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ABSTRACT: The elastic stability analysis of single-stepped columns with sidesway totally inhibited, partially inhibited, and uninhibited 
subjected to concentrated axial loads located at the ends and at the intermediate joint including semi-rigid connections and shear force 
effects are presented using three different approaches in a companion paper. The first two approaches are those by Engesser and Haringx that 
include the shear component of the applied axial force proportional to the total slope (dy/dx) and to the angle of rotation of the cross section 
( ) along the member, respectively. The third approach is a simplified formulation based on the classical Euler theory that includes the 
effects of shear deformations but neglects the shear component of the applied axial force along the member. Definite criterion on minimum 
stiffness of lateral bracings for single-stepped columns is also presented. Five comprehensive examples are included that demonstrate the 
effectiveness of the proposed stability equations and minimum bracing stiffness criteria.

KEY WORDS: bracing, buckling, building codes, columns, construction, computer applications, frames, loads, semi-rigid connections, 
shear deformations, shoring, stability, stepped columns

RESUMEN: El análisis de estabilidad elástica de columnas con un cambio de sección con derivas laterales totalmente inhibidas, 
parcialmente inhibidas, y desinhibidas sometidas a cargas axiales concentradas en los extremos y en el nudo intermedio incluyendo los 
efectos de las conexiones y de las fuerzas a cortante utilizando tres modelos diferentes es presentado y discutido en una publicación adjunta. 
Los dos primeros modelos son de Engesser y de Haringx que incluyen la componente de la fuerza axial aplicada a cortante proporcional a 
la pendiente total (dy/dx) y al ángulo de giro de la sección transversal ( ) a lo largo del miembro, respectivamente. El tercer modelo es una 
formulación simplificada basada en la teoría clásica de Euler, que incluye los efectos de las deformaciones por cortante, pero desprecia la 
componente a cortante de la fuerza axial aplicada a lo largo de la columna. Se presenta también criterios definidos para determinar la rigidez 
mínima de los arriostramientos laterales para columnas con un cambio de sección. Se incluye cinco ejemplos completos en esta publicación 
que muestran la efectividad de las ecuaciones de métodos propuesto en el análisis de estabilidad y en el cálculo de los arriostramientos 
mínimos para columnas con un cambio de sección.

PALABRAS CLAVE: arriostramiento, pandeo, códigos de construcción, columnas, construcción, aplicaciones informáticas, marcos, 
cargas, conexiones semi-rígidas, deformaciones por cortante, apuntalamiento, estabilidad, columnas con cambio de sección

1.  INTRODUCTION

The elastic stability analysis and the corresponding 
equations for stepped columns subject to end and 
intermediate-axial loads including the effects of: 1) 
lateral and rotational restraints at the intermediate 
connection and column ends; and 2) shear deformations 
and shear force along the member caused by the applied 
axial loads are presented in a companion paper [1]. 
The main objective of this article is to present the use 

of the proposed stability equations and to demonstrate 
their effectiveness.

2.  VERIFICATION STUDY AND EXAMPLES

2.1 Example 1. Consider the single-stepped column 
with hinged ends subjected to concentric axial loads P 
and αP at A and C shown in Fig. 1a (hinged at A and 
B: ρa = ρb = 0; and with rigid connection at C and no 
exterior rotational restraint: ρc = 1, κc = 0).
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Solution: Using Eq. (10) listed in the companion paper 
and assuming that ρa = ρb = 0, and kc = 0, the eigenvalue 
equation becomes
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When rc = 1 and Et = Eb, Eq. (1) can be reduced to Eq. 
(2) as follows:
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Figure1. Example1. Single-stepped column (according to 
Timoshenko & Gere [2], pp. 66-70): (a) on three supports 

with hinged ends; and (b) on end supports and rigidly 
connected at C to transverse beam with its far end hinged.

For the particular case of tβ = bβ =1 (i.e., neglecting 
shear effects), Eq. (2) is identical to the solution 
reported by Timoshenko and Gere [1], Eq. (b), p.67.

An additional example was considered assuming that 
κc = 3EI’/H (bending restraint provided by a transverse 
beam located at midspan with a hinged far end), ht = 

hb, It = Ib, βt = βb = 1, Et = Eb = E, and a = 0, as shown 
in Fig. 1b. Then Eq. (2) becomes
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Since ut = ub, Eq. (3) is reduced to Eq. (4)
 		

			   (4)

Expression (4) is identical to the solution reported by 
Timoshenko and Gere ([2], bottom of p. 69). Note that 
in Timoshenko’s notation, ut = 2u1 and ub = 2u2.

