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ABSTRACT: The main goal of condition-based maintenance is to describe the machine state under current operating regimes, which can 
be non-stationary depending of load/speed changes. Besides, damaged machine data are not always available in real-world applications. 
This paper proposes a methodology of outlier detection in time-varying mechanical systems based on dynamic features and data description 
classifiers. Dynamic features set is formed by spectral sub-band centroids and linear frequency cepstral coefficients extracted from time-
frequency representations. One-class classification is carried out to validate performance of the dynamic features as descriptors of machine 
behavior. The methodology is tested with a data set coming from a test-rig including different machine states with variable speed conditions. 
The proposed approach is validated on real recordings acquired from a ship driveline. The results outperform other time-frequency features 
in terms of classification performance. The methodology is robust to minimal changes in the machine state and/or time-varying operational 
conditions.

KEYWORDS: Dynamic features, One-class classification, Data description.

RESUMEN: Se propone una metodología para detección de atípicos en sistemas mecánicos variantes en el tiempo, basada en características 
dinámicas y descriptores de datos. El conjunto de características dinámicas está conformado mediante centroides de sub-banda espectral 
y coeficientes cepstrales de frecuencia lineal, ambos extraídos de representaciones tiempo-frecuencia. La clasificación de una clase es 
utilizada para validar el rendimiento de las características dinámicas como descriptores del comportamiento de la máquina en comparación. 
La metodología es probada con un conjunto de datos de un banco de pruebas con diferentes estados (normal, desbalance y desalineación), 
los cuales son medidos bajo condiciones de velocidad variable. El esquema propuesto es validado con registros de una línea de transmisión 
de un buque. Los resultados superan otras características tiempo-frecuencia en rendimiento de clasificación. La metodología es robusta a 
cambios mínimos en el estado de la máquina y/o condiciones de operación variantes en el tiempo. 

PALABRAS CLAVE: Características dinámicas, Clasificación de una clase, Descripción de datos.

1.  INTRODUCTION

In modern industries, fault detection of rotating 
machinery is a fundamental issue since it helps to 
reduce unnecessary expenditure in repairs while 
improving machine performance. Regarding this 
matter, the main challenge is to determine the current 
state of the machine from a set of measurements, 

termed Condition-Based Maintenance (CBM). The 
machine state is assessed usually using vibration 
analysis because it gives a high precision and has a 
low economic cost. Nonetheless, the following two 
problems arise: The first one appears when the machine 
conditions are time-varying, either by changes in 
speed or load, inasmuch as the vibration signals are 
realizations of non-stationary processes. The second 
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problem is associated to the amount of available data 
characterizing different machine states, since, in most 
of the cases, recordings of a damaged machine are not 
available. The latter fact hinders the application of 
conventional classification techniques due to strong 
imbalance of the faulty/normal classes (machine states).

With regard to the former problem, some authors 
have used time-frequency representations (TFR) in 
describing the machine’s dynamic behavior under non-
stationary operating conditions. In particular, Sedjic et 
al. in [1] summarize different methods for estimating 
energy concentration of several TFR extracted from a 
set of test rig faults. But they only visually identify the 
qualitative difference between several faults instead 
of carrying out a quantitative automated classification 
procedure. However, inclusion of the classification 
stage implies high computational cost since a TFR 
map comprises a lot of non-relevant information that 
should be avoided [2]. To reduce the computational 
cost, authors [3] and [4] use basic statistical features 
(mean, standard deviation, kurtosis, and root mean 
square) estimated from a time series and its frequency 
representation. Nevertheless, those features do not 
properly describe the dynamic behavior generated by 
non-stationary operating conditions of the machine. 
Therefore, there is a need to carry out a methodology 
to characterize the machine’s dynamic behavior, but at 
a low computational cost.

