
buckling load of a stepped column for single layer 
2D shoring systems. Peng’s method is based on the 
experimental test results of post shores used on actual 
construction sites indicating a base rotational stiffness 
to the ground of 0.5 Ton-m/rad (4.9 kN-m/rad) for wood 
post shores and 0.7 Ton-m/rad (6.86 kN-m/rad) for metal 
post shores with intermediate joint rotational stiffness 
between the top and bottom members of 7.5 Ton-m/rad 
(73.55 kN-m/rad); and using strength reduction factors 
of 0.75 for wood post shores and 0.85 for metal post 
shores to modify their critical loads. In simplifying 
shore design, he used the LeMessurier formula for the 
strength computation of 2D shoring systems composed 
of wood post shores. He concluded that: 1) the critical 
loads of a 2D shoring system increase with the number 
of fixed strong shores, but were not affected by the 
number of leaning columns; 2) the critical loads of 2D 
shoring systems increase linearly with the number of 
strong shores, but they are invariant with the positions 
of strong shores; and 3) if the required number of strong 
shores is defined, the critical loads of shoring systems 
can be found by interpolation.

On the other hand, the second-order stiffness matrix and 
corresponding load vector for prismatic beam-columns 
with semirigid connections were developed also by 
Aristizabal-Ochoa [8] and then utilized in the stability 
and second-order analyses of framed structures. More 
recently, the stability of beam-columns with semirigid 
connections including the effects of shear deformations 
and shear force along the member caused by the applied 
axial load have been studied by Aristizabal-Ochoa 
[9–11].

Buckling equations for stepped columns subjected 
to end and intermediate axial loads in any type of 
construction (rigid, simple, or semirigid) including 
the effects of: 1) lateral and rotational restraints at the 
intermediate connection and at the column ends; and 2) 
shear deformations and shear force along the member 
caused by the applied axial loads are still unavailable 
in the technical literature. 

The main objective of this publication is to present 
the stability analysis and classification with the 
corresponding divergence buckling equations for 
single-stepped columns with the sidesway uninhibited, 
partially uninhibited, and totally inhibited, subjected 
to intermediate and extreme axial loads including 
the shear effects just mentioned and the lateral and 
rotational restraints at the intermediate connection and 
column ends. Minimum bracing stiffness criteria for 
stepped columns under intermediate- and end-axial 
loads are also presented. Five comprehensive examples 
are included in a companion paper that demonstrates 
the effectiveness of the proposed stability equations 
and minimum bracing stiffness criteria.

2.  STRUCTURAL MODEL

2.1.  Assumptions

Consider the single-stepped column shown in Fig. 1. 
The column consists of segments AC and CB with 
semirigid connections at the extreme ends A and B, 
and at the intermediate joint C. It is assumed that: 
1) segments AC and CB are made of homogeneous 
linear elastic materials with mechanical and geometric 
properties Et, Gt, At, Ast, It, ht, and Eb, Gb, Ab, Asb, Ib, 
hb (where E = elastic modulus, G = shear modulus, 
I = moment of inertia, A = cross sectional area, As = 
effective shear area, and h = span). The subindices t and 
b indicate the top and bottom segments AC and CB, 
respectively; 2) the centroidal axis of each segment is 
a straight line with both segments  lined up together; 
3) column AB is subjected simultaneously to a top-end 
axial loading Pa at A, and an intermediate concentrated 
loading Pc at C with both loads applied along the 
common centroidal axis; 4) the column’s lateral sways 
are partially inhibited by lateral displacement springs Sa 
and Sc located at A and C, respectively, and an external 
rotational spring κc located at C. The bending fixity 
factors at ends A and B and at the intermediate joint 
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C are assumed to be ρa, ρb, and ρc, respectively. For 
an ideally rigid connection, the bending fixity factor 
is equal to one (ρ = 1); whereas, for an ideally hinged 
connection this factor is zero (ρ = 0). In real connections 
(i.e., semirigid) the fixity factors vary between one and 
zero (0 £ ρ £ 1). A complete discussion on the bending 
fixity factors is presented in [12, 13, 14].

2.2.  Proposed Stability Equations

The stability analysis presented in this paper consists 
of determining the set of elastic critical loads (Pa)cr and 
(Pc)cr which makes column AB buckle (Fig. 1). Both 
loads can be determined by making the determinant of 
the stiffness matrix of the column [K] given by Eq. (1) 
equal to zero. This matrix includes the second-order 
effects and shear deformations caused by the applied 
axial loads Pa and Pc as the member deflects laterally.

