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ABSTRACT: Anatomical variability of patient’s brains limits the statistical analyses about presence or absence of a pathology. 
In this paper, we present an approach for classification of brain Magnetic Resonance (MR) images from healthy and diseased 
subjects. The approach builds up a saliency map, which extract regions of relative change in three different dimensions: 
intensity, orientation and edges. The obtained regions of interest are used as suitable patterns for subject classification using 
support vector machines. The strategy’s performance was assessed on a set of 198 MR images extracted from the OASIS 
database and divided into four groups, reporting an average accuracy rate of  and an average Equal Error Rate of .
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RESUMEN: La variabilidad anatómica presente en los cerebros de pacientes limita la realización de análisis estadísticos acerca 
de la presencia o ausencia de una patología. En este artículo, presentamos una aproximación para la clasificación de imágenes de 
Resonancia Magnética (MR) cerebral de sujetos sanos y afectados por una patología. El enfoque se basa en un mapa de saliencia, el 
cual extrae regiones de cambio relativo en tres diferentes dimensiones: intensidad, orientación y bordes. Las regiones de interés 
obtenidas se utilizan como patrones para la clasificación de sujetos utilizando máquinas de vectores de soporte. El desempeño 
de la estrategia propuesta fue evaluado en un conjunto de 198 imágenes de MR extraídas de la base de datos OASIS y divididas en 
cuatro grupos, reportando una tasa de precisión promedio de  y una tasa de error igual (Equal Error Rate) promedio de .

PALABRAS CLAVE: Clasificación de sujetos, Imágenes de Resonancia Magnética, Modelos de Atención Visual, Mapas de Saliencia.

1.  INTRODUCTION

In morphometrical analyses of Magnetic Resonance 
brain images from different groups of subjects, the main 
goal is to examine and identify anatomical differences, 
that can be associated with the presence or absence of a 
pathology. Most common approaches for automatization 
of these analyses comprise two main processes. First, 
all images are warped or registered together within a 
common reference frame or template. Then, statistical 
quantities or comparisons can be calculated, based on 
specific measurements of interest. Depending on the 
measurements, morphometric analyses can be classified 

in landmark-based [1], related with specific spatial 
information; voxel-based [2], related with intensities 
or tissue class labels; deformation or tensor-based 
[3], related with the deformation fields used to align 
the subjects; or surface-based [4], related with 3D 
reconstruction of boundaries between main tissues.

All these methods assume, or even force, a one-to-
one correspondence between subjects, allowing the 
computation of statistics from measurements of the 
same anatomical regions across all subjects. However, 
due to anatomical variability, this assumption is not 
completely true. In fact, the same anatomical structure 
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may be not be present in all subjects, or may exhibit 
multiple morphologies across the population. On the 
other hand, some pathologies may affect multiple 
anatomical structures or interconnected regions, 
localized far away from each other. These kinds of 
patterns are difficult to find and analyze with standard 
techniques.

To cope with this issue, different approaches have been 
proposed, based on subject clustering [5], multiple 
atlases [6] or residual error components [7], among 
others. One of the most effective proposals so far is 
called feature-based morphometry (FBM) [8], which 
attempts to identify distinctive, localized anatomical 
patterns whose occurrences in groups are statistically 
significant. These patterns are characterized using a 
set of distinctive scale-invariant features, and these 
local features thus replace the global atlas as the basis 
for morphometrical analysis. This approach has been 
used to model anatomical variability in MR volumes 
and to discover group-related anatomical patterns in 
volumetric brain images.

This paper presents an approach to model group 
differences in structural brain MR images, based on 
visual saliency maps. A state-of-the-art visual saliency 
method [9] is used to generate saliency maps that 
highlight particular regions, which can be associated 
to disease-related patterns that allow further subject 
classification, in particular Alzheimer’s disease. It 
is important to highlight that the construction of the 
saliency maps did not include any a priori information 
regarding the pathology. The visual saliency maps are 
used to build an image kernel (calculated with two 
different measures), which is fed to a support vector 
machine to deliver an adequate differentiation between 
normal controls (NC) and probable Alzheimer’s disease 
(AD) subjects. To our knowledge, none of the existing 
methods have addressed the problem of automatic 
classification of MR volumes using visual saliency 
regions as features, which turn out to be anatomically 
consistent with brain regions known to differ between 
AD and NC groups.

In the next section we first describe the proposed 
method ,  f o l l ow ed  by  expe r imen t s  u s ing 
the OASIS dataset [10]. We also compare the 
results with other previously proposed methods. 