With regard to the latter problem, one-class classification 
(OCC) techniques have been used to determine whether 
the machine state ceases to be normal or first damage 
symptoms appear. Thus, Tax and Duin in [5] compare 
several commonly used one-class classifiers such 
as the normal distribution classifier, the k-nearest 
neighbor classifier, and support-vector data description 
(SVDD). Considered classifiers are trained and tested 
employing vibration signals at different constant speeds 
by using a set of statistical-based features, however, 
classification performance achieved is low. With the 
aim of improving the classification performance, some 
authors have proposed different methodologies based 
on estimation of statistical features from piecewise 
segmented non-stationary vibration signals. Among 
other approaches are the following: weighted SVDD 
[6], moving-average model [7], wavelet packet 
transform [8], and subspace reduction by principal 
component analysis (PCA) [9]. These methodologies 

reach high classification performance, but in practical 
cases such as high speed fluctuations, inherent signal 
segmentation implies loss of relevant information [10].

In this paper, a novel methodology for mechanical 
system description having non-stationary behavior 
is introduced. In particular, the proposed approach 
uses the spectral sub-band centroids and the linear 
frequency cepstral coefficients; all of them extracted 
from a TFR for machine dynamic characterization. 
Due to the large number of features obtained from 
the TFR, a feature selection process is carried out 
to determine the contribution of the most relevant 
dynamic characteristics. Finally, the resulting dynamic 
features are validated by OCC, whose performance is 
compared when extracting the whole TFR map. The 
proposed methodology is tested with a dataset collected 
in a test rig for normal, unbalanced, and misaligned 
assemblies. Recordings are acquired under variable 
speed conditions including machine start-up and coast-
down. The proposed methodology is also validated over 
recordings of a real ship driveline.

The layout of this paper is as follows: in Section 2, a 
brief overview is given to describe TFR-based dynamic 
features and one-class approaches employed in this 
work for the analysis of non-stationary signals. Sections 
3 and 4 bring numerical experiments of performance 
achieved that is compared with other state-of-the-art 
techniques. Discussion of the results is given in Section 
5, while Section 6 provides the related conclusions and 
future research.

2.  BACKGROUND

2.1.  Frequency enhancement

Time-frequency representation determines the energy 
concentration along the frequency axis at a given time 
instant. Particularly, the Short Time Fourier Transform 
(STFT) introduces time localization by using a sliding 
window function 2( ) ( ),t Tφ ∈  going along with the 
signal ( ),x t lasting ,T ∈R as follows:

2
2( , ) ( ) ( ) ,j f

x T
S t f x t e dπ ττ φ τ τ−= −∫ 		

(1)

where ,( , )xS t f +∈R  and windowing function, 
defined as ( ) ( ) exp( 2 ),t t j fφ φ τ π τ= − −  gives a 
relationship between the input signal, ( ),x t  and a set 
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of functions with the energy compacted in narrow strips 
of the time-frequency plane.

2.2.  Dynamic feature extraction

I n  c o m p u t a t i o n s , t T∈ a n d (0, / 2)sf f∈  a r e 
described by discrete indexes { 1, , ; }l L l T= … ∈  
and { 1, , ; (0, / 2)},sk K k f= … ∈  being sf  the 
sample frequency. Therefore, the time-frequency map 
dimension is ( , )  .L K

xS l k ×∈ R  Since TFR holds a huge 
amount of non-relevant information, it is of primal 
importance to develop methods to allow extracting 
salient and discriminant information from the vibration 
signal [2].

Taking into account that TF analysis models a signal 
spectral density as a time function under the assumption 
that the spectral content remains stationary within 
small time intervals of computation, then short-time 
parameters extracted from TFR can be considered. 
Among feature extraction methods, adequate candidates 
are the Spectral Sub-band Centroids (SSC) [11] and 
the Linear Frequency Cepstral Coefficient (LFCC) 
[12]. In both cases, TFR-based short-time parameters 
are extracted using a filter-bank decomposition, 
which efficiently combines frequency and magnitude 
information from the short-term power spectrum input 
signals. Time-variant outputs of these filters that might 
be chosen so as to cover the most relevant part of the 
frequency range are regarded as the set of time-variant 
features, denoted as { ( ) : , },n n fy l n n l L= ∈ ∈y

( ) .ny l ∈R

Therefore, sampled vectors over discrete time, ,l of 
each narrow-band feature, ,ny  are obtained using 
filter bank modeling. For instance, the set of LFCC 
is extracted based on the Discrete Cosine Transform 
of triangular log-filter banks,{ ( ) : 1, , },mh k m M= …
which are linearly spaced in the frequency domain:
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where fn is the number of desired LFCC features, and
( )ms l ∈R is the weighted sum of each frequency filter 

response set that is given as:

1
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(3)

Another effective way of generating time-frequency 
based time-variant features can be achieved through 
computation of the SSC histograms that are estimated 
for each filter in the frequency domain, ( ),nh k as:
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where parameter γ +∈R represents the spectrum 
dynamic range used in centroid computation, and 

( )nh k  are the filters linearly distributed along the 
spectrum. In addition, the energy neighboring each 
centroid can be also considered as a time-variant feature 
that for a fixed bandwidth k∆ is computed in the form:

ˆ ( )

ˆ ( )
( ) ( , )
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n
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= −∆

= ∑
 			 

(5)

where ˆ ( )ny l  is the actual value of the time-variant 
centroid estimated by (4).

2.3.  One-class data inference

Based on optimal signal detection inferring whether the 
signal is present, different approaches to distinguish 
one class from the rest of the data feature space, 

 ,r qZ ×∈ R  have been developed, being r the input 
data dimension and q the number of available objects. 
Particularly, the measured data space is related to just 
one of the considered classes (termed target) that can be 
properly characterized as well as compactly clustered, 
in such a way as to guarantee discrimination of other 
possible objects (that is, a non-target class for which 
no measurements are available) distributed outside of 
the target class. So, to circumscribe the target class 
within concrete bounds two concepts are introduced: a) 
distance, ( ) ,id +∈z R measuring closeness between an 
object,{ : 1   , , ; },i ii q Z= … ∈z z and the target class, 
and b) the distance threshold, ,θ +∈R  fixing the 
decision boundary of the target class, that is:

( ) , target class
( ) , non-target class

i i

i i

d
d

θ
θ

< →
 > →

z z
z z  		  (6)

Thus, definition of adequate classification boundary 
around target class remains the most important 
issue. Moreover, the threshold θ  should accept as 
many objects as possible from the target class, while 
minimizing chance of accepting non-target (or outlier) 
objects [5]. In practice, distance complexity ranges 
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from simplest Euclidean to more elaborate ones, for 
instance, statistical-based distances. Regarding the 
former distance, it may have several restrictions when 
describing a low density volume of the hyper-sphere. 
Instead, the latter distances are more robust since they 
impose a model to the OCC providing a highly dense 
volume of the decision hypersphere. Specifically, for 
implementing the OCC, the Gaussian distribution 
classifier (using Mahalanobis distance) and the Support 
Vector Data Description (using kernel based square 
distance) are convenient in machine state classification.

So, the Gaussian-distribution-based OCC fits a 
r-dimensional multivariate normal distribution to the 
data set [13]:

		
(7)

where notations  and r r×Σ∈R  stand for the 
mean vector and covariance matrix of the training 
set, Z. To distinguish between target and outlier 
data, a threshold on the probability distribution 
function is set. Afterwards, for a new sample object,

iz , the Mahalanobis distance is calculated as 
. 

The 5% of instances with the largest Mahalanobis 
distance , are regarded as outliers. As a result, an 
ellipsoidal boundary close to the data is achieved. Yet, 
this method works reasonably well when the data is 
normally distributed

Support vector data description is an OCC algorithm 
that identifies samples not covering the same space 
region as the training sample [5]. The algorithm 
computes a spherically shaped decision boundary by 
solving the following quadratic optimization problem:
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where C is a parameter indicating how severely objects 
outside the sphere should be penalized; iα are Lagrange 
multipliers for solving (6). In addition, K represents a 
Mercel kernel that usually is a Gaussian kernel, defined 
as 

 
where σ  is the 

standard deviation as an adjustable parameter, being

, 1, , .i j q= …  Vectors located outside the sphere, are 
termed bounded support vectors for which ,i Cα =  
while objects with (0, ),i Cα ∈  are termed unbounded 
support vectors, being located exactly on the surface 
of the decision boundary sphere.

Then, the introduced squared distance of an object
, v Z∈z  to the center of the sphere is estimated, as 

follows:
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In consequence, the threshold, ,θ  is the radius calculated 
as the distance from the sphere center to an unbounded 
support vector. In practice, the average distance to a 
set of unbounded support vectors is used. Besides, the 
SVDD parameters can be fixed as mentioned in [15].