Figure 1. Single-stepped column under end and 
intermediate axial loads with semirigid connections 

(structural model)
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where the stiffness coefficients Kij are given by Eqs. 
(2–7):
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Equations (1–9) are generic in the three approaches 
(Engesser, Haringx, and Simplified Euler) using the 
proper corresponding values of ut, ub, bt, and bb listed 
below:

E n g e s s e r  a p p r o a c h :  a n d 
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 with bt = 1 - (Pa)cr/(GtAst) and bb = 

1 - (Pa + Pc)cr /(GbAsb).

H a r i n g x  a p p ro a c h :   a n d 

 with bt = 1/ [1 + (Pa)cr/(GtAst)]

and bb = 1/ [1 + (Pa + Pc)cr /(GbAsb)];

Simplified Euler approach: and 

 with bt = 1/ [1 + (Pa)cr/(GtAst)] and 

bb = 1/ [1 + (Pa + Pc)cr / (GbAsb)].

The stiffness coefficients given by Eqs. (2–7) are 
derived in Appendix I using the “modified” shear 
approach proposed by Haringx and explained by 
Timoshenko and Gere [15]. Aristizabal-Ochoa [10] 
shows the stability analysis of prismatic columns 
using the three approaches: Engesser, Haringx, and 
Simplified Euler.

The first and second rows and columns in the matrix of 
Eq. (1) correspond to the bending rotation and lateral 
deflection at the intermediate joint C; the third row and 
column correspond to the lateral deflection of the top 
end A. The bending rotations at A and B are condensed 
out in this approach and are represented by the bending 
fixity factors ρa and ρb, respectively. It is assumed that 
the effects of the axial deformations in both segments 
AC and CB are negligible on the buckling loads of the 
column AB.

In general, the divergent buckling of stepped column 
AB under gravity concentric loads Pa and Pc (Fig. 1) 
is based on the lowest eigenvalue of the characteristic 
equation [ ]K  = 0. This requires the solution of a 3´3 
determinant when end A and joint C sway laterally with 
respect to the bottom end B. The stability analysis of 
multi-stepped columns (with or without more than one 
intermediate axial load) can be carried out in similar 

fashion, except that the number of degrees of freedom 
(dof) and the size of matrix [K] will be larger (two 
dof for every additional intermediate joint), but the 
analytical procedure would be similar.

Four different types of buckling are possible for a single 
stepped column as shown by Figs. 2a–d. These types of 
buckling and the corresponding characteristic equations 
can be obtained from Eq. (1) as follows:

1) Buckling with sidesways between A, B, and C totally 
inhibited. The characteristic equation for this particular 
case (Fig. 2a) is reduced to K11 = 0 or simply
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The validity of Eq. (10) is checked in Example 1, 
presented in the companion paper.

2) Buckling with sidesway between A and B totally 
inhibited. The characteristic equation for this particular 
case (Fig. 2b) is reduced to , or 
simply
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The validity of Eq. (11) is checked in Example 2 
presented in the companion paper.
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3) Buckling with sidesway between C and B totally 
inhibited. The characteristic equation for this particular 
case (Fig. 2c) is reduced to , or 
simply

( ) ( )
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The validity of Eq. (11) is checked in Example 3 
presented in the companion paper.

4) Buckling with sidesways between A, B, and C 
partially inhibited or uninhibited. For stepped columns 
with the lateral sways between A, B, and C partially 
inhibited (i.e., when Sa ¹ 0 and Sc ¹ 0) or uninhibited 
(i.e., when Sa = Sc = 0), as shown in Fig. 2d, the general 
sidesway buckling is based on the eigenvalues of the 
characteristic equation [ ]K = 0. This requires the 
solution of a 3´3 determinant which might be carried 
out using a pocket calculator or simply

 
Figure 2. Buckling modes of single-stepped columns under end and intermediate axial loads with semirigid connections 

and: (a) sidesways between A, B, and C totally inhibited; (b) sidesway between ends A and B totally inhibited; (c) sidesway 
between B and C totally inhibited; and (d) sidesways between A, B, and C uninhibited

 
(13)

The validity of Eq. (13) is checked in Example 4 
presented in the companion paper.