2. CLASSIFICATION OF NEURODEGE-
NERATIVE DISEASES

Two different kinds of classification systems recently 
proposed for diagnosis support of neurodegenerative 
diseases based only on information from structural 
MR images can be identified. The first one makes use 
of shape descriptors applied on manually [11,12] or 
automatically [13,14] segmented anatomical regions, 
previously known to be affected by the disease, 
however, the obtained results are subject to the 
segmentation accuracy and prior information about 
anatomical regions. The second approach performs 
statistical analysis of the brain images without including 
any prior pathological information [15,16,17], which 
can potentially discard relevant regions from the 
classification analysis.

The first step in a classification method for brain 
images is the inference of those voxels where the 
morphological structures differ between groups of 
patients, thus reducing the amount of information 
available for training the model. This inference is 
usually established through voxel-by-voxel statistical 
analysis of the structural MR images. Moreover, given 
that the morphological changes due to pathological 
process do not occur at isolated regions [15], most 
current approaches group the discriminative voxels in 
irregular regions, using them to characterize the brain 
changes.  

Fan et al. [15] proposed the COMPARE (Classification 
Of Morphological Patterns using Adaptive Regional 
Elements) method for classification of structural 
MR images, by combining a deformation-based 
morphometry approximation together with Support 
Vector Machines (SVM). The tissue probability maps, 
extracted for each subject using the RAVENS method 
[18], are further segmented with a watershed-based 
algorithm according to a discrimination measure 
between neighboring voxels. This measure results 
from the combination of the Pearson correlation 
measure between the tissue density value at each voxel 
and its classification label, together with a spatial 
consistency value. Those voxels with similar values in 
the discrimination measure are grouped in regions by 
using a volume increment algorithm. Finally, an SVM 
model is trained with a feature vector composed of the 
mean tissue density values per selected regions, leading 
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to discrimination between schizophrenia patients and 
healthy controls. The reported results show an average 
precision of around 90%, a high figure which is  very 
likely the result of the conditions used, i.e. a very 
homogeneous group since  patients in early stages of 
the disease were not considered when building the 
evaluation dataset. This approach has been widely 
used as a diagnostic tool in other neurodegenerative 
diseases [17,19,20], however, some disadvantages 
include the high computational cost for the region 
extraction process and the use of proprietary methods 
for the generation of the tissue probability maps.

On the other hand, statistical parametric mapping 
(SPM) and voxel-based morphometry (VBM) 
have currently become standard tools for neuronal 
degeneration studies. Some recent approaches use 
a combination of SPM and SVM for pathological 
classification of brain volumes. Costafreda et al. [16] 
propose to apply ANOVA (ANalysis Of VAriance) 
filters to the tissue density maps obtained with SPM to 
select those regions of maximum difference between 
depressed patients and healthy controls, which are then 
used to predict both the diagnostic classification as well 
as the clinical response to antidepressant medicines. 
A t-Student test can be applied afterwards to the gray 
matter density maps to extract specific regions suitable 
for classification of Alzheimer’s disease patients. In a 
similar approach, Savio et al. [21] uses groups of voxels 
extracted with VBM for identification of Alzheimer’s 
disease in MR images. Three different descriptors 
were evaluated: proportion of gray matter, mean and 
standard deviation of VBM groups, and the intensity 
values of all voxels segmented as gray matter. Best 
performance is obtained with statistical measures of 
the extracted regions.

3.  PROPOSED APPROACH

The proposed approach for classification of brain MR 
images can be roughly divided in two main steps: a 
learning or training process, which is performed only 
once, and the classification procedure, which takes 
place each time a new image arrives to be classified. 
All training and testing images are processed using a 
state--of-the-art visual saliency method [9], to identify 
salient regions based on common low-level features 
such as intensity, orientation and edges. Then, a support 
vector machine (SVM) is trained using an image kernel 

defined over the visual saliency maps. The model 
learned is used for further classification of normal and 
pathological volumes.