3.  EXPERIMENTAL ANALYSIS

The proposed methodology for novelty detection using 
dynamic features that are extracted from TFR appraises 
the following stages: a) TFR enhancement of the input 
vibration signal, b) feature estimation of dynamic 
features, c) dimension reduction by means of latent 
variable decomposition, and d) machine diagnosis 
inference based on the OCC scheme. It must be noted 
that two different experiments are supplied: firstly, 
when data is collected from an experimental test rig, 
and secondly, when data is acquired from a real ship 
port driveline. 

3.1. Collected database from experimental test rig

A set of experiments is performed with the supplied 
test rig shown in Fig. 1, which includes a 2 HP Siemens 
electromotor with 1800rpm maximum speed. The 
motor is connected to the shaft using a rigid coupling. 
The shaft has two supports, each one with a SKF-6005 
NR ball bearing and two drilling wheels designed 
for simulating either static or dynamic unbalance. 
The vibration signals are acquired by ACC102 
accelerometer, with a measurement range of 0-10kHz 
and 100mV/g of sensibility. The National Instruments 
USB-6009 data acquisition card is employed at 20kHz 
sampling frequency.
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The data set holds the following types of acquired 
outliers regarding the considered machine states: a) two 
static and one dynamic unbalance, and b) two angular 
and two parallel misalignment. The data collection 
also includes an undamaged condition type, which 
is taken as the only target class. The machine state 
is measured for start-up and coast-down conditions, 
where each recording under coast-down condition 
(Fig. 2-top) appraises three phases: a) maximum speed 
(1800 rpm), b) 

Figure 1. Test rig.

turning motor off, and c) steady-state regime. The start-
up condition case (Fig. 2-bottom) has the same phases, 
but in reverse order. Each recording is ten-seconds long. 
It is worth noting that considered working phases are 
not synchronized each to other, that is, the second phase 
may begin at different times within each recording.

As a result, 20 recordings were acquired at horizontal 
measurement point for each one of the 8 considered 
types of machine states, i.e., in total 160 recordings 
were collected for operating condition. In order to 
reduce the computational cost and taking into that the 
maximum spectral information is around 1.2kHz, the 
recordings are subsampled down to 4 kHz, obtaining 
a recording length of L=40000 samples in 10 seconds.

3.2.  TFR based Enhancement 

The TFR matrix holds dimension 4000 256 ,S ×  where 
K=256 is chosen as to exceed reasonable resolution 
of 0.1Hz. Fig. 3 shows the spectral decomposition 
of each signal under coast-down (top) and start-up 
(bottom) conditions. As seen, spectral components 
contract/expand with decreasing/increasing rotational 
speed. The coast-down condition allows showing, in a 
proper way, the harmonic relation between the different 

spectral components, which contribute with a visual 
inspection to distinguish machine behavior.

In contrast, under the start-up condition, spectral 
information clearly gathers around 300Hz during 2 
seconds after turning on the electromotor. This behavior 
is caused by an unbalance of electromagnetic forces 
inside the electromotor 

Figure 2. Exemplary of vibration signals under machine 
coast-down (top) and start-up (bottom) conditions

associated to the stator and the winding. Therefore, 
the actual contribution of spectral components on the 
shaft is hidden.

3.3.  Estimation and dimension reduction of 
dynamic feature set

In the beginning, a set appraising n SSC as well as n LFCC 
features is extracted from each estimated TFR. Based on 
[14], the needed number of dynamic features in (2) and 
(4), initially, is fixed to be 25.fn =  Besides, other free 
parameters needed for dynamic feature estimation are 
fixed empirically. Namely, in case of LFCC features, 32  
triangular filters comprise the log-filter bank used, which 
are linearly spaced in the frequency band. Likewise, 
the SSC features are estimated using a dynamic range, 
i.e., 1γ = , to preserve the spectral power of the TFR. 
Consequently, 50 dynamic features are extracted from 
considered TFR, where each one having 40000 samples 
of length. From the above, a huge dynamic feature set 
is computed and it follows that there is a need for an 
adequate dimension reduction. In these cases, space 
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reduction is provided stepwise: Firstly, each dynamic 
feature is to be adequately

