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Abstract  

The dynamic stability of an elastic prismatic slender column with semirigid connections at both ends of identical stiffness and with sidesway 

between the two ends totally inhibited, subject to parametric axial loads including the combined effects of rotary inertia and external damping was 

presented in a companion paper. Closed-form expressions that predict the dynamic instability regions of slender columns were developed by 

making use of Floquet’s theory. The proposed equations are straightforward and simple to apply. The proposed solution is capable of capturing the 

phenomena of stability of columns under periodic axial loads using a single column element. The proposed method and corresponding equations 

can be used to investigate the effects of damping, rotary inertia and semirigid connections on the stability analysis of slender columns under 

periodically varying axial loads. Sensitivity studies are presented herein that show the effects of rotary inertia, damping and semirigid connections 

on the dynamic stability of columns under parametric axial loads. Analytical studies indicate that the dynamic behavior of columns under periodic 

loading is strongly affected by the flexural stiffness of the end connections and the external damping, but not so much by the rotary inertia. Three 

examples are presented in detail and the calculated results are compared with those reported by other researchers. 

 

Keywords: Buckling, Columns, Dynamic Analysis, Damping, Semi-Rigid Connections, Parametric Loading, Periodic Loading. Stability. 

 

Resumen  

La estabilidad dinámica de una columna elástica prismática esbelta con conexiones semirrígidas en ambos extremos de rigidez idéntica y con 

desplazamiento lateral entre los dos extremos totalmente inhibido sujetos a cargas axiales paramétricas incluyendo los efectos combinados de 

inercia rotacional y amortiguación externas fue presentada en una publicación adjunta. Expresiones cerradas que se pueden utilizar para predecir 

las regiones inestabilidad dinámica de columnas esbeltas se desarrollan haciendo uso de la teoría de Floquet. Las ecuaciones propuestas son 

sencillas y fáciles de aplicar. La solución propuesta es capaz de capturar el fenómeno de estabilidad en columnas sometidas a cargas axiales 

periódicas utilizando un solo elemento de columna. El método propuesto y las ecuaciones correspondientes se pueden utilizar para investigar los 

efectos del amortiguamiento, la inercia rotacional de la columna, y las conexiones semirrígidas en el análisis de estabilidad de columnas esbeltas 

sometidas a cargas axiales periódicas. Estudios de sensibilidad presentados en esta publicación muestran los efectos de la inercia rotacional, el 

amortiguamiento y las conexiones semi-rígidas en la estabilidad dinámica de columnas sometidas a cargas axiales paramétricas. Los estudios 

analíticos indican que el comportamiento dinámico de columnas bajo carga periódica está fuertemente afectado por la rigidez a la flexión de las 

conexiones de los dos apoyos y por el amortiguamiento externo, pero no tanto por la inercia rotacional. Tres ejemplos se presentan en detalle y los 

resultados calculados se comparan con los reportados por otros investigadores. 

 

Palabras claves: pandeo, columnas, análisis dinámico amortiguado, conexiones semirígidas, cargas paramétricas, cargas periódicas, estabilidad. 

 

1.  Introduction 

 

The main objective of this paper is to present examples 

and sensitivity studies to verify an analytical method and 

closed-form equations presented in a companion paper that 

determine the dynamic stability of an elastic 2D prismatic 

column with semirigid connections with sidesway between 

the two ends totally inhibited, subject to parametric axial load 

described by a Fourier series. The proposed model and 

corresponding equations which are straightforward and 

relatively simple to apply can be used to investigate the 

effects of damping, rotary inertia and semirigid connections 

on the stability of slender columns under periodically varying 

axial loads using a single column element. The closed-form 

equations make use of Floquet´s theory to predict the 

dynamic instability regions of slender columns. Sensitivity 

studies and three verification examples are included in this 

paper that shows the effects of rotary inertia, damping and 

semirigid connections on the dynamic stability of prismatic 

columns under parametric axial loads. 
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2.  Sensitivity study 

 

2.1. Dynamic Instability Regions for Damped Columns 

Subjected to Harmonically Varying Axial Loads 

 

In this section closed-form expressions are developed that 

determine the first two instability border lines for columns 

subjected to periodic loads given by )cos()( tSPtP 

. 

Knowing the values of E , I , A , r , m , c  and   the 

non-dimensional parameters, discussed in step (4) of the 

companion paper, can be calculated. In this particular case 

the normalized axial load is written as )cos()(  spp 

, where: 
22 / LEI
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... 4, 3, ,2n ). To determine the instability border lines, 

solutions with period T  and T2 must be considered. 