3.1.  Visual Saliency Maps 

Calculation of saliency maps on volumetric MR brain 
images can be performed by applying a visual attention 
method on each 2D slice, following the acquisition 
orientation, given that the in-plane resolution is usually 
more detailed. Our aim is to model anatomical changes 
related with functional disturbances that result in local 
and global morphological alterations. This problem is 
equivalent to finding preferential information fluxes 
among a net of nodes belonging to a fully-connected 
graph and has been successfully solved as the well 
known PageRank algorithm [22]. On the other hand, 
radiologists usually analyze images by looking at 
distinctively regions and comparing them in terms 
of dissimilarity measures [23]. There exist different 
approaches to calculate the image saliency in natural 
images, but none of them has been applied to medical 
images. The Graph-Based Visual Saliency (GBVS) 
approach, proposed by Harel et al. [9], includes a 
semantic notion of dissimilarity between pixels as well 
as a straight manner of calculating saliency values as 
the equilibrium distribution of Markov Chains defined 
on a scaled version of the original image which is 
modelled as a fully-connected graph. An analysis on 
the low-level characteristics was herein performed to 
adapt the saliency approach to MR images, including 
edges as one of the relevant features.

Calculation of saliency maps depends on first 
computing some feature maps. For MR images, the 
features selected  were intensity, orientation and edges 
(extracted using the Sobel operator), because they are 
oriented to give insights about shape distortions. With 
these, feature maps are calculated at different image 
scales. Subsequently, a fully-connected graph is defined 
on each feature map, where edges store information 
of dissimilarity between nodes (image pixels) plus 
their closeness (modeled using a Gaussian function 
with  of image width). Then, activation maps 
are estimated by constructing a Markov Chain of the 
graph and calculating its equilibrium distribution as the 
principal eigenvector of the transition matrix, using the 
Power Iteration Method. Once the activation maps are 
computed, the same Markovian approach is applied to 
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normalize each one, and then, per each feature channel 
all scale maps were summed up and finally all these 
are combined into the master saliency map. In the 
combination step, the saliency maps can be weighted 
by feature to give more or less 

importance to each feature, however, we have chosen 
to assign the same weight to all feature maps. 

As an example, Figure 1 presents a slice of the obtained 
maps per feature (intensity, orientation and contrast) for 
a given brain MR image, and the corresponding master 
saliency map obtained for this image. In all saliency 
maps, values range from 0 (black) to 255 (white), the 
brighter the pixel, the more salient it is. The size of 
salient regions is controlled by the  parameter in the 
closeness function between image pixels.

Figure 1. Example of saliency maps of brain MR images. (a) 
image slice. Corresponding feature maps: (b) intensity, (c) 
orientation and (d) contrast. (e) Final master saliency map. 

3.2.  Classification using SVM 

The SVM is a supervised learning method commonly 

used for two-class classification problems. It is based 
on using a nonlinear mapping of each element to a high 
dimensional feature space, where a linear surface can 
be placed to separate the elements of the two classes. A 
kernel function implicitly defines a nonlinear mapping 
from the input space to a feature space.

In our approach, the two classes were AD (Alzheimer’s 
disease) or NC (normal control), and the elements to 
be classified correspond to the 3D saliency maps of 
each training subject, calculated in the previous step 
by stacking the 2D saliency maps from each individual 
slice in the volume. Let  be the 
set of images of the class  and  
the set of images from class . The saliency maps per 
image are obtained by 

Two different precomputed kernels were used for SVM 
classification, based on two different measures: Jaccard 
overlapping coefficient and histogram intersection1. 
For overlapping computations, the saliency maps are 
binarized using a threshold 

,and then are compared with the following formula 

where  and  are two different binary saliency maps. 
With histogram intersection, thresholding is not needed, 
but the original saliency maps are first normalized (to 
resemble a histogram) and then compared following  
 

 

With these two measures, precomputed kernel matrices 
are constructed by one-to-one comparison of training 

1.  Jaccard overlapping coefficient can be seen as a special binary 
case of histogram intersection.
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subjects, obtaining values between 0 (no overlapping 
or intersection) and 1 (complete overlapping or 
intersection). The precomputed kernels fed a SVM 
classifier, and an initial cross-validation procedure is 
performed in order to adjust the value of the penalty 
parameter . Finally, with the optimal , the final 
classification of test subjects is performed.

