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ABSTRACT: This paper presents a new method to estimate neural activity from electroencephalographic signals using a weighted time 
series analysis. The method considers a physiologically based linear model that takes both spatial and temporal dynamics into account and a 
weighting stage to modify the assumptions of the model from observations. The calculated weighting matrix is included in the cost function 
used to solve the dynamic inverse problem, and therefore in the Kalman filter formulation. In this way, a weighted Kalman filtering approach 
is proposed including a preponderance matrix. The filter’s performance (in terms of localization error) is analyzed for several SNRs. The 
optimal performance is achieved using the linear model with a weighting matrix computed by an inner product method.

KEYWORDS: inverse problem, brain mapping, weighting matrix.

RESUMEN: Este artículo presenta un nuevo método para la estimación de actividad neuronal a partir de señales electroencefalográficas 
usando análisis de series de tiempo ponderadas. El método considera un modelo lineal basado en restricciones fisiológicas que tiene en 
cuenta tanto la dinámica espacial como la temporal, y una etapa de ponderación que modifica las suposiciones del modelo a partir de las 
observaciones. La matriz de pesos calculada es incluida en la función de costo usada para solucionar el problema inverso dinámico, y por 
lo tanto en la formulación del filtro de Kalman. De esta forma, se propone un filtro de Kalman ponderado que incluye la matriz de pesos. El 
desempeño del filtro (en términos del error de localización) se analiza para varios SNRs. El desempeño óptimo se alcanza usando el modelo 
lineal con matriz de ponderación calculado por el método de producto interno.

PALABRAS CLAVE: problema inverso, mapeo cerebral, matriz de ponderación.

1.  INTRODUCTION

Electroencephalographic source reconstruction is 
a technique that estimate the sources of electrical 
currents (i.e. the current distribution) within the 
brain that give rise to recordable potential fields 
at the scalp. Estimation of the brain activity from 
electroencephalographic (EEG) measurements is 
known to be an ill-posed inverse problem (as there 
are an infinite number of different current sources that 
give rise to identical scalp recordings) that cannot be 
solved without some kind of regularization. Selection 
of dynamical models for neural activity as a constraint 
has improved the regularized solution.

However, the main restriction is the selection of the 
dynamical model [1]. Consequently, some variations 
of the dynamic model should be considered in order to 
improve the performance of the dynamic model for spatial 
and temporal behavior, such as more complex linear or 
nonlinear models, and temporal variability for the source 
and local neighbor interaction. Since the covariance is 
an assumption of the model in order to solve the inverse 
problem, the solution is highly dependent on that value. 
Therefore, it is necessary to improve the model from the 
observations and correct the considered [2].

In order to represent adequately the process dynamics, 
estimation of covariance from the process observation 
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are used in [3] considering uniformly distributed variance 
for all current sources into the dynamic model. However, 
consider a uniform variance is an additional assumption 
that can increase the estimation error in the model since 
the neural activity is usually generated in a particular zone 
into the brain and therefore the variance is not uniform.

This article presents an EEG source reconstruction 
method that solves the inverse problem assuming 
a linear dynamic model. Additionally, a weighted 
Kalman filter approach is proposed where a weighting 
matrix is computed from the observation measurements 
in order to correct the model assumptions effectively 
representing the subjacent physiological phenomena. 
These models are applied over a realistic head structure. 
The analysis is made up from simulated EEG signals 
for different levels of noise.

2.  MATERIALS AND METHODS 

2.1.  Inverse Problem Framework 

The forward model for EEG data can be described by 
the discrete time measurement equation as follows:

   (1)

where vector [ ]Tt
N

t
n

tt xxx 1=x , 13 ×ℜ∈ Ntx , 
comprises the local 3-dimensional current vectors 

13×ℜ∈t
nx , with Nn ,2,1= , being N  the number 

of distributed sources reflecting the brain activity. The 
so called lead field matrix, Nd 3×ℜ∈M , relates the 
current densities tx inside the brain at time instant t  
with the EEG measurements, , and can be 
derived using the Maxwell equations for a specific head 
model [2]. The vector representing the 
measurement noise is modeled as a (vector-valued) 
random variable by using both covariance matrix  

and cross-covariance

, where notation {}⋅Ε stands 
for the expectation operator, dd×ℜ∈I stands for the 
identity matrix and ( ),Ν µ ∑ denotes a normal 
distribution with µ and∑ as mean and covariance 
matrix, respectively.

