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ABSTRACT: This paper presents a fuzzy traffic controller that in an autonomous, centralized and  efficient way, manages vehicular traffic 
flow in a group of intersections. The system uses a computer vision algorithm to detect the number of cars in images captured by a set of 
strategically placed cameras at every intersection. Using this information, the system selects the sequence of actions that optimize traffic 
flow within the control area, in a simulated scenario. The results obtained show that the system reduces the delay times for each vehicle by 
20% and that the controller is able to adapt smoothly to different flow changes.

KEYWORDS: Traffic control, computer vision, optimization, fuzzy control, object detection.

RESUMEN: Este artículo presenta el desarrollo de un controlador de tráfico difuso capaz de gestionar de manera autónoma, centralizada 
y eficiente, el flujo vehicular en un grupo de intersecciones. El sistema emplea un algoritmo de visión artificial que le permite detectar el 
número de autos presentes en imágenes capturadas por un conjunto de cámaras estratégicamente ubicadas en cada intersección. Usando esta 
información, el sistema selecciona la secuencia de acciones que optimicen el flujo vehicular dentro de la zona de control, en un escenario 
simulado. Los resultados obtenidos muestran que el sistema disminuye en un 20% los tiempos de retraso para cada vehículo y que además 
es capaz de adaptarse rápida y eficientemente a los cambios de flujo.

PALABRAS CLAVE: Control de tráfico, visión de máquina, optimización, control difuso, detección de objetos. 

1. INTRODUCTION

Nowadays Bogota city presents serious mobility 
problems, which affects a large percent of citizens and 
drastically harms its productivity and competitiveness 
[1]. According to [2], one of the main reasons that 
contribute to this situation, is the use of inefficient and 
obsolete traffic controllers, which are not capable of 
efficiently managing the traffic flow in the city. These 
fixed time controllers, require a periodical configuration 
based on statistical flow analysis, which generally do 
not reflect in an accurate way the traffic flow conditions. 

Several intelligent traffic control systems have been 

made; these are capable of managing vehicular flow 
efficiently and dynamically, relying on information 
provided by a sensor network of different kinds, but 
mostly by inductive and magnetic sensors.

Although the performance of these systems easily 
exceeds the performance of fixed time controllers [3], 
they present a maintenance problem mainly concerning 
the kind of sensors used. The great majority of current 
solutions use the information provided by inductive 
sensors, which are installed directly into the asphalt. 
This kind of deployment leaves them exposed to all 
kinds of physical interactions, which significantly  
reduce their lifespan[4].



Dyna 178, 2013 133

In order to avoid this problem, this work presents a 
completely autonomous dynamic controller, which is 
capable of managing the state of the traffic lights in a 
simulated scenario in a coordinated and centralized 
way, using the information provided by a set of 
cameras. According to [5], this kind of sensor gives 
the system great installation flexibility, due to the 
possibility of strategic location within the control zone, 
avoiding the problems described above and increasing 
the durability, efficiency and profitability of the system.

The main contribution of this controller’s development 
is the use of a vehicular detection algorithm, which 
accurately identifies, the number of vehicles present 
in each road. Besides, the controller has a fuzzy 
optimization algorithm, which using the data provided 
by the detection algorithm, switches the state of the 
traffic lights, ensuring a continuous and homogeneous 
traffic flow.

This paper consists of six sections besides this 
introduction: In section 2, the basic theory of vehicular 
traffic controllers and object detection techniques 
are summarized. Section 3 presents the details of the 
developed system. Section 4 presents the characteristics 
of the designed test scenario, while the results are 
showed at Section 5. Finally, Section VI presents 
achieved conclusions.

2.  BACKGROUND AND PREVIOUS RESEARCH

Below, the most relevant terms and investigations in 
the area of traffic controllers and vehicle detection from 
images are mentioned.

2.1. Traffic controllers

There are two main kinds of traffic controllers: static 
ones and dynamical ones. The former are those 
where a sequence of previously programmed actions 
are followed, while the latter makes use of a certain 
acquisition method, which allows the system to identify 
the state of the traffic flow on the roads and to control 
it in a more dynamic and effective way [6].