4.  PRELIMINARY RESULTS 

A set of 198 brain MR images from healthy (98) 
and pathological (100) subjects, extracted from the 
OASIS (Open Access Series of Imaging Studies) 
database [10], were used to preliminary evaluate the 
performance of the proposed approach. Each subject 
has been previously analyzed with a Mini-Mental State 
Examination (MMSE) and a Clinical Dementia Rating 
(CDR), and diagnosed as normal controls (NC) or with 
probable Alzheimer’s disease (AD) using the scores 
obtained in the MMSE and CDR tests. The OASIS 
database provides a number of images per subject, from 
which we have selected the skull-stripped gain-field 
corrected atlas-registered image to the 1988 atlas space 
of Talairach and Tournoux [24]. To help comparison 
of the proposed approach with other classifiers tested 
on the same dataset [8, 25], results are reported in four 
different divisions: 

• Group 1: 86 subjects aged 60-80 years, mild AD      
( ): 20 AD, 66 NC 

• Group 2: 126 subjects aged 60-96 years, mild AD 
( ): 28 AD, 98 NC 

• Group 3: 136 subjects aged 60-80 years, mild and 
very mild AD ( ): 70 AD, 66 NC 

• Group 4: 198 subjects aged 60-96 years, moderate, 
mild and very mild AD ( ): 100 
AD, 98 NC 

As pointed out by Toews et al. in [8], analysis of 
classification performance must take into account the 
clinical and demographic information of subjects in 
the dataset, given that is more difficult to discriminate 
between elderly normal and pathological subjects, or 
between healthy subjects and patients with very mild 
AD. The four dataset divisions are proposed to illustrate 
the influence of these aspects. Figure 2 also illustrates 

these difficulties, by showing a slice of three different 
volumes: one from a normal subject, another from a 
patient diagnosed with very mild AD, and the last from 
a patient diagnosed with mild AD. At the structural 
images, it is not easy to establish if the differences 
are due to the disease or to anatomical variability, 
however, the corresponding slice of the saliency maps 
(at the right of each structural slice), reveals slightly 
differentiation patterns that may help the classification.

Figure 2. Examples of brain MR images and 
corresponding saliency maps. (a), (b): normal subject. (c), 
(d): patient diagnosed with very mild AD. (e), (f): patient 

diagnosed with mild AD.

Classification of each group is performed in a leave-
one-out manner, where one subject at a time is left out 
and then classified using the SVM model trained on 
the remaining subjects. Classification performance was 
validated using the following metrics: 

• Accuracy:  

• Sensitivity:  

• Specificity:  

• F-measure: 
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where TP stands for true positives (AD individuals 
correctly classified), TN for true negatives (NC 
individuals correctly classified), FP for false positives 
(NC individuals misclassified) and FN for false 
negatives (AD individuals misclassified). Table 1 
presents the values obtained for accuracy, sensitivity, 
specificity and F-measure for each classification group, 
and Figures 3 and 4 presents the receiver operating 
characteristic (ROC) curves obtained for each measure.

Table 1. Classification results obtained for the proposed 
approach using two different precomputed kernels 

 

Figure 3. ROC curve of classification results using 
Jaccard overlapping coefficient. 

 

Figure 4. ROC curve of classification results using 
histogram intersection.

From these experiments, it can be noted that classification 
performance is reduced when elderly subjects and/or 
very mild AD cases are included, as reported also in 
[8]. In terms of the two measures used in the calculation 
of precomputed kernels for SVM classification, the 
Jaccard overlapping coefficient seems to deliver 
slightly better results than the histogram intersection 
measure; however, the performance obtained using 
Jaccard coefficient depends on the chosen threshold 
value , while in histogram intersection no such 
parameter is needed.

The proposed approach can be compared with previous 
works that report classification performance over the 
OASIS dataset. The first work was the FBM framework 
proposed by Toews et al. [8]. They report classification 
results over the 4 different groups using the Equal Error Rate 
(EER), a measure defined as the classification rate where 
misclassification rates for AD/NC subjects are equal. Table 
2 compares the EER values obtained with our two different 
measures and the values reported in [8] for the same 
classification groups. It can be noticed that our proposal 
has the same performance, and even outperforms the FBM 
framework in the groups that includes elderly subjects. 

Table 2. Comparison of classification performance 
between FBM and our proposed approach.

The second work was an ICA-based automatic 
classification proposed by Yang et al. [25], which 
combines an independent component analysis (ICA) 
over the brain volumes with an SVM in order to 
discriminate between AD patients and NC. The 
comparison was made between 4 groups extracted 
from the OASIS dataset, separated according to age, 
where the only one that agrees with the experimental 
groups proposed here is the Group 4. Table 3 presents 
the accuracy, sensitivity and specificity obtained for 
our results compared with those reported in [25] for 
Group 4. It is important to note that specificity and 
sensitivity in the ICA-based proposal were calculated 
with formulas different from the standard definition, 
so the difference is noticeable.
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Table 3. Comparison of classification performance between 
ICA-based and our proposed approach (only Group 4). 