Figure 3. Time-frequency representation of vibration 
signal under undamaged machine coast-down (top) and 

start-up (bottom) conditions.

represented by a set of scalar-valued statistical 
moments, that is, 1 1. L×R R  Secondly, the obtained 
feature space matrix has dimension 25 160×  for each 
considered TFR. Specifically, a multivariate latent 
approach is used to select the data set to be fed into the 
one-class classifier. Lastly, we determine the optimal 
number of features, ,fn that are required to properly 
characterize the vibration signal, in as much as this 
parameter controls computational cost as well as 
performance within the classification framework. To 
select an adequate number of features, the following 
criterion of multivariate reconstruction error holds: 

2ˆmin { ( ) ( ) } 0, n x t x t ηε∀ − − =‖ ‖  		  (10)

where ˆ( )x t is the reconstructed signal,η  is a small 

enough real positive value, 2·‖‖  is the norm squared 
value, and {}·ε  stands for the expectation operator. 
As a result, the minimum number of LFCC features to 
achieve an explained variance value equal to 97.6%  
is 16fn = , while 20fn =  for SSC parameters are 
needed to reach a variance of 96.2%.

3.4.  Target class classification validated on test rig data

Testing of the discussed training methodology, outlined 
in Section 2.3, is carried out for identification of target 
class in either considered machine condition: start-up 
and coast-down. 

For classifier validation, the OCC error performance 
is computed using the commonly used 10-fold cross-
validation procedure, where the target data is split into 
70% for training and the rest 30% is merged with the 
outlier data (non-target class). To measure classifier 
performance both specificity and sensibility are used. 

Table 1 shows classification performance for the start-
up condition. As seen, the STFT-LFCC brings the best 
performance regardless of the considered classifier. 
Nonetheless, it is worth noting that higher performance 
is achieved using the Gauss classifier since it does not 
misclassify outliers while preserving the highest value 
of achieved sensibility. 

Table 1. Specificity and Sensibility obtained under 
machine start-up condition.

Feature set Gauss SVDD
Spe. Sen. Spe. Sen.

STFT-LFCC 100 100 100 92
STFT-LFCC-PCA 100 100 100 88
STFT-SSC 100 92 100 98
STFT-SSC-PCA 100 98 100 94
STFT 70 84 82.5 56
STFT-PCA 75.4 88 91.2 80

Table 2. Specificity and Sensibility obtained under 
machine coast-down condition.

Feature set Gauss SVDD
Spe. Sen. Spe. Sen.

STFT-LFCC 100 92 100 80
STFT-LFCC-PCA 100 94 99 82
STFT-SSC 100 98 100 86
STFT-SSC-PCA 100 90 100 86
STFT 78.5 75 85 28
STFT-PCA 80 86 89 76.3
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For the sake of comparison, performance values are 
also computed for whole TFR maps, the achieved 
values in this case exhibit worse outcomes.

As regards the validation for the coast-down machine 
regime, achieved performance is shown in Table 2. The 
STFT-LFCC and the STFT-SSC achieve the best value 
no matter if the PCA-based dimension reduction is 
applied. Again, the Gauss classifier outperforms SVDD 
when proposed dynamic features are used. Lastly, the 
TFR maps set holds the worse performance.

4. NOVEL DETECTION IN SHIP DRIVELINE 
APPLICATION

The proposed methodology is tested also on the ship 
port driveline, which has a Caterpillar 3412C diesel 
engine with the following characteristics: 12 valves in 
Vee, 4 strokes and a maximum speed of 2100 rpm. The 
engine is directly coupled with a gearbox MG-520. The 
database is acquired using a ACC102 accelerometer 
with a measurement range of 0-8kHz and 10 mV/g of 
sensibility. 

 

Figure 4. Examples of vibration signals acquired on ship 
driveline under different maneuvers: (a) FR, (b) RR and (c) TS.

The sensor is located between the engine and the 
gearbox to capture the information coming from 
the drive and gearbox. ANI9234 acquisition card is 
employed using a sampling frequency of 25.6 kHz. 
The recordings are captured under several operating 
conditions: forward-running (FR), reverse-running 
(RR) and turn starboard (TS). For each operating 
condition are acquired 159, 137 and 163 recordings, 
respectively. An example of the acquired vibration 
signals is shown in Fig. 4.