It is important to define some basic terminology: 
phase, cycle and coordination. Phase is a traffic signal 
which allows a flow of non-conflictive movements. 
For example, Phase 1 showed in Figure 1 allows 

traffic flow from west to east and vice versa. In the 
same way, a succession of phases which is repeated 
continuously is considered a cycle. Figure 1 shows 
a cycle made-up of 4 phases. Finally, coordination is 
the action of programing the signalized intersections 
in such a way, that the flow of a corridor can achieve a 
constant speed without stalls, generating what is known 
as green waves.

 
Figure 1. Four-phase cycle. Taken from [7].

Taking this into account, the action of controlling an 
intersection implies the determination of the phases 
which will be part of the cycle as well as the duration 
of each of these phases.

2.2.Object detection

In the object detection field, there are two main 
strategies concerning the vehicle detection task: 
the first one is based on background and optical 
flow estimation, while the second one uses machine 
learning techniques. Background estimation analyzes 
the difference between a predefined model (image) 
of an empty road and an image of the incoming 
traffic, obtaining perturbations when compared to the 
predefined model, said perturbations are interpreted 
as vehicles [4, 5]. A great number of  investigations 
about machine learning methods have been devoted 
to the ‘on-road’ vehicle detection (a camera installed 
inside a car), instead of applications for traffic control 
on intersections. Examples of methods used within 
this area are: Boosted Cascade of Haar Features, Sift 
(Scale Invariant Feature Transform) matching and 
neural networks for pattern detection.

In the same way, there is certain terminology which is 
important and will help understand this portion of the 
work. Classifier is an operator which uses the features 
of a data set, in order to identify the class or group to 
which each of these data samples belong. Boosting is 
a meta-algorithm, which pretends to create a strong 
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classifier through the addition of weak classifiers, 
and a feature is considered as an important piece of 
information, which represents a similarity between the 
elements in a data set [8].

There are plenty of investigations in the area of 
vehicle detection through images; the following are 
some of the most important research articles in this 
field: in [9] and [10], an on-road vehicle detector was 
developed using a Haar-like feature detector, obtaining 
a detection accuracy of 88.6% and 76% respectively. In 
[11] and [12] authors used the background estimation 
technique with an efficiency rate over 90% in both 
cases. On the other hand, in [13] a morphological 
edge detector (SMED) was developed, which presents 
higher insensitivity to illumination changes than the 
background estimation, obtaining an accuracy of 95%.

3.  TRAFFIC CONTROL SYSTEM

Figure 2 shows the physical diagram of the proposed 
solution. A computer is placed at each intersection, 
which is in charge of acquiring images from a network 
of cameras. This computer is connected to a centralized 
server that processes the information and executes the 
detection and control algorithms. Finally, all decisions 
are sent back to each computer, which change the traffic 
lights depending on these orders.

Figure 2. Physical diagram of the proposed solution

3.1.  Fuzzy control system

The controller developed is based on the model 
presented by Lee et al. in [7], which evaluates not only 

the variables related to the controlled intersection, but 
also analyzes the variables related to traffic flow at 
nearby intersections. This allows the system to operate 
in a coordinated way, thus generating so-called “green 
waves”, avoiding unnecessary stalls for vehicles 
travelling through the roads and avoiding sending 
vehicles to areas of high congestion.

The controller basically consists of the three modules 
shown in Figure 3. The ‘Next Phase’ Module is 
responsible for assessing the level of urgency of each of 
the phases that are not active, the ‘Observation’ Module 
is in charge of studying traffic flow corresponding to 
the green phase, and the ‘Decision’ Module determines 
whether the active phase at the intersection is changed 
to the phase with the highest degree of urgency 
(depending on the module ‘Next Phase’) or remains 
constant for a longer period.

It should be noted that the level of urgency is just an 
analysis of how timely and favorable the exchange of 
the active phase would be.

Figure. 3 Schematic diagram of the controller

The operating mode of each of these modules is 
described below:

3.1.1.  Next Phase Module

This is responsible for selecting among all inactive 
phases, the one with highest level of urgency. To 
achieve this, this module evaluates the urgency of each 
of the flows associated with each phase and the average 
value will be the analyzed phase’s level of urgency. For 
example, the level of urgency for the phase shown in 
Figure 4 is the average of the values obtained evaluating 
the north-south flow and north-east flow.
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Figure 4. Sample situation

To obtain the level of urgency of each flow, four variables 
are evaluated: NumCar is the number of vehicles waiting 
for the green signal, in Figure 4 they are located in 
north; RedTime represents the number of periods that 
the evaluated phase has been deactivated; NumCarAnt 
is an estimate of the number of vehicles that could arrive 
in the current cycle, from the lanes leading up to this 
intersection, and FNumCar is the number of vehicles 
on the road in front of the intersection, for the north-
south flow in Figure 4 this variable is represented for 
those vehicles in the south road. This way, the variables 
RedTime and NumCar reflect traffic conditions locally, 
while NumCarAnt and FNumCar allow the system to 
coordinate different neighboring intersections.