The closed-form expression for the region of instability 

corresponding to the solution with period T2  can be found 

by substituting the corresponding values of 0p ; 
*

na , and 
*

nb  

into Eq. (9) presented in  the companion paper as follows: 
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Now consider the solution with period T . The closed-

form expression for the instability region is obtained by 

substituting the corresponding values of 0p ; 
*

na , and 
*

nb  

into Eq. (10) presented in the companion paper as follows: 
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where: 
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Sensitivity studies for different values of the damping 

parameter, rotary inertia parameter, and fixity factor are 

carried out. Fig. 1 shows the effect of damping in the dynamic 

instability regions taking 0p  and 0  (or 1 ) in 

Eqs. (1) and (2). Numerical results indicate that by increasing 

the damping, the region of instability moves from left to right 

acquiring some curvature as reported by Svensson [2] and 

Timoshenko and Gere [3]. Fig. 4 shows the variation of the 

region of instability corresponding to Eq. (1) for different 

values of slenderness parameter. The effects of the stiffness 

of the end connections on the instability regions are shown in 

Fig. 5. 

Fig. 2 and 3 indicate that: 1) the effects of rotary inertia 

on the dynamic response of slender columns subject to 

periodic axial loads are negligible for reasonable values of 

slenderness; and 2) the dynamic instability of a slender 

column subject to a periodic loading is greatly affected by the 

stiffness of the end connections. 
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Figure 1. Effects of Damping on the Stability Regions for a Pinned-Pinned Column subjected to Sinusoidal Axial Load  
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Figure 2. Effect of Rotatory Inertia on the Stability Regions for Pinned-Pinned Columns subjected to Sinusoidal Axial Load R=0%
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Figure 3. Stability Regions for Columns with Semirigid Connections subjected to Sinusoidal Axial Load. R=0%

R=5%

R=10%0 ; 

R=0%

R=5%

R=10%

5.0 ; 

and R=0%

R=5%

R=10% 0.1  

 

3.  Comprehensive examples and verification 

 

Example 1: Column with Semi-rigid Connections subjected to 

Rectified Sine Axial Load 

Determine the stability regions for a damped column 

elastically connected at both ends, given that: 1) the fixity factor 

of the connections are: 0 , 25.0 , 5.0 , 

75.0 , and 1 ; 2) the damping parameter is %5
; and 3) the applied axial load is given by a rectified sine wave 

as shown in Fig. 4. 
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Figure 4. Example 1: Rectified sine Axial Load 

 

Solution: The first necessary step to carry out the dynamic 

analysis of a slender column with semirigid connections is to 

determine the parameter  , which depends only of the fixity 

factor 


. By solving numerically Eq. 7b the values obtained 

are: 1 , 1692.1 , 3844.1 , 6649.1 , and 

2 , for the respective values of the fixity factor. Now, to 

evaluate the instability regions the expansion in Fourier series 

for the given axial load must be known. The coefficients of the 

series are: 
/20 pp 

, 
   14//4 2  npan 

, 

0nb
. Closed expressions for the two first regions of 

instability are obtained by substituting the values of  , 


and 

the corresponding terms of the Fourier series into Eqs. (9) and 

(10) presented in the companion paper. 
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b) Solution with period T 
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Fig. 5 shows the two first regions of instability for the 

prismatic column described above. Results indicate that under 

damping, regions of instability move horizontally showing that 

a minimal value of the magnitude of the applied axial load is 

necessary to make the system unstable. According as the fixity 

factor of the connections increases, the minimal value of the 

applied axial load also moves horizontally. As the connection 

becomes stiffer, results also show that the principal region 

becomes narrower. 

 

EXAMPLE 2: Dynamic stability regions of a hinged-hinged 

column under periodic loading 

Determine the stability limits for a perfectly hinged-hinged 

steel column. Assume that: it has a 1mm×25mm rectangular 

cross section, L= 400 mm, and the applied axial load

)cos()( tStP  . Compare the results using the proposed 

method with those reported by Svensson [2]. Neglect the effects 

of damping. 

Solution: Note that the values of E, I, A, r, m are known, 

0  (hinged at both ends),  = 1 and  = 0 (damping 

effects are neglected).  