Figure 2 shows the effects of shear deformations (using 
the Haringx approach) and semi-rigid connection at C 
(ρc) on the buckling loads of the column of Fig. 1(a) 
assuming that column segments are made of identical 
material, cross section, and equal length (ht = hb= L/2). 
Notice that: 1) shear deformations reduce the critical 
loads P and aP, while the effects of the semi-rigid 
connection at C are only significant when GAs/(EI/L2) is 
very large and aP  0; and 2) the proposed equation is 
capable of capturing the phenomena of buckling under 
tension when P or/and aPare negative

2.2. Example 2. The case under consideration is a 
single-stepped column with hinged supports at A and 
B subjected to concentric axial loads Pa and Pc at A and 
C as shown in Fig. 3 (hinged at A and B and rigidly 
connected at C: ρa = ρb = 0, and ρc = 1).

Using Eq. (10) listed in the companion paper and 
assuming that ρa = ρb = 0 and rc = 1, the eigenvalue 
equation becomes 
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Results from Eq. (5) were tested against tabulated 
values presented by Timoshenko and Gere ([2], Table 
2-6, p. 100) for the particular case of Sc = kc = 0, βt = βb 
= 1 and Et = Eb = E. The values of the reduced length L 
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of the column calculated from Eq. (5) which are listed 
in Table 1 (denoted as mCal) are practically identical to 
those derived by Timoshenko and Gere [2] denoted as 
mTh) where (Pa+Pc)cr = p2EI/L2.

Figure 4 show a series of interaction diagrams of P/
(EI/L2)-vs-aP/(EI/L2) for different values of S/(EI/L3) 

all obtained using Eq. (5) for the particular case of ht = 
hb = L/2, GtAst = GbAsb = ∞ and EtIt = EbIb = EI. Figure5 
shows the variations of the compressive buckling load 
Pcr of a simply supported beam with the stiffness of 
the intermediate elastic support S located at midspan 
for different values of GAs/Pe (notice that Pcr and S are 
normalized with respect to Pe = p2EI/L2).

 
Figure 2. Shear effects (Haringx approach) and semirigid connection at mid-support (rc) on the buckling loads (P and aP) of 
the single-stepped column ABC of Problem 1 [assuming that:ra = rb = 0, EtIt = EbIb = EI, GAst = GbAsb = GAs, and ht = hb = L/2 

in the model shown in Fig. 1(a)].

Notice also that: 1) the values indicated in Fig. 5 
corresponding to the curve with S = 0 are identical to 
those presented by Timoshenko and Gere ([2], p. 100 
Table 2-6 for n = 1); 2) the buckling load capacity of 
the beam-column is affected significantly not only by 
the location and stiffness of the mid-support but also 
by the magnitude of the shear stiffness of the members 
as shown by the curves in Fig. 5 and 3) the curve 
corresponding to GAs/Pe = ∞ in Fig. 5 shows that the 
compressive critical load increases in approximately 

the same proportion as S. This curve is identical to that 
presented by Timoshenko and Gere ([2], p. 73).

2.3 Example 3. The validity of Eq. (12) was tested 
against the solutions obtained utilizing the classical 
method of slope-deflection (Salmon and Johnson [3], p. 
840) for a stepped column with hinged ends subjected 
to concentric axial loads Pa and Pc at A and C as shown 
in Fig. 6 (free at A: ρa = 0, Sa = 0; braced at C with no 
exterior rotational restraint: ρc = 1, κc = 0; and hinged 
at B: ρb = 0).
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Figure 3. Example2: Single-stepped column simply 
supported at A and B

Figure 4. Interaction diagrams P/(EI/L2)-vs-aP/(EI/L2) 
for the column of Example 2 [for the particular case of ht 
= hb = L/2, kc= 0, GtAst = GbAsb = ∞ and EtIt = EbIb = EI] 
assuming that Pa = P and Pc = αP with an intermediate 

elastic support with Sc/(EI/L3) = ∞, 100, and 0
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Figure 5.Variations of the critical load of a simply supported column with the stiffness of the intermediate elastic support S 

and its shear stiffness GAs (Pe = p2EI/L2) using the Haringx approach

Table 1. Calculated vs. theoretical values of L/l for a single-stepped column (Problem 2: according to Timoshenko & Gere 
[2], Table 2-6, p. 100)
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Substituting into Eq. (12) ρa = ρb = 0, ρc = 1, and κc = 0, 
the eigenvalue equation becomes
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Figure 6. Example 3: Single-stepped column simple 
supported at C and B and top sidesway

For the particular case: Pc = 0, ht = hb = h, EtIt = EbIb 
= EI, andβt = βb = 1, the stability equation is reduced 
to 2ut = tanut, whose solution is ut = 1.16556 or (Pa)cr 
= p2EI/(2.6953h2). Using the slope-deflection method 
(Salmon and Johnson [3], pp. 840-842) a stability 
equation identical to (6b) can be obtained.