Figure 5. The Fuzzy Set of NumCar, FNumCar, RedTime, 
NumCarAnt and Urgency

Figure 5 shows this module’s Fuzzy Set and Table 
1 presents some of its rules. For example, R2 states 
that if the number of vehicles waiting to cross is High 
(NumCar = H), the number of periods in which the 
analyzed phase has not been active is High (RedTime = 
H) and the number of vehicles waiting in the following 
lane is Low (FNumCar = L), then the urgency of this 

phase will be very high (Urgency = VH).

Table 1. A few rules of the Next Phase Module

3.1.2.  Observation Module

This module is responsible for assessing traffic conditions 
for the active phase and determines how timely it would 
be to stop that phase. The fuzzy rules of this module 
have two inputs and one output: ONumCar indicates 
the number of cars that are still waiting; OFNumCar 
represents the number of vehicles at the next intersection 
and Stop is the output of the module, indicating whether 
or not it is necessary to stop the phase. The behavior of 
the input variables is very similar to variables NumCar 
and FNumCar, therefore their fuzzy sets are equal. Figure 
6 shows the Fuzzy Set for the Stop variable.

 
Figure 6.  The Fuzzy Set of Stop

Table 2 presents some rules of this module. R4 indicates 
that if the number of vehicles waiting for the active 
phase is still high (ONumCar = H) and the number of 
vehicles in the following lane is high as well

 (OFNumCar = H), then the phase must be stopped 
(Stop = Yes). This is because it would be a waste of 
time to allow a flow that will be obstructed later.

Table 2. A few rules of the Observation Module
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3.1.3.  Decision Module

This module decides whether or not to change the 
active phase. The inputs in this module are Urgency 
and Stop and the output is Decision. The two input 
variables are the outputs of the modules ‘Next Phase’ 
and ‘Observation’, respectively. The module changes 
the active phase, as long as the defuzzification’s result 
is above a given threshold.

Table 3 shows some of the rules of this module. The 
first rule indicates that, although the candidate phase 
has medium congestion (Urgency = M), if the Stop level 
of the active phase is low (Stop = N), then the module 
will have to keep the same phase (Decision = N, no 
change). The Fuzzy Set of this module is presented 
in Figure 7 (Urgency and Stop variables appear in the 
previous modules).

Table 3. A few rules of the Decision Module

 

 
Figure 7. The Fuzzy Set of Decision

3.2.  Detection algorithms

The detection algorithm proposed in [14, 15] is 
used, consisting of a Haar feature classifier cascade; 
according to several authors [8, 9, 16] this method 
presents higher or at least similar performance 
as the best previous object detector systems. The 
implementation of this method was developed in two 
phases, one, dedicated to training of the classifiers 
through a machine learning algorithm called Adaboost 
and the construction of the cascade, and the other phase 

where the detection is adapted to the needs of the object 
of interest and the context where these objects exist.

Within the training phase, Adaboost creates several 
weak classifiers (ℎ𝑗𝑗 ) , each of these evaluates a Haar 
characteristic (𝑗𝑗)  over an image (𝑥𝑥𝑗𝑗 )  and through 
the comparison between the obtained value from 
the evaluation and a threshold (𝜃𝜃𝑗𝑗 ) , it decides if this 
characteristic represents effectively the object of 
interest. A weak classifier is defined by Equation (1).

ℎ𝑗𝑗 (𝑥𝑥) = �
1; 𝑓𝑓𝑗𝑗 (𝑥𝑥) < 𝜃𝜃𝑗𝑗
0; 𝑓𝑓𝑗𝑗 (𝑥𝑥) ≥ 𝜃𝜃𝑗𝑗    			   (1)

Adaboost will find the best threshold and the best 
classifier through linear searches and a reweighting of 
the examples with the highest classification error (𝜀𝜀𝑗𝑗  ), thus 
maximizing the margin between a positive and negative 
set of examples ( 𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗  ), being  𝑦𝑦𝑗𝑗 = 1 or 𝑦𝑦𝑗𝑗 = 0    or 
for positives and negatives examples respectively. This 
classification error is defined by Equation (2).