 

From step (4) the normalized function )(p  can be written 

as )cos()(  sp   with 
22 / LEI

S
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expression  
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Closed expressions for the first two regions of instability are 

obtained by substituting p= 0, 1 , and 0  into Eqs. (12) 

and (13). Therefore: 

 

a) Solution with period 2T 
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b) Solution with period T 
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
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2/1
1 2

2/12 s
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    (4b) 

The first two stability regions can be found simply by 

increasing the values of s from zero to 1 and plotting the four 

roots obtained from Eqs. (3) and (4). Fig. 6 shows these regions 

and the results are in accordance with those calculated and 

reported by Svensson [2]. His experimental results are also 

shown. 
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Figure 5. Example 1: Stability Regions for Columns with Semirigid Connections subjected to a Rectified Sine Axial Load.  
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Figure 6. Stability Regions for Pinned-Pinned Columns subjected to Sinusoidal Axial Load: 

R=0%

R=5%

R=10%

using Proposed Model, R=0%

R=5%

R=10%Theoretical, and 

Proposed Model

I. Svensson (2001)

(Experimental) I. Svensson (2001) Experimental after Svensson [2] 

 

Example 3: Pinned-Pinned column subjected to saw-tooth 

Axial Load 

A slender column subject to a saw-tooth periodic axial load 

described by Kumar and Mohammed [4] is considered. The 

periodic load is defined by case 4 listed in Table 1 of the 

companion paper. The corresponding Fourier coefficients are: 

2/0 pp  , 0* na , and npbn /*  . Assume that: L= 

7 m, E=2.1×1011 Pa and I=2.003×10-5m4. 

Notice that: 0 ,  = 1,  = 0 and  = 1 (since the 

effect of rotary inertia is neglected). Thus, the following 

equations for the two first regions of instability can be obtained: 

 

a) Solution with period T2  
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Figure 7. Vibration of Pinned-Pinned Columns subjected to Sawtooth Axial Load: 

R=0%
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b) Solution with period T  
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Fig. 7 shows the principal region of instability that 

corresponds to the solution with period 2T. It can be seen that 

the obtained results using the proposed method are 

practically identical to those reported by Kumar and 

Mohammed [4] obtained using the FEM 

 

4.  Summary and conclusions  

 

Closed-form expressions that can be used to predict the 

dynamic instability regions of slender Euler-Bernoulli 

columns were developed in a companion paper using 

Floquet´s theory. The proposed method is straightforward 

and the corresponding equations are relatively easy to use. 

The proposed closed-form equations enable the analyst to 

explicitly evaluate the effects of damping, semirigid 

connections, and rotary inertia on the nonlinear elastic 

response and lateral stability of slender prismatic columns 

with sidesway inhibited subject to static and dynamic axial 

loads. The proposed equations are not available in the 

technical literature. A sensitivity study and three examples 

are presented in detail that illustrate how to analyze the 

dynamic stability of slender prismatic columns with sidesway 

totally inhibited as the frequency and magnitude of the axial 

load varies. 

Analytical results and sensitivity studies indicate that the 

second-order dynamic response of a slender Euler-Bernoulli 

column subject to periodic axial loads is affected by the 

rotary inertia, external damping, and the stiffness of the end 

connections. It was found that for slender columns the effects 

of rotary inertia are not as strong as those produced by 

damping and the stiffness of the end connections. Analytical 

results indicate that: 1) instability border lines move 

horizontally and acquire some curvature as the damping 

increases; 2) as the stiffness of the end connections increases, 

the frequencie of the applied axial load defining the 

instability border lines also increase; and 3) the column axial 

deflection in the instability regions decreases significantly as 

the fixity factor   varies from zero (i.e. for perfectly pinned-

pinned columns) to one (i.e. for perfectly clamped-clamped 

columns). These results are in accordance with those reported 

by other researchers. 
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Notation 

 

The following symbols are used in both this paper and the 

companion paper: 

A = area of the column cross section; 

na , nb , 0P = coefficients of Fourier series utilized to 

describe the applied axial load; 

nc , nd = constants; 

c = Damping coefficient; 
*

na , 
*

nb , 0p = dimensionless coefficients of Fourier series 

utilized to describe the applied axial load; 

E = Young's modulus of the material; 

f(t) = Amplification function for lateral deflection of the 

column; 

I = Principal moment of inertia about its plane of bending of 

the column; 
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L = Column span; 

M = Bending moment along the column; 

m = Uniform mass per unit of length of the column 

(including any additional uniformly distributed mass); 

P(t) = Periodic axial load applied at the ends of the column; 

p(t) = Dimensionless axial load; 

r = Radius of gyration of the column cross section; 

R = Slenderness parameter; 

V = Shear force; 

y(x, t) = Column lateral deflection; 

= Parameter used to describe the shape function of the 

column; 

= Stiffness of the rotational restraint at both ends of the 

column; 

 = Angular frequency of the applied axial load; 

 = Angular frequency of the applied axial load normalized 

with respect to 0 ; 

= Fixity factor at the ends A’ and B’ of the column; 

 = Rotation of the cross section due to bending; 

 = Dimensionless time parameter; 

= Natural frequency of lateral vibration of a simply 

supported beam without axial load; 

1222  R = Dimensionless parameter; 

 = Dimensionless damping parameter. 
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