5.  CONCLUSION 

In this paper a strategy for characterization of group 
differences from brain MR images based on saliency 
maps was proposed, implemented and evaluated. 
This strategy provides a subject classification into 
normal control or Alzheimer disease patients, based 
on support vector machines, which was compared with 
the diagnosis previously given by expert radiologists. 
Saliency maps allow us to identify regions of relative 
change in intensity, orientation and edges, associated 
with each class (demented or non-demented), 
describing basic regional patterns suitable for subject 
classification. 

Two different measures were tested for the construction 
of the image kernel for SVM classification: the 
overlap of binarized saliency maps, and the histogram 
intersection of saliency maps. The threshold  
used for binarization have been selected after testing 
with different values: larger values produces smaller 
binary saliency regions, making it difficult to establish 
correspondence and overlap between the images; while 
with smaller values, the obtained saliency regions 
are bigger, and therefore the particular differences 
between classes are no longer evident. Using histogram 
intersection, influence of the thresholding parameter 
in the obtained results is avoided, without penalizing 
negatively the classification accuracy.

The proposed approach was evaluated over 198 
normal and pathological subjects on the OASIS 
dataset in terms of standard classification measures, 
demonstrating promising accuracy results and showing 
good performance when compared with other methods 
that report classification results over the same dataset. 
Future work includes performing an extensive 
validation with other brain MR image datasets that 
include patients suffering other AD-related pathologies 
such as Mild Cognitive Impairment, to test the influence 

and importance of the selected features in the final 
saliency map and to include other image features such 
as other kinds of edge detectors.

ACKNOWLEDGMENT

This work has been supported by project “Visual 
Attention Models and Sparse Representations for 
Morphometrical Image Analysis’’ (number 12108) 
funded by Universidad Nacional de Colombia 
through “Apoyo de la DIB a tesis de investigación 
en posgrados’’; and partially funded by projects 
“Anotación Automática y Recuperación por Contenido 
de Imágenes Radiológicas usando Semántica Latente’’ 
(number 110152128803) and “Sistema para la 
Recuperación de Imágenes Médicas utilizando 
Indexación Multimodal’’ (number 110152128767) by 
Convocatoria Colciencias 521 de 2010.

REFERENCES

[1] Dequardo, J.R., Keshavan, M.S., Bookstein, F.L., 
Bagwell, W.W., Green, W.D.K., Sweeney, J.A., Haas, G.L., 
Tandon, R., Schooler, N.R. and Pettegrew, J.W., “Landmark-
based morphometric analysis of first-episode schizophrenia”. 
Biol Psychiat, vol. 45, no. 10, pp. 1321–1328, 1999.

[2] Ashburner, J. and Friston, K.J., “Voxel-based 
morphometry–the methods”. Neuroimage, vol. 11, (6), pp. 
805–821, 2000.

[3] Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, 
I., Price, C. and Friston, K., “Identifying global anatomical 
differences: deformation-based morphometry”. Hum Brain 
Mapp, vol. 6, (5-6), pp. 348–357, 1998.

[4] Pantazis, D., Leahy, R.M., Nichols, T.E. AND Styner, M., 
“Statistical surface-based morphometry using a nonparametric 
approach”. Proceedings of ISBI IEEE, 2004, pp. 1283–1286.

[5]  Blezek, D.J. and Miller, J.V., “Atlas stratification”. Med 
Image Anal, vol. 11, (5), pp. 443–457, 2007.

[6]  Klein, A. and Hirsch, J., “Mindboggle: a scatterbrained 
approach to automate brain labeling”. NeuroImage, vol. 24, 
(2), pp. 261–280, 2005.

[7] Baloch, S., Verma, R. and Davatzikos, C., “An anatomical 
equivalence class based joint transformation-residual 
descriptor for morphological analysis”. Proceedings of IPMI. 
Springer-Verlag, pp. 594–606. 2007.



Rueda et al28

[8]  Toews, M., Wells III, W., Collins, D.L. and Arbel, T., 
“Feature-based morphometry: Discovering group-related 
anatomical patterns”. NeuroImage, vol. 49, (3), pp. 2318–
2327, 2010.

[9]  Harel, J., Koch, C. and Perona, P., “Graph-based visual 
saliency”. Advan Neural Inf, vol. 19, pp. 545, 2007.