𝜀𝜀𝑗𝑗 = �𝑤𝑤𝑖𝑖�ℎ𝑗𝑗 �𝑥𝑥𝑗𝑗 � − 𝑦𝑦𝑖𝑖�
𝑖𝑖

  			   (2)

In Equation (2) the term (𝑤𝑤𝑖𝑖)  represents the weight 
given to the samples after each classification; as 𝑤𝑤𝑖𝑖    
increases for those misclassified samples, this will 
allow future iterations to pay more attention to these 
examples [14, 16]. Through this process Adaboost 
will use the best classifier to create a combination 
with better discrimination accuracy; this combination 
is called strong classifier (ℎ𝑗𝑗 )  and is defined by 
Equation (3).

ℎ𝑗𝑗 (𝑥𝑥) =

⎩
⎨

⎧1 � 𝛼𝛼ℎ𝑗𝑗 (𝑥𝑥) ≥� 𝛼𝛼
𝑇𝑇

𝑡𝑡=1

𝑇𝑇

𝑡𝑡=1

0 � 𝛼𝛼ℎ𝑗𝑗 (𝑥𝑥) < � 𝛼𝛼
𝑇𝑇

𝑡𝑡=1

𝑇𝑇

𝑡𝑡=1

 
		  (3)

For the present work, the positive examples set 
�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � = 1 , are extracted from traffic videos of 
several points of the city. 6364 images are obtained 
from these videos, for each one of these images, true 
regions are annotated (regions where the object of 
interest is present); 10050 true regions were found, 
thus obtaining the same number of positive examples. 
In order to obtain the negative example set, videos from 
daily scenes of parks and walkways are used, as well 
as image datasets from Google, CALTECH, CMU, TU 
Darmstadt, UIUC, VOC2005 and TU GRAZ. From 
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said datasets, 8131 images are extracted, all of them 
without existence of the object of interest.

Performance of the object detection system as a whole, 
depends on several training parameters of the strong 
and weak classifiers, as well as the cascade itself; 
some examples of these parameters are: the size of the 
example sets, number of stages of the cascade, type 
of weak classifier etc. In order to estimate the optimal 
values for these parameters, a series of experiments 
based on the work of [17] were conducted, adapted to 
define vehicles as objects of interest.

In order to carry out these experiments, a sub-set test 
was extracted from the positive example set, consisting 
of 152 images which contain 586 vehicles (likewise 
586 true regions are annotated). These vehicles fulfill 
the criteria to be considered objects of interest, having 
a frontal or top frontal view and a maximum rotation 
from the frontal view of 30°. Then, the cascade with the 
evaluated parameters is used to obtain new true regions, 
and these are compared to those previously annotated. 
The criteria for true positive and false positive is 
determined by two difference margins between new 
true regions and previous ones. One margin is for size, 
and has a maximum difference between each other of 
50%. The other one is for location, with a maximum 
difference of 30%.

Below are some of the results of tests performed in 
order to find the optimal training parameters.

Table 4 shows the influence of pattern training size in 
the performance of the cascade. The pattern sizes which 
obtained the best performance (less false positives and 
a higher hit rate) are 18x18 and 20x20.

Table 4. Performance comparison between different input 
pattern sizes.

On the other hand, the influence of Haar features set 
type can be observed in Table 5. There are two types 
of Haar features sets, the basic one, proposed in [18] 

and the extended one, proposed in [17]. The extended 
set has shown up to 71% reduction concerning the 
presence of false positives compared to the basic one, 
with a similar hit rate.

Table 5. Performance comparison between the two 
existing sets of Haar features

During the training phase, it is assumed that vehicles 
are symmetrical regarding the vertical axis; however, 
it was assumed that training without the assumption 
of symmetry would give a higher robustness against 
variations of rotation of the vehicle. Table 6 shows 
that this assumption was not valid, since the cascade 
without symmetry presents a drop in the detection 
rate, with little improvement on the insensitivity to 
false positives.

