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ABSTRACT: This paper deals with the reliable and efficient numerical identification of parameters defining the flux function and the
diffusion coefficient of a strongly degenerate parabolic partial differential equation (PDE), which is the basis of a mathematical model for
sedimentation-consolidation processes. A zero-flux initial-boundary value problem (IBVP) posed for this PDE describes the settling of a
suspension in a column. The parameters for a given material are estimated by the repeated numerical solutions of the IBVP (direct problem)
under systematic variation of the model parameters, with the aim of successively minimizing a cost functional that measures the distance
between a space-dependent observation and the corresponding numerical solution. Two important features of this paper are the following.
In the first place, the method proposed for the efficient and accurate numerical solution of the direct problem. We implement a well-
known explicit, monotone three-point finite difference scheme enhanced by discrete mollification. The mollified scheme occupies a larger
stencil but converges under a less restrictive CFL condition, which allows the use of a larger time step. The second feature is the thorough
sensitivity and stability analysis of the parametric model functions that play the roles of initial guess and observation data, respectively.

Keywords: Sedimentation of suspensions, sensitivity analysis, degenerate parabolic equation, parameter estimation, discrete mollification.

RESUMEN. Este articulo se dedica a la identificacion numérica confiable y eficiente de los parametros que definen la funcion de flujo y el
coeficiente de difusion en una ecuacion diferencial parcial de tipo parabdlico fuertemente degenerada que es la base de un modelo matematico
para procesos de sedimentacion-consolidacion. Para esta ecuacion, el problema de valor inicial con valores en la frontera (IBVP) en el que el
flujo es nulo, describe el asentamiento de una suspension en una columna. Los parametros para un material dado se estiman con base en repetidas
soluciones numéricas del problema directo (IBVP) con una variacion sistematica de los pardmetros del modelo, con el objeto de minimizar
sucesivamente un funcional de costo que mide la distancia entre una observacion dependiente de tiempo y la correspondiente solucion numérica.
En este articulo se destacan dos aspectos. El primer aspecto es que en el método propuesto para la solucion numérica eficiente y acertada del
problema directo, se implementa un esquema explicito monodtono bien conocido basado en diferencias finitas que usan tres puntos mejorado por
molificacion discreta. El esquema molificado utiliza una malla de mas puntos pero converge con una condicion CFL menos restrictiva, lo cual
permite usar pasos temporales mas grandes. El segundo aspecto es el exhaustivo anélisis de sensibilidad y estabilidad de las funciones definidas
por parametros en el modelo y que juegan los papeles de aproximacion inicial y dato observado, respectivamente.

Palabras claves: Sedimentacion de suspensiones, analisis de sensibilidad, ecuacion parabolica degenerada, estimacion de parametros,
molificacion discreta.

1. INTRODUCTION
U + f(u)x = A(u)xx:

(x,t) € Q7 = (0,L) X (0,T],L >0,T >0 (la)

1.1. Scope

u(x,0) = uy(x), x € [0,L], (1b)
Our goal is the numerical identification of unknown fW) — AWy |y=0 = Po(t), t € (0,T], (1c)
parameters in the flux and diffusion terms for the following fw) — A, |,=, = Y. (t), t€(0,T], (1d)

initial-boundary value problem (IBVP) for a strongly
degenerate parabolic equation in one space dimension:
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where A is an integrated diffusion coefficient, i.e.,

u

A(u) = fo a(s)ds, a(u) = 0. 2)

The diffusion function « is assumed to be integrable
and is allowed to vanish on u-intervals of positive
length, on which (1a) turns into a first-order hyperbolic
conservation law, so that (1a) is a strongly degenerate
parabolic. On the other hand, we assume that fis
piecewise smooth and Lipschitz continuous. Under
suitable choices of u, f, a, 1y and 1; the IBVP (1)
may describe a variety of real-world applications like
traffic flow [9]. We focus our attention on Equation (1)
as a model of the sedimentation-consolidation process
of a solid-liquid suspension [8].

It is well known that solutions of (1a) are, in general,
discontinuous even if Uy is smooth, and need to
be defined as weak solutions along with an entropy
condition to select the physically relevant solution,
the entropy solution. For the definition, existence and
uniqueness of entropy solutions of (1) we refer to [7,
8, 10].