2.4 Example 4. Results from Eq. (13) were tested 
against tabulated solutions presented by Timoshenko 
and Gere ([2], Table 2-10, p. 115) for a stepped 
cantilever Euler-Bernoulli column (βt = βb = 1) shown 
in Fig. 7 free at A (ρa = Sa = 0), rigidly connected and 

unrestrained at C (ρc = 1, Sc = κc = 0), and perfectly 
fixed at B (ρb = 1).

Table 2 shows that the values of m calculated using 
Eq. (13), which are listed with five significant figures, 
are practically identical to those by Timoshenko. Note 
that m is for the hinged-hinged column, and m/4 for the 
cantilever column, where m is used by Timoshenko in 
Pcr = mEI2/(h1+h2)

2.

2.5 Example 5: Minimum lateral bracing for a bent-
up frame

Utilizing the minimum bracing criteria and the steps 
described in the companion paper, determine the lateral 
bracings required to convert the bent frame shown in 
Fig. 8a into a braced frame. The bracings that need to 
be analyzed are: 1) Sa along the top level (i.e., frame 
braced at A and A’ only); 2) Sc at the intermediate joint 
(i.e., frame braced at C and C’ only); and 3) Sa and Sc 
along the top and intermediate joints (i.e., frame braced 
at A and C). Assume that ρb = ρc = 1 in both columns 
and neglect the effects of shear deformations (i.e., b = 
1 in all members).

Solution: Since the frame is symmetrical, columns AB 
and A’B’ are both identical with the same loads and 
boundary conditions. Therefore, the stability analysis 
can be reduced to that of a single column.

The first step is to find the fixity factors at the column 
ends for unbraced and braced conditions. Relationships 
between the rotational restraints and the fixity factors in 
framed structures are presented in the Appendix of the 
companion paper. For this particular frame, the fixity 
factors are as follows:

i) For unbraced conditions along AA’, the frame would 
buckle in a anti-symmetric shape (Figs. 8b-c) with the 
beam providing rotational restraints at both ends A 
and A’ of magnitude 6EI/L = 1.5EI/h (since L = 4h). 
Therefore, ρa = 1/(1+3/1.5) = 1/3, and ρb = ρc = 1.

ii) For braced conditions along AA’, the frame would 
buckle in a symmetric shape (Fig. 8d) with the beam 
providing rotational restraints at both ends A and A’ of 
magnitude 2EI/L = 0.5EI/h. Therefore, ρa = 1/(1+3/0.5) 
= 1/7, and ρb = ρc = 1.
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The required bracings for column AB for each one of 
the requested cases are calculated as follows:

 
Figure 7. Example 4: Single-stepped cantilever column 

(Timoshenko & Gere [2], p. 115).

1.)	Braced at top end A only. Taking into consideration 
that: It = I, ht = h, Ib = 2I, ht = 2h, Pa = P, Pc = 3P, ρa = 1/3, 
and ρb = ρc = 1, the solution for braced conditions obtained 
from Eq. (11) are: (Pa)cr = 0.19072(p2EI/h2) and (Pa+Pc)cr 
= 0.76288(p2EI/h2) (or ut = p 190720.  = 1.37198 and ub 
= p 525761.  = 3.88055). Now, the magnitude of Sa can 
obtained directly from Eq. (11) by substituting the values 
of ut = 1.37198 and ub = 3.88055, ρa = 1/3, and ρb = ρc = 1. 
The result is Sa = 3.3818EI/h3 per column.

2.)	Braced at the intermediate joint C only. Taking 
into consideration that: It = I, ht = h, Ib = 2I, ht = 2h, Pa 
= P, Pc = 3P, ρa = 1/3, and ρb = ρc = 1, the solution for 
braced conditions obtained from Eq. (12) are: (Pa)cr 
= 0.20909(p2EI/h2) and (Pa+Pc)cr = 0.83637(p2EI/h2) 
(or ut = p 209090.  = 1.43654 and ub = p 672731.  
= 4.06315). Now, the magnitude of Sc can obtained 
directly from Eq. (12) by substituting the values of ut 
= 1.43654, ub = 4.06315, ρa = 1/3, and ρb = ρc = 1. The 
result is Sc = 2.77322EI/h3 per column.