Generally, (1) represents an inverse problem and the 
estimation tx~ can be obtained by minimizing the 

objective function given for each time t  independently, 
as follows:

 
   (2)

being 
2⋅ is the 2−l norm. However, the measured 

EEG comes from a process where the activity is 
not uniform and therefore its associate variance defined 
as is not uniform over all d channels. It is 
usually considered Gaussian, with zero mean and a 
variance inversely proportional to the signal magnitude 
[4]. In order to account for inhomogeneous variance, 
the following weighted least squares minimization 
problem can be considered:

   (3)

where dd×ℜ∈W is a weighting matrix, which is 
diagonal in the case of uncorrelated Gaussian noise.

Since equation (3) is an ill-posed inverse problem, 
an improvement in the solution can be obtained 
through regularization methods by including prior 
information (spatial and temporal constraints) and can 
be formulated as follows:

 (4)

where NN
s

33 ×ℜ∈W is an operator associated to 
the spatial constraint (selected in this case as a first 
order spatial derivative) and γ is the regularization 
hyper parameter [2]. Term ( )1 2,t t− −f x x  is a vectorial 
function that describes the second order dynamics of 
the current density (and thus the neuronal activity) and 
represent the state evolution equation. Additionally, 
such function is assumed to be a second order linear 
model defined as:

 (5)

where is the so-called process noise 
representing the external stimulus, and the matrix 

denotes the covariance matrix of 
, i.e., . Furthermore, the random 
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variables and with jk ≠ are supposed to be 

uncorrelated, i.e.,  , and where 
 and ; with , 

2,1=i being NN 33 ×ℜ∈I the identity matrix. Notation 
NN 33 ×ℜ∈L stands for the matrix operator that 

represents the spatial interaction among sources [3]. 
Equation (4) represents the solution of a dynamic 
inverse problem that can be solved by application of 
Kalman filtering methods. For that purpose, equation 
(5) can be reformulated in the form of a first order 
augmented model as follows:

  

(6)

2.2.  Weighting preprocessing 

Typically, since W is associated with the correlation 
matrix of an EEG time series at time Tt∈ , it can 
be defined as a positive definite weighting matrix 

dd×ℜ∈W that distinguishes channels, effectively 
representing the subjacent physiological phenomena, 
and according to some evaluation measure [5]. Matrix 
W is also called a multivariable projection matrix and 
is defined, in the case of uncorrelated Gaussian noise, 
as follows:

     (7)

being ,   a weighting 
vector, where   is the weight. This 
diagonal preponderance matrix improves the model 
assumptions of (1) in the solution of the dynamic 
inverse problem. Therefore, the estimated activity 
resulting from the inverse problem solution including 
the weighting matrix is modified correcting the 
covariance matrix of (1).

Since W consider the variability of the EEG time 

series , it can be calculated from a matrix Td×ℜ∈H
constructed as follows:

  (8)

where T is the total number of samples.

Consider the singular value decomposition of H , 
where the diagonal entries of 

are the singular values of H . Matrix W is estimated 
according to the following optimization problem:
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where Td×ℜ∈H~ is the reconstruction matrix in a 
low dimensional space so that , matrix 

and qT×ℜ∈V is the orthogonal 
projection matrix corresponding to the eigenvectors of 
matrix , jλ is the  eigenvalue of the same 
matrix, and 

2

A
⋅ represents the squared m-inner norm 

regarding a matrix dd×ℜ∈A , where A  represents 
the distance used in the m-inner norm. Therefore, from 
the previous optimization problem with IA = can be 
accomplished the following weighting vector:

                (10)

where jv is the  column of V , and ( ) 2.jv
stands for each element squared. Then, corresponding 
weighting matrix is.

From the same framework, weighting matrix can be 
chosen as  where vector   is obtained 
from α−Q method proposed in [7]. The weight vector 

is given by:

By replacing the distance A used in (9) by dd×ℜ∈αA
given by:

                  (11)

The following optimization problem is defined

Subject to
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being dd×ℜ∈Q an arbitrary orthonormal matrix. The 
weighting vector α and the matrix Q are determined 
at the maximal point of the optimization problem.

2.3.  Weighted Kalman filter 

Equation (4) can be solved in the Kalman filter 
framework, where the time update equations are 
defined as follows:

                  (12)

where −tẑ is defined as a priori estimation of tẑ . Then, 
we compute the measurement update equations for the 
state filter described by:

 
(13)

3.  RESULTS AND DISCUSSIONS 

3.1.  Simulated EEG Recordings 

Initially, system dynamics is approximated through 
linear time invariant model according to [6] considering 
anatomic constraints related with spatial coupling 
between sources. Testing is carried out for simulated 
EEG recordings. In this way, a global localization error
e , according to [2] is used for each trial:

{ },: Tnde n ∈∀Ε=                      (14)

where dipdipn rrd
n
−= is the distance from the  

element position 
ndipr to the true source position dipr

and T is the total number of samples.