In the present work we are interested in a stability and
sensitivity analysis of the parametric model functions.
In order to perform the tests, we first proceed with a
numerical estimation procedure based on repeated
numerical solutions of the direct problem (1) under
successive variation of parameters appearing in the
coefficient functions f and a. In this phase the main
components are the efficient and stable solver of the
direct problem and the optimization procedure based
on the Nelder- Mead Simplex Method. Our goal is the
stability and sensitivity analysis of the resulting inverse
problem. Theoretical aspects related to identifiability
are not our concern in this paper (but cf., e.g., [11]).
By sensitivity analysis we mean an intensive set of
tests for the numerical identification of parameters
with or without noisy observation data. Our approach
follows the methodology of [4] but we acknowledge
the existence of other ways to perform a sensitivity
analysis, for instance [19].

1.2. Related work and outline of the paper

The discrete mollification method is a convolution-
based filtering procedure suitable for the regularization
of ill-posed problems and for the stabilization of

explicit schemes for the solution of PDEs. For the
numerical identification of diffusion coefficients by
discrete mollification, see [16] and its references.

Inverse problems for strongly degenerate parabolic
equations are of particular interest in the context of
the sedimentation-consolidation model. In fact, in
applications such as wastewater treatment and mineral
processing, the reliable extraction of material-specific
parameters appearing in the model functions f'and a
from laboratory experiments allows the operation and
control of continuous clarifier-thickeners handling
the same material to be simulated [10, 21]. For the
special case 4 = 0, i.e., when effects of sediment
compressibility are absent or negligible, (1a) reduces
to a first-order nonlinear conservation law, portions of
the function fcan be identified by comparing observed
space-time trajectories of concentration discontinuities,
with trajectories appearing in closed-form solutions
for piecewise constant initial concentrations [6,
14]. In the presence of sediment compressibility,
closed-form solutions are not available and one has to
resort to numerical techniques to solve the parameter
identification problem [5, 11].

The paper is organized as follows. Section 2 presents
the sedimentation-consolidation model along with
details on the schemes for the solution of the
direct problem, including a brief description of
the mollification method. Section 3 deals with the
parameter identification problem, the proposed
algorithm, the sensitivity analysis and the effect of
noisy observation data. This section ends with some
conclusions.

2. THEAPPLICATION OFTHE MATHEMATICAL
MODEL

2.1. Sedimentation model

According to [8, 10] and the references cited in these
works, (1) can be understood as a model for the settling
of a flocculated suspension of small solid particles
dispersed in a viscous fluid, where u = u(x,t) isthe
local solid concentration as a function of height x and
time ¢. For batch settling in a closed column of height L
wesetPo = 0and Y, = 0 ;the function Yo denotes
the initial solid concentration. The material specific
function f describes the effect of hindered settling.
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We employ here the following typical parametric
expression:

c
) 0 <u<=<upgy,

u
f@)=1%”@‘umx

0 otherwise,

3)

where v, <0 is the settling velocity of a single
particle in an unbounded fluid, C>1 is a dimensionless
exponent that quantifies how rapidly the settling
velocity decreases (as an absolute value) with
increasing solids concentration, and 0 < Upay < 1 is
a (nominal) maximal solids concentration. The function
A is given by (2), where we define

f(Woe (W)
— e 4
" (ps—pRgw’ “)

a(u) =

where Ps and Pr are the solid and fluid densities,
respectively, g is the acceleration of gravity and

a,; (w) = " is the derivative of the material specific
solid stress function a,.

Oe

Among several proposed semi-empirical approaches
for g, we chose the power law type function

e (u)
for0<u<u,

0
B {00 [(u/uc)ﬁ - 1] U < U,
with material-dependent parameters g, > 0 and
p > 1. The values of B, g, and u. characterize the
compressibility of the sediment formed by a given
material.

Values of the primitive A(u) usually have to be
determined by numerical quadrature. However, if f
and «a are given by (3)—(4) and S is an integer, then
A(u) canbe evaluated in closed formby A(u) = 0
for 0 < u < u, (equation (la) is strongly
degenerate)and A(u) = A(u) — A(u.) foru> uc,
where the function 4 is defined by

Voo O
A(u) = 3 0
A, GUe Upax
B+1-1 _
X Z (H;( 1 41 )(umax _u)C+ku,[)’ k-

2.2. Discrete mollification

The discrete mollification method [17, 18] consists in
replacing a set of data Y = {y] } e by its mollified

version /yY, where Jy is the discrete mollification
operator defined by

[/nJ’]j =N, 0, j €L

The support parameter n € N indicates the width of
the mollification stencil, and the weights w; satisfy
w; = w_;and 0 < w; < w;_q fori =1,...,7
along with  w_, +-+- +wy,_1 + w, = 1 . The
weights w; are obtained by numerical integration of
a suitable truncated Gaussian kernel. Details can be

found in [1, 2, 3, 16, 20].