Notice that when both column segments AC and CB 
are subjected to compression, the stability functions 
ut and ub are both positive in Eqs. (2–13). However, 
when either or both of the two segments AC or CB are 
subjected to tension and P < GAs, the following changes 
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must be made: 1) sin u for isinh u; 2) cosu for cosh u; 
3) tan u for itanh u; and 4) 1) u for iu (where i = 1- ).

3.  PARTIALLY-BRACED STEPPED COLUMNS 
AND MINIMUM LATERAL BRACING

a) Partially-braced stepped column criterion

A partially-braced stepped column is one whose total 
critical load Pcr lies between the critical load obtained 
from Eqs. (10), (11), or (12) and the one obtained from 
(13) assuming that Sa = Sc = κc = 0, as follows:

 

(14)

In addition, the upper limits on the critical loads given 
by (10), (11), and (12) depend on what joints of the 
column are being braced (i.e., if the stepped column 
is fully braced at A and C simultaneously, or only at A 
or at C, respectively). It is obvious that:

(13) Eq.
from obtained

(12) Eq.
 from obtained

(11) Eq.
 from obtained

(10) Eq.
from obtained

criticalcriticalcriticalcritical PPPP ≥≥≥

 

(15)

This criterion is simple to apply and indicates that 
the total critical load Pcr of a partially-braced stepped 
column is less than that of the same column but with 
the sidesway inhibited, as indicated by (14) and (15).

b) Minimum bracing criterion

The minimum stiffness bracing required to convert 
a stepped column with sidesway uninhibited or 
partially inhibited into a braced steeped column can be 
determined utilizing Eqs. (14) and (15) or by comparing 
(10), (11), or (12) to (13) depending on which column’s 
joints are braced, as follows:

(13) Eq. from 
column BracedPartially 

(10) Eq. from obtained
C andA at column  Braced

criticalcritical PP =
  (16a)

(13) Eq. from 
column BracedPartially 

(11) Eq. from obtained
A at column  Braced

criticalcritical PP =

 

(16b)

(13) Eq. from 
column BracedPartially 

(12) Eq. from obtained
Cat column  Braced

criticalcritical PP =
 

(16c)

By combining Eqs. (10), (11), or (12) with (13), as 
indicated by Eqs. (16a–c), the required Sa and Sc can 

be determined directly following the steps described 
below:

1) The end fixity factors ρa and ρb must be determined 
for both conditions braced and unbraced, as shown 
in Example 5 in the companion paper;

2) The u-factors for the desired braced conditions are 
calculated from the corresponding equation, [(10), 
(11), or (12), utilizing, of course, the fixity factors 
ρa and ρb for the braced case];

3) The braced u-factors along with ρa and ρb for 
unbraced conditions previously calculated are 
substituted into Eq. (13) from which the required 
minimum bracings Sa and Sc can be calculated 
directly. An example describing the calculation of 
(Sa)min. and (Sc)min. for a bent frame is presented in 
the companion paper.

4.  SUMMARY AND CONCLUSIONS

A complete column classification and the corresponding 
stability equations for single-stepped columns with 
sidesway totally inhibited, partially inhibited, and 
uninhibited subjected to concentrated axial loads 
located at the ends and at the intermediate joint 
including the shear force effects are presented 
using three different approaches. In addition, the 
proposed equations include the effects of: 1) semirigid 
connections at the ends of the column and at the 
intermediate joint; 2) step variation in the column cross 
section at the point of application of the intermediate 
axial load; 3) bending restraints at the column ends and 
intermediate connection; and 4) lateral restraints at the 
column top end and intermediate connection.

The proposed classification and the complete set of 
transcendental equations for single-stepped columns 
and post shores are more general than those from 
other methods. In addition, definite criteria are given 
to determine the minimum amount of lateral bracings 
required by single-stepped columns in framed structures 
to achieve any non-swaying buckling mode. The 
proposed algorithm can be extended to multi-stepped 
columns with semirigid connections. The method 
is particularly applicable to the stability analysis of 
structures made of single-stepped columns and post 
shores. To understand the four-way classification of 
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single-stepped columns and post shores, five examples 
of the corresponding stability equations are presented 
in a companion paper and the results compared to those 
using other methods available in the technical literature.