[10]  Marcus, D.S., Wang, T.H., Parker, J., Csernansky, 
J.G., Morris, J.C. and Buckner, R.L., “Open Access Series 
of Imaging Studies (OASIS): cross-sectional MRI data in 
young, middle aged, nondemented, and demented older 
adults”. J Cognitive Neurosci, vol. 19,(9), pp. 1498–1507, 
2007.

[11]  Wang, J., De Haan, G., Unay, D., Soldea, O. and Ekin, 
A., Voxel-based Discriminant Map Classification on Brain 
Ventricles for Alzheimers Disease. In: Proceedings of SPIE; 
2009. 

[12]  Hua, X., Leow, A.D., Parikshak, N., Lee, S., Chiang, 
M.C., Toga, A.W. et al. Tensor-based morphometry as a 
neuroimaging biomarker for Alzheimer’s disease: An MRI 
study of 676 AD, MCI, and normal subjects. NeuroImage.;47, 
pp. 1476-1486. 2008

[13] Gerardin, E., Chetelat, G., Chupin, M., Cuingnet, 
R., Desgranges, B., Kim, H.S. et al. Multidimensional 
classification of hippocampal shape features discriminates 
Alzheimer’s disease and mild cognitive impairment from 
normal aging. NeuroImage.; 47, pp. 1476-1486. 2009.

[14]  Magnin, B., Mesrob, L., Kinkingnhun, S., Plgrini-issac, 
M., Colliot, O., Sarazin, M. et al. Support vector machine-
based classification of Alzheimers disease from whole-brain 
anatomical MRI. Neuroradiology, 51, pp.73-83. 2009

[15]  Fan, Y., Shen, D., Gur, R.C., Gur, R.E. and Davatzikos, 
C., Compare: Classification of Morphological Patterns Using 
Adaptive Regional Elements. IEEE Transactions on Medical 
Imaging, 26 pp. 93-105. 2007.

[16] Costafreda, S.G., Chu, C., Ashburner, J. and FU, 
CH.Y., Prognostic and Diagnostic Potential of the Structural 
Neuroanatomy of Depression. PLOS One, 4. 2009

[17] Misra, C., Fan, Y. and Davatzikos, C., Baseline and 
longitudinal patterns of brain atrophy in MCI patients, and 
their use in prediction of short-term conversion to AD: 
Results from ADNI. NeuroImage.;44, pp. 1415-1422. 2009

[18] Davatzikos, C., Genc, A., Xu, D. and Resnick, S.M., 
Voxel-Based Morphometry Using the RAVENS Maps: 
Methods and Validation Using Simulated Longitudinal 
Atrophy. NeuroImage,14, pp.1361-1369. 2001.

[19]  Davatzikos, C., Fan, Y., Wu, X., Shen, D. and Resnick, 
S.M., Detection of prodromal Alzheimer’s disease via pattern 
classification of magnetic resonance imaging. Neurobiology 
of Aging. 2008.

[20]  Fan, Y., Batmanghelich, N., Clark, C.M. and Davatzikos, 
C., Spatial patterns of brain atrophy in MCI patients, 
identified via high-dimensional pattern classification, predict 
subsequent cognitive decline. NeuroImage,39. 2008

[21]  Savio, A., García-Sebastián, M., Graña, M. and 
Villanúa, J., Results of an Adaboost Approach on Alzheimers 
Disease Detection on MRI. In: Proceedings of the 3rd 
International Work-Conference on The Interplay Between 
Natural and Artificial Computation: Part II: Bioinspired 
Applications in Artificial and Natural Computation; 2009.

[22]  Page, L., Brin, S., Motwani, R. and Winograd, T., “The 
PageRank citation ranking: Bringing order to the web”. 1999.

[23]  Beutel, J., Handbook of Medical Imaging: Physics and 
Psychophysics. Vol. 1, SPIE Press, 2000.

[24]  Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., 
Marcus, D., Morris, J.C. and Snyder, A.Z., “A unified 
approach for morphometric and functional data analysis 
in young, old, and demented adults using automated atlas-
based head size normalization: reliability and validation 
against manual measurement of total intracranial volume”. 
NeuroImage, vol. 23, (2), pp. 724–738, 2004.

[25]  Yang, W., Xia, H., Xia, B., Lui, L.M., and Huang, X., 
“ICA-based feature extraction and automatic classification 
of AD-related MRI data”. Proceedings of ICNC IEEE, vol. 
3, pp. 1261–1265.