2.3. Discretization of the direct problem

The domain Q is discretized by a standard Cartesian

grid by setting x:=jAx,j=0,..,N , where
NAx =L and t,:=nAt,n=0,..,M, where
MAt =T

We denote by u* an approximate value of the cell

average of u = u(x, 1) over the cell [xj,%j+1] at time
t =i, and correspondingly set

0 1 Xj+1 ]
U =EL ug(x)dx, j=0,..,. N —1.
We solve (1) numerically using two convergent finite

difference methods. The first one [8, 13] has the following
form, where A:= At/Ax and p:= At/AxZ:

Lowt)
u ). (5)

1
u]i’1+ — u —AA_'_FI ()(

+u (A (ur,) — 24(ul) + A(
Here FEO stands for the well-known Engquist-Osher
numerical flux [12], and A, denotes the standard
forward difference operator. Scheme (5) is monotone
and convergent under the CFL condition

Alf Moo + 2pullalles < (6)

The second finite difference method is the mollified
scheme [2], which is also monotone and convergent
and takes the form

u.n+1 =

: W' = AL FEO (g, uf)

7
v2uc, (DA )y - aCw)), 7
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with
C, = [Zr.'z_n jzw_j]_l.

This is an explicit method and has the convenient CFL
condition

Aflleo + 2peyllalle < 1, (8)

where &, <1. (For the particular mollification
weights considered herein, we obtain

&3 = 0.7130,&5 = 0.3969 and eg = 0.1960 .)
Clearly, condition (8) is more favorable than (6) since
it shows that for a given value of Ax, mollified schemes
may proceed by larger time steps. See [2] for more
details on this scheme.

3. SENSITIVITY AND STABILITY ANALYSIS
3.1. Parameter identification problem

The inverse problem can be formulated as follows:
given observation data u®?% (x) at the final time 7 >
0 and functions ug, Yo and P, find the flux f'and the
diffusion function a such that the entropy solution u(x,
T) of problem (1) is as close as possible to u°® (x) in
some suitable norm. The inverse problem is solved by
minimizing the cost function

1 L
](u(.,T)) =Ef0 |u(x, T)

— uobs (x)|2dx.
Since the functions f and ¢ depend on a vector of
parameters, the inverse problem corresponds to the
following parameter identification problem:

)

Minimize J](p) w.r.t.parameter vector p. (PI)

The functions f and « are associated to the current
parameter vector p.

We define the piecewise constant function ul
by uf(xt) =y for XxE€ [x;, X 41)
and t € [t,, ty4q) for j =10,..., =1 and
n=0,.., M — 1 and replace u®® by a
piecewise constant function y°Ps4 formed by cell
averages as follows:

uobs A (x) — ujobs
1 %+

1
=— u°bs (x) dx  for xelx; x;.1),
a), €9 [%.%+1)

where j =0,..., ¥ —1. The parameter dependent cost
function is

ot 2

X

Figure 1. Reference solution

L
IA (p) %J(‘) |uA(x, T) _ uobs ,A(x)lz dx

N-1
- A_"Z|um_u.obs|2 (10)
J J '
2 L4

This yields a discrete version of (PI) given by

minimize J*(p) w.r.t. p
u®, numerical solution of (1) (PI%)

f and a associated to current p.

There are many options for the numerical
implementation of the optimization procedure. We
selected a globalized bounded Nelder-Mead Method
with restarts (MATLAB function fininsearch, see [15]
for details), which is a major improvement over the
basic simplex method. The strategy is described by the
following algorithm. Suppose p; = (pjl, s p]K ) , that
is, K different parameters are sought.

Step 1 Input py, €
Step2 for j=1toM

P; = fminsearch (]A,p]-_l).

-
If max [-2—J71| < ¢ then break, end
1<k<K Pi_1
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Step 3 End.
3.2. Numerical examples

The reference solution is generated by the corresponding
numerical scheme (5) or (7) on a very fine grid. For
examples 1, 2 and 3 we consider batch settling in a
column of height ], = (.16 m and parameter values

Upax = 0.5,9 = 9.81m/s?,p, — p; =
1660 kg/m*,v,, =—2.7 X 107" m/s =215,
B =5,u. =0.07 and gy = 1.2Pa.

