
Dyna, year 81, no. 183, pp. 231-241.  Medellin, February, 2014.  ISSN 0012-7353

INVITED ARTICLE

A FIRST COURSE IN SOFTWARE ENGINEERING METHODS AND 
THEORY

UN CURSO INICIAL SOBRE TEORÍA Y MÉTODOS DE LA 
INGENIERÍA DE SOFTWARE

CARLOS ZAPATA 
Ph.D.,  Profesor Asociado, Facultad de Minas, Universidad Nacional de Colombia, sede Medellín, cmzapata@unal.edu.co

IVAR JACOBSON
Ph.D., Chairman of Ivar Jacobson International, ivar@ivarjacobson.com

Received for review December 10th, 2013, accepted February 04th, 2014, final version February, 10 th, 2014

ABSTRACT: Even though the software engineering curriculum has been designed many times, some problems still remain: the gap between 
academy and industry, the failure to continuously update the courses, the difficulties for combining theory and practice, and the lack of a sound, 
widely accepted theoretical basis. The SEMAT (Software Engineering Methods and Theory) initiative has been proposed for addressing some 
of the aforementioned problems. Based on the main ideas related to SEMAT, in this paper we propose a first course that introduces students 
to the main issues about SEMAT. This course is planned to be included in the System and Informatics Engineering Program belonging to the 
Universidad Nacional de Colombia, Medellin Branch. Also, we discuss the way in which this course addresses the previously diagnosed problems.

Key words: SEMAT, curriculum design, software industry, software academy, software community.

RESUMEN: Aunque desde hace años se habla del diseño curricular de la ingeniería de software, algunos problemas aún subsisten: 
la brecha existente entre la academia y la industria del software, los problemas para mantener actualizados los cursos, las dificultades 
para combinar la teoría con la práctica y la carencia de una sonora y ampliamente aceptada base teórica para la ingeniería de 
software. La iniciativa SEMAT (nombrada así por el acrónimo en inglés de Teoría y Métodos de la Ingeniería de Software) se 
propuso para solucionar algunos de los problemas en mención. Tomando como base las ideas relacionadas con SEMAT, en este 
artículo se propone un primer curso que suministra a los estudiantes una introducción a los principales tópicos de SEMAT. Se 
planea incluir este curso en el programa de Ingeniería de Sistemas e Informática de la Universidad Nacional de Colombia, Sede 
Medellín. También, se discute la manera en que este curso contribuye a solucionar los problemas que se diagnosticaron previamente.

Palabras clave: SEMAT, diseño curricular, industria del software, academia del software, comunidad del software.

1. INTRODUCTION

Since the early work of Farley [1], several authors 
have been working on curriculum design of software 
engineering courses [2–5]. Some authors are focused 
on complete curricula [1, 2] while others are focused 
on courses for meeting the industry needs [3–5]. 
However, all of them recognize the same remaining 
problems in the software engineering curriculum: 
(i) the growing gap among the software engineering 
courses created by academy and industry needs; (ii) 
the failure experienced by professors in order to keep 
up-to-date the contents of the courses, since there 
are fads emerging day-by-day related to software 
engineering methods and practices; (iii) the actual 
difficulties for offering practices matching the theories 

related to this field of knowledge; and (iv) the lack of 
a theoretical basis for the software engineering, even 
though there is a strong work on formal methods and 
conceptualization.

Jacobson et al. [6] proposed the SEMAT (Software 
Engineering Methods and Theory) initiative as a way 
to deal with several problems related to software 
engineering as a discipline by re-founding it. So, the 
SEMAT community has focused on two major goals: 
(i) finding a kernel of widely-agreed elements, and, 
(ii) defining a solid theoretical basis of the software 
engineering.

The main ideas of the SEMAT community lead us to 
propose a first course in software engineering methods 



Zapata & Jacobson / Dyna, year 81, no. 183, pp. 231-241, February, 2014.232

and theory to be included in the System and Informatics 
Engineering program belonging to the Universidad 
Nacional de Colombia, Medellín Branch. The 
course syllabus comprises several activities, ranging 
from lectures—some of them held by international 
guests—to active strategies such as forums, games, and 
practical projects. Also, some discussion is promoted 
in order to show the way in which we can address the 
aforementioned problems related to software industry 
and software academy, since they are closely linked to 
the progress of this discipline.

The reminder of this paper is organized as follows: in 
Section 2 we present some background related to the 
software engineering curriculum. The main description 
of the SEMAT initiative is presented in Section 3. 
Then, in Section 4 we propose a first course in software 
engineering methods and theory and we promote some 
discussion about the way in which some problems 
are addressed by this course. Finally, we present 
conclusions and future work.