A global localization error is computed as a mean 
value of the errors for each trial, and error bars are the 
sample standard deviations (from the sample of 100 
trials). At each source, the 3D local current density 
vector is mapped, to 32 electrode sites for the 10-20 
system. A realistic three layer head model is used for 
the solution [3].

The evaluation of the inverse solution is achieved for 
simulated EEG data where underlying sources are known. 
Here, the temporal dynamics are suggested to be simulated 
using linear model given by (5). The parameters used for 
simulation are, and 9.02 −=ϕ , and 
the activity in the source is modeled as a combination of 
three sine functions whose frequencies are evenly spaced 
in the alpha band (8 – 12 Hz), since the clinical data used 
in real EEG recordings display prominent alpha activity 
[3]. Additionally, robustness of the estimation process is 
analyzed when a nonlinear model is used to represent the 
temporal dynamics. The nonlinear temporal dynamics 
is suggested according to [1] to be simulated using the 
nonlinear model given by:

where , ,  
and  being NN 33 ×ℜ∈I the identity matrix. 
The parameters used for simulation are
,  and 9.02 −=ϕ , and the 
activity in the source is modeled as in the linear case. 
Specifically, the simulated brain dynamics are generated 
for 1000 time points, assuming a sampling rate of 1000 Hz. 
Besides, the 100 repetitions of one second of synthetic EEG 
data are generated from the simulated current densities by 
multiplication with the lead field matrix M , taking into 
account the additive noise with six different signal noise 
ratios (SNRs): 1 dB, 5 dB, 10 dB, 15 dB, 20 dB and 25 dB.

3.2.  Weighting Analysis 

The following weighting matrices are considered:

• IW = , being dd×ℜ∈I the identity matrix,

• , and

• .

In order to consider the effect of noise level in the 
estimation of the weighting matrix W , an estimation 
of the weights for several SNR’s is performed. This 
analysis is performed for matrices   
and   with and without normalization. 
In Fig. 1 it is shown the preprocessing weights for 
several noise conditions without normalization. It is 
shown for the case of normalization that the variance 
increases its values when it is not normalized in spite 
of the noise levels.
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Figure 1. Preprocessing weights without 
normalization

However, as shown in Fig. 2 it is clear that the matrix values 
are stable for the several levels of noise in   method. 

Figure 2. Preprocessing weights with 
normalization

Additionally, it can be seen from Fig. 3 that the normalized 

matrix weights  obtained by the α−Q
method are also stable for several levels of noise.

Figure 3. Preprocessing weights   with 
normalization

In Fig. 4 is depicted the simulated and estimated neural 
activity for several weighting matrices at 0=t , 1.0=t
, and 2.0=t seconds. As shown in Fig. 4, when the 
weighted Kalman filter is applied, an improvement on 
the estimation is achieved for each case in comparison 
with IW = .

Figure 4. Brain mapping for simulated and estimated 
neural activity for several weighting matrices

The global localization error in case of linear and 
nonlinear second order models is computed using 
the selected weighting matrices. In Fig. 5 and Fig. 6 
are shown the estimation results using the Kalman 
filtering for state estimation using signals simulated 
with non linear and linear models. It is shown that the

α−Q  method presents the better performance with 
less localization error for both models.
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Figure 5. Global localization error and error bars for 
several weighting matrices for the nonlinear model

 
Figure 6. Global localization error and error bars for 

several weighting matrices for the linear model

Both methods  and  
represent an alternative to measure the relevance 
of each considered channel and then intuitively can 
be used as a weighted factor, as explained in [7]. In 
mathematical terms, the main difference between 
these two methods lies in the form of the optimization 
problem. By considering that the first eigenvectors of  

are the same of HHT , it can be concluded that 
α−Q method is a quadratic form of method ρ . Such 

quadratic form is convenient for simplicity because 
relevance vector can be easily calculated. In general, 
the weighting matrix W calculated through the α−Q
method presents better performance for brain mapping 
and source localization, which can be attributed to the 
search that this method employs. In addition, its nature 
and the iterative tuning of their parameters make the 

α−Q method more sensitive to significant changes of 
the electrical signal that goes through channels.

4.  CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the dynamical inverse 
problem of EEG source reconstruction, using a new 
method to improve the model through a weighted 
approach. The obtained results demonstrate that the 
models with including weighting matrices perform 
better than the assumed model. This improvement is 
due to the fact that the model with weighting matrices 
corrects the initial assumption from observations. These 
results are confirmed in this paper for simulated signals 
over several SNR values where the weighted model 
using the α−Q method reached the best performance. 
In future work, a time varying weighting matrix could 
be included in the Kalman filter in order to further 
improve the performance of the estimator.
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