The objective is to obtain an accurate identification
of the parameters Uc 0p and C in eight different
instances described in Table 1. Our experiments include
clean and noisy observation data. Data at the instant
T = 800s will play the role of u°™ . Figures 1
and 2 (a) show the reference solution over the whole

computational domain and the profileat T = 800's,
respectively. The restarting parameter and the tolerance
parameter for the optimization are M = 10and

€ = 107*, respectively.

Example 1: Sensitivity to mollification parameters. Clean
observation data (no noise added) and Ax = L/256.
The results are summarized in Table 2. Here, j denotes
the number of calls to the fminsearch algorithm,
Pj is the vector of parameter values found, E is the
required number of computed solutions of the direct
problem, ey is the maximum relative error in the
result for each parameter (usually due to oy), and CPU
denotes the total CPU time of each run.

Example 2: Sensitivity to initial guess. We
randomly generate 100 initial guesses and carry
out the identification task. Each initial guess
po= o, O is generated in the form

ul = (1 +0.38)u,, 0 = (1 + 0.3&,)0,,
Cc®=(1+0.35)C,

where & = (&,&,&)T € R® is a uniformly
distributed random vectorial variable whose components
are between —1 and 1. The results are indicated in Table 3.
Here, the average €., of €, and its standard deviation o
are included. Additionally, column “# restarts” stands
for the number of calls of fminsearch and Ej for
the number of solutions of the direct problem.

(a)
Final Profile
0.18 T
014+
012
0.1rF
» 0.081
0.06
0.04r- B
Q.02+ i
ok i
0 0.02 0.04 ?166 0.08 0.1 0.12
(b)
Noisy Final Profile
0.186 T T T
Q.14
a.12r

o] 0.02 0.4 O.’OG 0.08 0.1 012

Figure 2. Profiles u°® for Examples 1 and 2 (clean data)
and Example 3 (noisy data € = 0.05 ) respectively

Example 3: Effect of noisy observation data. We
randomly generate 100 final profiles and associate
them to the previously generated initial guesses. The
corrupted profile is generated as follows:

— b
= (1+e9;)u™ (),
=0, —1,
where ¢ = 0.01,0.03 and 0.05, and ¢ is a uniformly

distributed random variable assuming values between
—1 and 1. The results are in Table 4.
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Figure 3. Two parameter cost functionals for parameter sets (a) (C,uc) | (b) (€, 00) and (c) (Ues 00).

Table 1. Example 1: initial guesses used for identification experiments.

initial guess parameter values initial guess parameter values
A (0.7uc, 0.7, 0.7C) E (1.3uc, 0.709, 0.7C)
B (0.7uc, 0.79, 1.3C) F (1.3uc, 0.79, 1.3C)
C (0.7uc, 1.39, 0.7C) G (1.3uc, 1.39,0.7C)
D (0.7ug, 1.300, 1.3C) H (1.3uc, 1.309, 1.3C)

Table 2. Example 1: Results for the basic scheme (5) and the mollified scheme (7) with n =3, 5 and 8.

IG  j D, E; e,  CPU[s]
Basic scheme (5) A2 (0.0697, 1.1219, 21.4706) 290 0.0651  79.863
B 4  (0.069, 1.1111,21.4700) 517 0.0741 90310
C 5 (0.0697, 1.1324,21.4700) 616 0.0564  163.74
D 3 (0.069, 1.1252, 21.4699) 669 0.0623  127.96
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Continuation Table 2.