Figure 5.Time-frequency representation from acquired 
vibration signals under different operating conditions: (a) 

FR, (b) RR and (c) TS.
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Fig. 5 shows the time-frequency representation from 
measured signals on the ship driveline. In case of 
FR (Fig. 5(a)), a decrement in the speed can be seen 
despite the fact that the ship is running forward. This 
fact implies speed changes due to the induced load by 
the sea movement. In case of RR (Fig. 5(b)) and TS 
(Fig. 5(c)), several spectral components present peaks 
in short-time instants, which can be associated to the 
bearing frequency, however, without faulty signals it is 
difficult to assesses whether the behavior corresponds 
to an abnormal machine state. Therefore, a one-class 
classification procedure allows the machine state to be 
inferred and described. Table 3 shows the estimated 
classifier performance for data collected from the real 
ship driveline application. 

The STFT-LFCC feature set turns out to be the better 
set again, but after using PCA as well as the Gaussian 
classifier. As a result, STFT-LFCC feature set gets the 
highest sensibility value.

Table3. Sensibility obtained using the ship driveline 
recordings.

Features Gauss SVDD
STFT-LFCC 86 95
STFT-LFCC-PCA 96 85
STFT-SSC 70 92
STFT-SSC-PCA 90 89
STFT 83 68
STFT-PCA 91 79

It is worth noting that in the concrete case of ship 
driveline application, the whole TFR map achieves high 
performance when the Gaussian classifier is used. Yet, 
the computational cost is increased.

4.  DISCUSSION 

After testing the discussed methodology of fault 
detection in rotating machinery, the following assertions 
can be stated regarding the extracted dynamic features 
and the employed one-class classifiers:

- Use of feature sets related with TFR concentration 
energy may lead to a high performance of outlier 
detection. Yet, the whole TFR map does not allow the 
generalization capability of classifier in distinguishing 
between target and outlier samples to be improved. 
Therefore, this type of features may face serious 
restrictions to be considered in fault detection. 

Instead, the proposed dynamic features achieve better 
performance and reduce computational burden. As a 
result, dynamic features can contribute to building an 
effective automatic CBM system.

- Comparison between both considered dynamic 
features, LFCC and SSC, infer that the former 
set is more consistent in terms of achieving high 
performance, as observed throughout all experiments 
carried out. This fact makes sense since cepstrum, as 
a vibration signal feature, brings proper representation 
about mechanical processes [14]. Besides, taking into 
account that the proposed methodology accomplishes 
cepstrum estimation in non-stationary conditions, 
provided (by dynamic feature set) relevant information 
allows describing better machine dynamic behavior.

- The usefulness of PCA for multivariate dimension 
reduction is another aspect to highlight. When the 
kernel-based classifiers are used, PCA projection 
provides a data linear transformation that may damage 
classifier performance. Tables 1, 2, and 3 show that 
target class performance (sensibility), using PCA, is 
equal or is lower to the one obtained when PCA is not 
employed. Therefore, to achieve high performance, 
inclusion of PCA is not necesary and rather it increases 
substancially the computational burden.

- In the case of one-class classifiers, mostly, the Gauss 
classifier presents better performance than SVDD 
meaning that the data follow a normal distribution, as 
mentioned in [5]. Nonetheless, achieved performance 
using SVDD can be improved if properly tuning its 
parameters. This adjustment, which implies parameter 
optimizing during each classification iteration, 
increases computational cost.

5.  CONCLUSIONS

A methodology for outlier detection in rotating 
machinery under non-stationary operating conditions 
is proposed. The methodology improves the 
characterization of dynamic behavior allowing 
high performance of target class classification to be 
achieved. The proposed characterization process is 
based on the dynamic features extrated from time-
frequency representations. As a result, the methodology 
overcomes the obtained performance by means the 
whole TFR map. In general, the proposed dynamic 
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features allow reducing computational cost and 
distinguishing classes with different time-variant 
behavior. Besides, proposed dynamic features can 
be used for either rejecting outliers or accepting 
targets. Future work includes validating the proposed 
methodology in other mechanical systems.
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