2.  SOFTWARE ENGINEERING CURRICULUM 
BACKGROUND

Farley [1] has probably the first attempt to define a 
software engineering undergraduate program. Such 
a program was designed for providing some core 
elements of the software engineering, but—as the author 
specifically recognized—these elements did not provide 
the adequate training for a software engineer. Mead [2] 
gives some insight about the further development of the 
software engineering curriculum. She also points out 
the strong urge for correlating the software engineering 
curriculum to the industrial practice.

Ludewig and Reißing [3] discuss the importance 
of theoretical courses as a way to provide tools to 
the software engineer for addressing real problems. 
Amiri et al. [4] make a survey to several managers of 
the software industry to the extent of determining the 
appropriateness of the software engineering courses. 
Moreno et al. [5] make a similar study about the 
software engineering courses versus the needs of the 
industry.

Being related to either curriculum as a whole or isolated 
software engineering courses, the previously reviewed 
work exhibits a consensus about some difficulties 

experienced by the software engineering education 
nowadays. Further information about some common 
problems is provided as follows:

Industry vs. Academy. The software Industry is 
demanding a different software engineer than the one 
promoted by the academic curriculum. In fact, some 
of the most demanded skills are usually far beyond the 
software engineering curricula. Some of the software 
industry managers claim the strong need to re-train 
the software engineering newcomers when they arrive 
from universities.

Courses vs. New methods. New software engineering 
methods are emerging day-by-day, creating new trends 
to be followed by practitioners. This fact poses a 
big challenge upon the software engineering course 
designers: how to keep up-to-date the course contents 
when several trends are coming from the academic 
world and they are being adopted by the software 
industry? How software engineering courses can evolve 
to follow the new trends in methods and practices?

Theory vs. Practice. Lectures are common ways of 
teaching software engineering and practice is usually 
limited to “toy” projects in some software engineering 
courses. Software industry needs practical, skillful 
engineers. How can we train practical professionals 
when the education is mainly theoretical?

Software Engineering Theoretical Basis. Methods 
and practices are emerging at a fast rate, since many 
research groups are promoting new ideas for dealing 
with the software engineering problems. However, we 
can argue against the novelty of such ideas, because 
many of them use previously known concepts. Even 
though some effort is devoted to define bodies of 
knowledge and glossaries about software engineering, 
we still lack a sound, widely-agreed theoretical basis 
for software engineering.

The SEMAT initiative is intended to deal with the 
aforementioned problems, as described in the following 
Section.

3.  THE SEMAT INITIATIVE

Jacobson et al. [6] propose the SEMAT initiative 
for refunding the software engineering by defining 



Zapata & Jacobson / Dyna, year 81, no. 183, pp. 231-241, February, 2014. 233

a theoretical basis—a small set of widely-agreed 
elements. Such elements are useful for defining past, 
present, and future methods, so the practices included 
on them can be reused. As a result, some practices 
seem to belong to obsolete methods and they can be 
incorporated into modern ones, as software engineering 

evolves. Theoretical basis is gathered into the so-called 
SEMAT kernel—the Essence of software engineering. 
The kernel is represented into a language with a limited 
number of elements (called alphas, see Fig. 1). The 
alphas can be used for assessing the health and progress 
of a software endeavor

Figure 1. Alphas of the SEMAT kernel [6].

Health and progress can be estimated by using the 
alpha states. Some cards can be used in the SEMAT 
kernel for (i) describing alphas and possible states (see 
an example in Fig. 2), and (ii) linking alpha states to 
checklists for the sake of assessing their compliance 
(see an example in Fig. 3). Some other elements 
complement the theoretical basis of the software 
engineering represented by the SEMAT kernel. Some 
of them are: areas of concern, activity spaces, activities, 
competencies, and work products.

In this paper we propose a structure based on the so-
called pre-conceptual schemas [7] for representing the 
SEMAT kernel elements and their relationships. In 

such schemas, nouns are represented by rectangles and 
verbs are represented by ovals. Thin arrows are used 
to connect nouns and verbs in such a way they express 
phrases, e. g. “method has practice” and “methodologist 
develops kernel.” Thick arrows are used to express 
cause-and-effect relationships, e. g. “methodologist 
uses kernel, then methodologist describes practice.” 
Finally, dotted boxes are used to express possible values 
of the nouns linked to them, e. g. “customer, solution, 
and endeavor are possible values of area of concern.”

Fig. 4 depicts the kernel structure. In this figure, 
elements shown in blue were added to the schema to 
the extent of making it more readable and logical.



Zapata & Jacobson / Dyna, year 81, no. 183, pp. 231-241, February, 2014.234

Figure 3. Examples of alpha states and checklists [6].

Figure 2. Examples of alphas and their states [6].