Table 6. Performance comparison between assumptions of 
vertical symmetry

Based on the observations made in the previous 
experiments, the values for the final training parameters 
are shown in Table 7.

Table 7. Training parameters

Additionally, other parameters were established based 
on the literature, e.g. the number of cascade stages 
must be between 15 and 23 stages, and the size of the 
training sets should be about 5000 positives examples 
and 10000 negatives examples.
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4.  EXPERIMENTAL FRAMEWORK

In order to verify system performance in a controlled 
but realistic environment, it was necessary to implement 
a test scenario using artificial videos. For this, an 
algorithm was developed using MATLAB, which is 
capable of creating random videos that simulate traffic 
flow in a lane (see Figure8a).

As shown in Figure 8b, the designed scenario includes 
4 simple two-way intersections, therefore a total of 16 
videos were created representing each of the pathways 
of interest.

Figure 8. Designed test scenario

In order to compare the performance of the developed 
system versus fixed-time controllers, both of them were 
tested under the same traffic conditions. Ten evaluation 
plans were designed each of them varying the level of 
congestion on the lanes as shown in Table 8. The level 
of congestion depends on the type of lane; Figure 8b 
shows that there are three types of lanes (I, II and III) 
and also shows the distribution of these types between 
the available lanes.

Table 8. Generation plans designed

5.  RESULTS

For each controller (Fixed-time and Fuzzy), each of the 
plans is executed for 20 minutes. In order to compare 
the performance of each of the controllers, two control 
variables are evaluated: the first one is the average 
delay time of each of the simulated vehicles, and the 
other is the number of cars that each controller is able 
to handle in the same period of time.

Figure 9 clearly shows that as the congestion level in 
the roads increases, the fuzzy controller reduces the 
waiting times in about 20%.

 
Figure 9. Delay time caused by each controller

On the other hand, Figure 10 shows that the fuzzy 
controller is capable of handling 40% more vehicles 
than the fixed time controller.

 

Figure 10. Number of vehicles displaced by each 
controller
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According to Table 9, the results show that the 
developed system reduces the time delay caused by 
unnecessary stalls by about 20%. It is also important 
to note that the system was able to adapt quickly and 
efficiently in those plans where there was a change in 
the level of congestion (7, 8, 9 and 10), outperforming 
the standard controller by up to 26%.

Table 9. Average delay time for each controller

Finally, as explained in Section 3.2 Table 7, two 
identical classification cascades were created, the 
only difference between them was the size of the input 
pattern. Cascade No. 1 has a size of 18x18 pixels while 
Cascade No. 2 has a size of 20x20 pixels. The results 
obtained with each cascade are shown in Table 10.

Table 10. Performance of the classification cascades 
developed

Additionally, both cascades presented similar 
performance in terms of processing speed, reaching a 
detection rate between 22 and 27 frames per second on 
images of 320x240 pixels.

From the obtained algorithms it is possible to create new 
applications such as automatic traffic accident evaluation 
and modeling and characterization of their causes, in 
order to improve results typically obtained in accident 
prevention research, like the one proposed in [19].

6.  CONCLUSIONS

The vehicle detector created is robust against several 
kinds of noise like moderate lighting variations, 
shadows, reflections and other types of phenomena 
caused by climatic conditions. This advantage puts 
the chosen method above others, like background 
estimation and optical flow estimation.

Unlike vehicle detection methods based on optical flow 
calculation, the constructed detector is able to locate 
the vehicles even when these are held up. In the same 
way, unlike methods based on tripline techniques, 
the constructed method does not present problems 
whatsoever if vehicles change lanes intermittently or 
if these do not transit through certain predefined areas 
in the image.

The simulations results show that the proposed 
controller’s performance far exceeds that of fixed-time 
controllers, and this can also be optimally adapted to 
a large number of situations. However, further work 
would be necessary in order to enable the application 
of this system in a real life scenario. This further work 
would be mainly oriented to the electronic design of 
the solution and to the hardware selection.

Finally, it is observed that the machine vision algorithm 
proposed for the detection of vehicles, presents a clear 
disadvantage in terms of the lack of robustness to 
the presence of occlusions of the objects of interest, 
requiring that these occlusions represent less than 
the 10% of the total area of the object. Therefore, the 
location and height at which video sensors are installed 
should be considered, so that the level of occlusion 
between vehicles can be reduced. 
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