IG  j D, E; e,  CPU s
E 3 (0.069, 1.1179, 21.4700) 367 0.0684  59.662
F 6 (0.0696, 1.1117, 21.4700) 674 0.0736 108.77
G 3 (0.069, 1.1114,21.4700) 421 0.0738  71.391
H 2 (0.069, 1.1180, 21.4700) 391 0.0684  64.747
Mollified scheme (7) A 2 (0.0695, 1.1104,21.5067) 356 0.0746  89.43
with n =3 B 4  (0.0695, 1.1105 21.5067) 490 0.0746  89.77
C 2 (0.0695 1.1104 21.5067) 296 0.0747 103.1
D 5  (0.0695,1.1103,21.5067) 797 0.0747 155.8
E 3 (0.069, 1.1259,21.5075) 332 0.0617 5819
F 3 (0.0696, 1.1294, 21.5066) 358 0.0588 61.25
G 3 (0.0695 1.1104,21.5068) 402 0.0747  73.08
H 5 (0.0695 1.1104,21.5065) 676 0.0747 119.7
Mollified scheme (7) A 5 (0.0500, 0.1486, 21.5456) 685 0.8762 152.8
with n=35 B 5 (0.0697, 1.1651,21.5465) 664 0.0291 105.8
C 3 (0.0695 1.1124,21.5466) 486 0.0730 103.6
D 3 (0.069, 1.1301,21.5465) 639 0.0582 107.1
E 3 (0.069, 1.1301,21.5466) 445 0.0583 69.26
F 6 (0.0695, 1.0945, 21.5466) 697 0.0879 107.7
G 3 (0.0696,1.1299,21.5466) 485 0.0584 7823
H 4 (0.0696, 1.1472, 21.5465) 807 0.0440 128.4
Mollified scheme (7) A 2 (0.0696, 1.1174, 21.5777) 293 0.0688 49.008
with =8 B 3 (0.0697, 1.1530,21.5776) 461 0.0391  64.792
C 4 (0.0697 1.1531,21.5776) 649 0.0391  107.35
D 2 (0.0697 1.1530,21.5777) 418 0.0391  60.759
E 3 (0.0697 1.1531,21.5776) 535 0.0391  74.026
F 3 (0.0696, 1.1174, 21.5777) 543 0.0688 73.858
G 4 (0.0697, 1.1531,21.5776) 576 0.0391  80.604
H 2 (0.0697 1.1531,21.5776) 640 0.0391  89.225

Table 3. Example 2: Results for the basic scheme (5) and the mollified scheme (7) for different values of Ax and 7.

Ax/L  Scheme # restarts E ot g CPU[s]
1128 5) 387 53693 0.1400 =0.0329 49.17
M, n=3 340 49274 0.1295 +0.0338 53.92
N, n=>5 333 50659 0.0909 £0.0315 50.91
7, n=8 276 41263 0.0534 +3.72¢-05 39.36
1256 ) 388 48842 0.0696 =0.0096 136.03
N, n=3 398 53513 0.0739 £0.0081 160.74
M, n=>5 355 48280 0.0587 +=0.0174 125.46
(7, n=8 326 48392 0.0431 40.0190 114.35
1/512 5) 334 38879 0.0312 £0.0038 440.91
M, n=3 352 40416 0.0332 =0.0049 439.55
N, n=>5 346 41128 0.0278 =0.0057 352.47

(7, n=28 374 47250 0.0195 =0.0072 335.24
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Table 4. Example 3, Ax = L/256: results for the basic scheme (5) and the mollified scheme (7) for different values of ¢ and 5.

£ Scheme # restarts EJ € 4o CPU[s]
0.01 ) 385 50310 0.0661 £=0.0264 140.63
(7, n=3 367 50489 0.0674 £=0.0238 152.60

7N, n=>5 368 52214 0.0533 £=0.0256 135.85

(7), n=2=8 331 47153 0.0401 £=0.0260 110.56

0.03 ®)) 376 49025 0.0801 £=0.0554 137.65
7, n=3 364 48447 0.0807 =£0.0533 146.72

7, n=>5 374 50622 0.0760 #=0.0528 132.10

(7, n=2=8 353 49136 0.0710 #=0.0524 115.31

0.05 ) 378 49716 0.1163 =0.0913 140.31
(7, n=3 376 51246 0.1149 =0.0897 156.50

(7, n=>5 359 50344 0.1129 +=0.0902 131.10

(7), n=28 332 49139 0.1084 £=0.0915 115.54

3.3. Conclusions

According to Table 2, most of the identifications are
successful and n = 8 seems to be the best choice.
For the initial guess A4 the method for 7 = 5 does
not converge, but it does converge when started
with initial guesses close to A. The results in Table
3, corresponding to Example 2, illustrate how by
improving the spatial resolution (i.e., reducing Ax) the
quality of the identification is increased.

Table 4 indicates that the level of noise influences the
quality of the recovery but stability is never lost.

Summarizing, this parameter identification procedure
yields good results for both the basic scheme and its
mollified versions but the mollified approach returned
advantages not only in CPU time (in s), but also in the
error level, the sensitivity to the initial guess and the
effect of noise in the data. This well-posed behavior
was already suggested by the convex-shape of the cost
functional (Figure 3.)
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