Zapata & Jacobson / Dyna, year 81, no. 183, pp. 231-241, February, 2014. 235

Figure 4. A pre-conceptual schema for representing the SEMAT kernel elements and their relationships. Source: the 
authors.

4.  A FIRST COURSE IN SEMAT

SEMAT kernel is intended to address some of the 
problems exposed in Section 2, but a course related to 
the kernel is needed for addressing the four problems. 
In this Section we propose the curricular design of such 
a course and we discuss the way in which the problems 
are addressed.

4.1. Curricular Design

General information about the course is the following:

Code: 3009583
Name: Software Engineering Methods and Theory
Program: Systems and Informatics Engineering
Department: Computer and Decision Sciences
Level: Undergraduate
Typology: Free choice
Weekly in-classroom activity: 4 hours
Weekly outside-classroom activity: 5 hours
Weeks per semester: 16
Total activity: 144 hours
Credits: 3



Zapata & Jacobson / Dyna, year 81, no. 183, pp. 231-241, February, 2014.236

General Objective: Defining and specifying the 
elements underlying any software engineering method 
and practice
Specific Objectives: (i) Establishing the cross-cutting 
elements to explaining software engineering methods 
and practices in terms of the SEMAT kernel; (ii) 
generating specific skills for representing any method 
and its practices in the SEMAT kernel; (iii) specifying 
any method and its practices in terms of the SEMAT 
kernel formal language; and (iv) recognizing and 
assessing tools used for creating representations in the 
SEMAT kernel
Methodology and Assessment: (i) Lectures; (ii) 
serialized practical project; (iii) forums; and (iv) 
experience-based games

The contents of the course are the following:

A. Initial information about software engineering 
general theories
A.1. Motivation
A.2. General Problems related to software engineering
A.3. Need for a software engineering theory

B. Basic elements of the software engineering kernel
B.1. Alphas and card-based representation
B.2. Activity spaces
B.3. Methods and practices
B.4. Competencies
B.5. Work products

C. Advanced elements of the software engineering 
kernel
C.1. Patterns
C.2. Resources
C.3. Detail levels
C.4. Competency levels
C.5. Separation of concerns
C.6. Tools for working with the kernel

D. Formal representation of the software engineering 
kernel
D.1. Introduction
D.2. Kernel meta-model
D.3. Kernel text-based specification

D.4. Object diagrams and executable pre-conceptual 
schemas

The course syllabus is included in Table 1. Several 
remarks are needed:

•  Each numbered class (1 to 32) is a 2-hour class and 
has the issue to be covered, the contents related to 
such issue and the assessment items.

•  Almost all the lectures should be held by the course 
professor, with the exception of class No. 16 and 31, 
which should be held by an international guest. In 
this case, we try to take advantage of the excellent 
relationships we have with the SEMAT Community 
and invite some international SEMAT researchers to 
hold a lecture via videoconference or keynote—in 
such a case the international guest is visiting our 
University.

•  The effort to develop the practical project is intended 
to be guided in the classroom, with the participation 
of all the students. Six classes are reserved for this 
purpose. The topic of the practical project is related to 
the representation of a method by using the SEMAT 
kernel.

•  The first forum is devoted to practicing the initial 
skills needed for developing the practical project. 
The second forum is devoted to activities developed 
by the students by using active learning: the design 
of a crossword puzzle with the main concepts of 
SEMAT and the design of an experience-based game 
by studying some of the SEMAT concepts.

•  Five pre-designed games will be played during the 
course: the software system alpha game (see Fig. 
5), the requirements alpha game (see Fig. 6), the 
SemCards game (see Fig. 7), the MetricC game (see 
Fig. 8), and the SEMAT board-crossing game (see 
Fig. 9). All of these games were previously designed 
and tested with several groups of heterogeneous 
people, mostly during Conferences, e. g. the 
Colombian Computing Conference [8], the Latin 
American Conference on Informatics [9], and the 
International Conference on Science and Technology 
for the Risk Management and the Climate Change 
Adaptation.



Zapata & Jacobson / Dyna, year 81, no. 183, pp. 231-241, February, 2014. 237

Table 1. SEMAT course syllabus. Source: the authors.

4.2. Discussion

The four problems presented in Section 2 can be 
addressed by the SEMAT course we propose in this 
paper. The reasons are the following:

Industry vs. Academy. While the SEMAT initiative 
is advancing in the world, several discussions between 
practitioners and academics have been promoted in 
order to standardize the terminology related to software 
engineering. The proposed course is a direct result 
of such discussions and, consequently, it is intended 
to close the gap between the software engineering 
curriculum and the industrial training needed by 
software engineers. Also, two international guests will 
hold lectures to keep students informed about what 
is happening in the software industry. Since we can 

promote such a kind of lectures, we are also working 
to close the aforementioned gap.