A shortcoming of the proposed method is that it is limited 
to single-stepped columns within the elastic range. 
Real columns are “imperfect” and of such geometric 
configurations that they generally buckle in the inelastic 
range. The solution thus becomes iterative, and it 
involves the repeated search for the value of the buckling 
loads which are also dependent on the respective tangent 
moduli of elasticity E and G of the two segments.

However, the elastic buckling analysis and column 
classification presented herein are of great value to 
structural researchers, giving insight to structural 
behavior and the maximum limit values of the axial 
load capacities. The fact that the elastic critical loads 
(Pa)cr and (Pa+ Pc)c of a single-stepped column depends 
on 18 different parameters (i.e., Et, Gt, At, Ast, It, ht, Eb, 
Gb, Ab, Asb, Ib, hb, Sa , Sc, ρa, ρb, ρc, and Pa/Pc) makes its 
stability analysis a very cumbersome task.

The main advantage of the proposed method is that it 
allows the analyst to study the effects of each one of the 
eighteen parameters without major difficulties. Further 
analytical and experimental research on the effects of 
initial imperfections (crookedness, out-of-plumb, and 
residual stresses) and non-linear connections is needed.
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APPENDIX I. DERIVATION OF EQUATIONS 
(1–7)

The stiffness coefficients including the second-order 
effects for a single-stepped column AB (Fig. 1) can 

be obtained by adding the stiffnesses of its segments 
AC and CB as shown by Eqs. (1–7). The stiffness 
coefficients in terms of the “modified” stability 
functions (i.e., the Haringx approach) of a single 
prismatic column with semirigid connections are 
derived below for quick reference.

Assumptions. Consider a prismatic beam-column 
element that connects points A and B as shown in Fig. 
3a. The element AB is made up of the column itself 
A’B’, and two lumped flexural connectors AA’ and BB’ 
at the top and bottom ends, respectively. It is assumed 
that: 1) the column A’B’ is made of a homogeneous 
linear elastic material with moduli of elasticity E and G; 
2) the centroidal axis of the member is a straight line; 
3) the column is loaded with an end axial load P (Fig. 
3b) along one of the principal axis of the cross section 
with a principal moment of inertia I, cross area A, and 
effective shear area As; and 4) deformations are small 
so that the principle of superposition can be applied.

The bending springs AA’ and BB’ have stiffness ka 
and kb (whose units are in force-distance/radian), 
respectively. The ratios Ra = ka/(EI/h) and Rb = kb 
/ (EI/h) are denoted as the stiffness indices of the 
bending connections, where I = the column’s moment 
of inertia about the principal axis in question, and h 
= the column’s height. These indices vary from zero 
(i.e., Ra = Rb = 0) for simple connections (i.e., pinned) 
to infinity (i.e., Ra = Rb = ¥) for fully-restrained 
connections (i.e., rigid). It is important to note that 
the proposed algorithm can be utilized in the inelastic 
analysis of framed structures when the nonlinear 
behavior is concentrated at the connections. This can 
be carried out by updating the flexural stiffness of the 
connections AA' and BB' for each load increment in a 
linear-incremental fashion. Gerstle [16] has indicated 
lower and upper bounds for ka and kb. For convenience, 
the following two parameters are introduced [8–13]:
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Where ra and rb are the fixity factors at ends A and B, 
respectively. For hinged connections, both the fixity 
factor r and the rigidity index R are zero; but for rigid 
connections, the fixity factor is 1 and the rigidity index 
is infinity. Since the fixity factor can only vary from 0 
to 1 (while the rigidity index R may vary form 0 to ¥), 
it is more convenient to use in the analysis of structures 
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with semirigid connections [14].

The relationships between the fixity factors ra and rb 
and the classical alignment charts ratios ya and yb 
[i.e., y = å(EI/h)c/å(EI/L)g at the top and bottom 
ends, respectively] of a column in a symmetrical 
frame with rigid connections and with sidesway 
uninhibited or partially inhibited are: ra = 2/(2 + ya), 
and rb = 2/(2 + yb) [12]. For symmetrical frames with 
rigid connections and with sidesway totally inhibited, 
the relationships are: ra = 2/(2 + 3ya), and rb = 2/(2 + 
3yb). For unsymmetrical frames, the fixity factors can 
be determined using structural principles as shown by 
the author [12,13].