3.)	Braced at end A and at the intermediate joint C 
simultaneously. Taking into consideration that: It = I, ht 
= h, Ib = 2I, ht = 2h, Pa = P, Pc = 3P, ρa = 1/7, and ρb =ρc 
= 1, the solution for braced conditions obtained from 
Eq. (10) are: (Pa)cr = 0.329338(p2EI/h2) and (Pa+Pc)cr 
= 1.31735(p2EI/h2) (or ut = p 3293380.  = 1.802898 
and ub = p 6347072.  = 5.09936).

Now, the magnitude of Sa can obtained directly from the 
characteristic equation [ ]K = 0 by deleting the second 
row and column (or 02

313311 =− KKK ) and substituting 
the values of ut = 1.802898, ub = 5.09936, ρa= 1/7, and 
ρb =ρc = 1. The result is Sa = 47.3354EI/h3 per column. 

Similarly, Sc can obtained directly from the characteristic 
equation [ ]K = 0 by deleting the third row and column 
(or  ) and substituting the values of 
ut = 1.802898, ub = 5.09936, ρa = 1/7, and ρb = ρc = 1. 
The result is Sc = 1.096677EI/h3 per column.

It is interesting to note that: 1) the trend for this 
particular frame is indicated by Eq. (18) as follows: 
(Pa+Pc)cr = 1.31735(p2EI/h2) > 0.83637(p2EI/h2) > 
0.76288(p2EI/h2) > 0.16074(p2EI/h2) (this last value 
corresponds to the unbraced frame); and 2) the required 
lateral bracing at A is relatively small compared to that 
required at the intermediate joint C.

Table 2. Calculated vs. theoretical m-factor for a single-stepped column 
(Problem 4: according to Timoshenko and Gere [2], Table 2-10, p. 115)
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Figure 8. Example 5: Minimum lateral bracings for a simple bent frame with stepped columns: (a) structural model; (b) 
buckling mode with sidesway between A and B uninhibited; (c) buckling mode with sidesway between C and B totally 

inhibited; and (d) buckling mode with sidesway between A and B totally inhibited

3. SUMMARY AND CONCLUSIONS

A complete column classification and the corresponding 
stability equations for single-stepped columns with 
sidesway totally inhibited, partially inhibited, and 
uninhibited subjected to concentrated axial loads 
located at the ends and at the intermediate joint 
including the shear force effects are presented using 
three different approaches in a companion paper.

To understand the four-way classification of single-
stepped columns and post shores, the corresponding 
stability equations, five examples are used in this 
paper and the results are compared to those using 
other methods. A verification study indicates that the 
calculated elastic buckling loads are theoretically exact.

Analytical studies indicate that: 1) the stability of a 
single-stepped column increases substantially with 
the magnitude of the lateral restraints and the fixity 
at the base and at the intermediate connection; 2) 
shear deformations and the shear forces induced by 
the applied axial loads reduce the buckling loads; 3) 
the degree of fixity at the top end has less influence 
on the overall stability of stepped columns and post 

shores in frames with sidesway inhibited than in frames 
with sidesway uninhibited; 4) the critical axial loads 
using the Engesser approach is lower than that using 
the Haringx and simplified Euler approaches; 5) the 
critical loads in tension and in compression predicted 
by the Haringx approach are very sensitive to the shear 
stiffness GAs; 6) the Haringx approach is the only one 
among the three approaches capable of capturing the 
phenomena of tension buckling; and 7)as expected, the 
critical axial loads in compression are highly affected 
by the degree of flexural fixity at the supports, but 
the critical axial loads in tension are not affected as 
much. It is important to emphasize that shear effects 
are not of significance and can be neglected for slender 
columns of solid cross sections like rectangular and 
I-cross sections.
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NOTATION

At and Ab = cross area of column segments AC and CB, 
respectively;
It  and Ib = moments of inertia of segment column 
segments AC and CB, respectively;
ht and hb = spans of columns segments AC and CB, 
respectively;
Kj  = stiffness coefficients for the 3-DOF stepped 
column given by (1);
kij = stiffness coefficient for a single prismatic element 
given by Eqs. (22)-(27);
(Pa)cr  = critical load at A;
(Pc)cr = critical load at C;
(Pa + Pc)cr = total critical load;
Pa = applied axial load to column segment AC at A;

Pc = applied axial load to column segment CB at C;

ra and rb = rotational fixity factors of column AB at 
top A and bottom B, respectively;

rc = rotational fixity factor of column segment AC at 
the intermediate joint C;
Sa = lateral stiffness restraining column AB against 
sidesway at top A;
Sc = lateral stiffness restraining column AB against 
sidesway at intermediate joint C;
kc = rotational stiffness restraining column AB 
externally at intermediate joint C;
r and s = “modified” stability stiffness coefficients for 
a column under axial load
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