Courses vs. New methods. SEMAT kernel is not 
related to any particular method or practice. SEMAT 
kernel is a framework for describing any method or 
practice. So, there is no need to change the course 
contents with the emergence of new methods and 
practices.

Theory vs. Practice. Practical projects and games are 
strategies for promoting a close relationship between 
theory and practice. Particularly, some of the games 
selected for the course are based on real situations 
with the intention of encouraging decision making in 
simulated environments.



Zapata & Jacobson / Dyna, year 81, no. 183, pp. 231-241, February, 2014.238

Figure 5. Image from the software system alpha game. Source: the authors.

Figure 6. Image from the requirements alpha game. Source: the authors.



Zapata & Jacobson / Dyna, year 81, no. 183, pp. 231-241, February, 2014. 239

Figure 7. Image from the SemCards game. Source: the authors.

Figure 8. Image from the MetricC game. Source: the authors.



Zapata & Jacobson / Dyna, year 81, no. 183, pp. 231-241, February, 2014.240

Figure 9. Image from the SEMAT board-crossing game. Source: the authors.

Software Engineering Theoretical Basis. By proposing 
a first course on SEMAT, we are promoting the 
dissemination of the SEMAT theoretical basis among 
students. The difference of this effort versus the 
previous ones is closely linked to the way in which we 
will try to teach software engineering. In fact, you can 
discover many software engineering courses related 
to specific methods and practices, but this is the first 
attempt to teach the theoretical basis underlying any 
methods or practices.

5.  CONCLUSIONS AND FUTURE WORK

In this paper we proposed a first course in software 
engineering methods and theory based on the work 
we are conducting in the Universidad Nacional de 
Colombia, Medellin Branch, related to the SEMAT 
initiative. The course is highly supported by the 
SEMAT community—for instance in the shape of 
lectures held by international guests—as a joint effort 
to keep a close contact among the SEMAT Latin 
American Chapter and the other regional Chapters. 
Also, the course thrives on the work we are conducting 
in games and other teaching strategies, because we 
are incorporating five SEMAT games created in the 

Universidad Nacional de Colombia.

We also discussed the way to deal with some common 
problems of the software engineering teaching, 
mainly related to the gap between software industry 
and academy, the continuous emergence of new 
software engineering methods, the scarce practice of 
the engineering newcomers and the lack of a software 
engineering theoretical basis

We propose as future work a complete assessment 
of the course results in terms of satisfaction surveys 
to students and professionals linked to the software 
industry. Also, the creation of new games to be included 
in the course contents can contribute to improve the 
SEMAT course.

REFERENCES

[1] Fairley R. Educational Issues in Software Engineering, en 
1978 annual conference ACM/CSC-ER (1978, Washington 
D.C., USA). pp. 58–62.

[2] Mead, N. Software engineering education: How far we’ve 
come and how far we have to go The Journal of Systems and 
Software, 82, pp. 571–575, 2009.



Zapata & Jacobson / Dyna, year 81, no. 183, pp. 231-241, February, 2014. 241

[3] Ludewig, J. and Reißing, R. Teaching what they need 
instead of teaching what we like—the new software 
engineering curriculum at the University of Stuttgart, 
Information and Software Technology, 40, pp. 239–244, 1998.

[4] Amiri A., Banari M., and Yousefnezhad N. An 
Investigation of Undergraduate Software Engineering 
Curriculum: Iranian Universities Case Study, en International 
Conference on Computer Science & Education ICCSE (6th, 
2011, Singapore, Singapore). pp. 638–644.

[5] Moreno, A., Sanchez-Segura, M., Medina-Dominguez, 
F., and Carvajal, L. Balancing software engineering 
education and industrial needs, The Journal of Systems and 
Software, 85, pp. 1607–1620, 2012.

[6] Jacobson, I., Ng, P. McMahon, P., Spence, I., and Lidman, 

S. The essence of software engineering: appying the Semat 
kernel, 1st edition, New Jersey, Addison Wesley, 2013.

[7] Zapata, C. M., Gelbukh, A., and Arango, F. Pre-
conceptual Schema: A Conceptual-Graph-Like Knowledge 
Representation for Requirements Elicitation, Lecture Notes 
in Computer Science, 4293, pp. 17–27, 2006.

[8] Zapata C. M., Maturana G., and Castro L. Tutorial 
sobre la iniciativa SEMAT y el juego MetricC, en Congreso 
Colombiano de Computación (8th, 2013, Armenia, 
Colombia).

[9] Zapata C. M. and Montilva J. La esencia de la 
Ingeniería del Software: el núcleo SEMAT en la práctica, 
en Conferencia Latinoamericana en Informática (39ª, 2013, 
Naiguatá, Venezuela).