Stiffness Matrix. The classical stability equations for a 
prismatic column with rigid connections are formulated 
using the stiffness coefficients by Aristizabal-Ochoa 
[11] as follows:
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--
-

22

2
 are 

the “modified” stability coefficients;
'
aq  and '

bq = the end slopes of member A'B' measured 
with reference to the initial axis of the member (Fig. 
3b); u2 = P/(bEI/h2); b = 1/[1 + P/(GAs)]; As = effective 
shear area of the beam-column; and G = shear modulus 
in the plane of bending.

However, when member AB includes the two lumped 
flexural connectors AA’ and BB’ at the

Figure 3. Column AB with semi-rigid connections. (a) 2D structural model with degrees of freedom (DOF 1 to 4); (b) 
forces and moments in the plane of bending; (c) cross section rotations caused by bending and shear, and relationships of 

bending rotations at ends A and B with those of at ends A’ and B’ using the Haringx approach
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ends as shown by Fig. 9a, the stiffness matrix of 
member AB can be derived from (18a–b) by the 
procedure explained below. Notice that V includes the 
component Pq  as suggested by Haringx in [15].

The four flexural degrees of freedom (DOF) of member 
AB are shown in Fig. 3a. DOFs 1 and 2 correspond to 
qa, qb, and DOFs 3 and 4 to lateral deflections of the 
ends A and B, respectively. For instance, the stiffness 
coefficients corresponding to a unit rotation at A: k11, 
k21, k31, and k41 (i.e., moments and shears forces at A 
and B necessary to have a unit rotation at A while B 
remains unchanged) are obtained from the following 
two end conditions:

1) At end A: Ma = k11, qa = 1, and 

2) At end B: Mb = k21, qb = 0, and 

When these conditions are substituted into Eqs. (18c–
d), Eqs. (19a–b) are obtained:

   (19a)

   (19b)

Now, taking into consideration that Ra = ka/(EI/h) and 
Rb = kb/(EI/h), then

   (19c)

   (19d)

Substituting (19d) into (19c) and using (17a–b) [i.e., 
Ra = 3ra/(1 - ra) and Rb = 3rb/(1 - rb), then k11 and k21 
can be obtained as follows:

 
    (20)

 
   (21)

In terms of the u-factor and after tedious algebra reductions, k11 and k21 become:

  

(22)

  

(23)

Now k31 and k41 can be obtained from static equilibrium conditions: k31= -k41=(k11+k21)/h or

  

(24)

Similarly, the stiffness coefficients corresponding to DOF qb = 1 k22, k32, and k42 can be obtained simply by exchanging 
ra for rb in Eqs. (22–24) as follows:
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(25)

   

(26)

k33, k44, and k43 can be obtained from equilibrium k33 = k44 = -k43 = (k31 + k32 - P)/h as follows:

 

 (27)

The stiffness coefficients given by Eqs. (22–27) can 
now be utilized in Eq. (28) to assemble the stiffness 
matrix for a single column with semirigid connections 
that includes the second-order effects caused by the 
end axial load P.

  (28)

Notice that when the column is subjected to compression, 
the stability function u is positive in Eqs. (22–27). 
However, when the column is subjected to tension and 
P < GAs, the following changes must be made: 1) sin u 
for isinh u; 2) cosu for cosh u; 3) tan u for itanh u; and 
4) 1) u for iu (where i = 1- ).

NOTATION

At and Ab = cross area of column segments AC and CB, 
respectively;
It and Ib = moments of inertia of segment column 
segments AC and CB, respectively;
ht and hb = spans of columns segments AC and CB, 
respectively;
Kj = stiffness coefficients for the 3-DOF stepped column 

given by (1);
kij = stiffness coefficient for a single prismatic element 
given by Eqs. (22)-(27);
(Pa)cr = critical load at A;
(Pc)cr = critical load at C;
(Pa + Pc)cr = total critical load;
Pa = applied axial load to column segment AC at A;
Pc = applied axial load to column segment CB at C;
ra and rb = rotational fixity factors of column AB at top 
A and bottom B, respectively;
rc = rotational fixity factor of column segment AC at 
the intermediate joint C;
Sa = lateral stiffness restraining column AB against 
sidesway at top A;
Sc = lateral stiffness restraining column AB against 
sidesway at intermediate joint C;
kc = rotational stiffness restraining column AB 
externally at intermediate joint C;
r and s = “modified” stability stiffness coefficients for 
a column under axial load
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