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Abstract 

This article proposes the use of a discrete version of the well known Particle Swarm Optimization, DPSO, a metaheuristic optimization 

algorithm for numerically solving a system of linear Diophantine equations. Likewise, the transformation of this type of problem (i.e. 

solving a system of equations) into an optimization one is also shown. The current algorithm is able to find all the integer roots in a given 

search domain, at least for the examples shown. Simple problems are used to show its efficacy. Moreover, aspects related to the 

processing time, as well as to the effect of increasing the population and the search space, are discussed. It was found that the strategy 

shown herein represents a good approach when dealing with systems that have more unknowns than equations, or when it becomes of 

considerable size, since a big search domain is required. 
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Resumen 

El presente artículo propone utilizar una versión discreta del bien conocido algoritmo metaheurístico de optimización por enjambre de 

partículas, DPSO, para solucionar numéricamente un sistema de ecuaciones Diofánticas lineales. Así mismo, se muestra la 

transformación de este tipo de problema (es decir, la solución de un sistema de ecuaciones), en uno de optimización. El presente 

algoritmo es capaz de encontrar todas las raíces enteras en un dominio de búsqueda dado, al menos para los ejemplos mostrados. Se 

utilizan algunos problemas sencillos para verificar su eficacia. Además, se muestran algunos aspectos relacionados con el tiempo de 

procesamiento, así como con el efecto de incrementar la población y el dominio de búsqueda. Se encontró que la estrategia mostrada aquí 

representa una propuesta adecuada para trabajar con sistemas que tienen más incógnitas que ecuaciones, o cuando se tiene un tamaño 

considerable, debido a que se requiere un gran dominio de búsqueda. 

 

Palabras clave: Ecuaciones Diofánticas lineales; enjambre de partículas; función objetivo; optimización. 

 

1.  Introduction 

 

With each passing day is easier to see the boom that the 

modeling and description of systems have generated in 

science and engineering, especially through Diophantine 

equations. Areas such as cryptography, integer factorization, 

number theory, algebraic geometry, control theory, data 

dependence on supercomputers, communications, and so on, 

are some examples [1]. Moreover, there is a strong 

mathematical foundation for this type of equations and their 

solutions (both, at a fundamental and at an applied level). 

These vary from the fanciest and most systematic 

approaches, up to the most recursive ones, but it is evident 

that there is no unified solution process, nor a single 

alternative for doing so. Furthermore, some equations may 

have a single solution, while others may have an infinite 

number, or, possibly, may not even have a solution in the 

integer or rational domains. This also applies for linear 

systems with this kind of equations (i.e. Diophantine ones) 

[2]. Matiyasevich, during the early 90s, proved that it was 

not possible to have an analytic algorithm that allows to 

foresee if a given Diophantine equation has, an integer 

solution , or not [3]. This problem may have been one of the 

engines that have boosted the search for numerical 

alternatives.  

In order to solve a system of linear Diophantine 

equations, a variable elimination method (which is quite 

similar to Gauss's) is a good approach for small systems, but 

it becomes demanding for bigger ones. The specialized 

literature report some methods like those based on the 



Amaya et al / DYNA 81 (185), pp. 139-144. June, 2014. 

 140 

theory of modules over main ideal domains, which are 

somewhat more systematic when looking for all the 

solutions of a given system, but, likewise, become too 

complex when  dealing with big systems of equations [4], 

[5]. Some authors have previously proposed the solution of 

a Diophantine equation through artificial intelligence 

algorithms [6], [7]. This article proposes to solve, in case 

the solution exists in the given search domain, a linear 

system of Diophantine equations. Initially, some basic and 

necessary related concepts are laid out, and then the 

viability of using the numeric strategy is shown through 

some examples. 

 

2.  Fundamentals 

 

A linear Diophantine equation, with 𝑛 unknowns, is 

defined by eq. (1), where 𝑎1, 𝑎2, … , 𝑎𝑛 are known rational, 

or integer, numbers, and 𝑥1, 𝑥2 , …, 𝑥𝑛 are unknowns, i.e., 

the numbers that should satisfy them, [8]; 𝑏 is a known 

integer. It is said that the integers 𝑡1, … , 𝑡𝑛 are a solution for 

eq. (1) if, and only if, 𝑎1𝑡1 + ⋯ + 𝑎𝑛𝑡𝑛 = 𝑏. 
 

𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 =  𝑏 (1)  

 

One of the basic results of number theory that can be 

applied to a linear Diophantine equation is the following 

theorem, which allows determining whether it has a solution 

or not (even if it is not able to calculate it): 

 
Theorem 1.  Let 𝑎1, … , 𝑎𝑛, 𝑏 be integers, where all 𝑎𝑖 not 

zeros, and let 𝑑 = 𝑔. 𝑐. 𝑑. {𝑎1, … , 𝑎𝑛} be the g.c.d. of the numbers 

𝑎1, … , 𝑎𝑛.  Therefore, 𝑑|𝑏 if, and only if, exist 𝑡1, … , 𝑡𝑛 integers, 

such that 𝑎1𝑡1 + ⋯ + 𝑎𝑛𝑡𝑛 = 𝑏. 

 

Thus, the problem of determining whether a linear 

Diophantine equation has a solution or not, is reduced to 

showing if the greatest common divisor of the 𝑎𝑖 

coefficients divide 𝑏 or not. Consider the case of two 

unknowns, for example, with an equation as the one shown 

by eq. (2), where 𝑎, 𝑏, 𝑐 are known integers, and whose 

solution only exists if the g.c.d. of 𝑎 and 𝑏 is a divisor of 𝑐.  

 
𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑦 =  𝑐 (2)  

 

According to the previously mentioned theorem, this 

equation has integer solutions, and it can be shown that if 

(𝑥0,  𝑦0) is a particular one, then all its solutions are given 

by eq. (3), where  𝛽 is an integer and 𝑑 is an integer which 

represents the g.c.d.  

 

𝑥 =  𝑥0  +  𝛽 ∗
𝑏

𝑑
  

𝑦 =  𝑦0 –  𝛽 ∗
𝑎

𝑑
 

(3)  

 

Therefore, if a linear Diophantine equation with two 

unknowns has a solution in the integers, then it has infinite 

solutions of this kind. Even so, the problem now transforms 

in finding a particular solution, which can be done using the 

following method. 

Let 𝑋 be a non-empty subset of ℝ𝑛 and consider eq. (4), 

where 𝑓: 𝑋 → ℝ is a function. 

 
𝑓(𝑥) = 0, 𝑥 ∈ 𝑋 (4)  

 

The problem of finding all the possible solutions for eq. 

(4) in the subset 𝑋 can be transformed into a global 

optimization problem over 𝑋 as follows: 

Let 𝑔: 𝑋 → ℝ be defined by: 

 
𝑔(𝑥) ≔ [𝑓(𝑥)]2 (5) 

 

Then, for every 𝑥 ∈ 𝑋 it holds that 𝑔(𝑥) ≥ 0.    

 
Theorem 2.  Suppose that eq. (4) has a solution in 𝑋, and let 

𝑎 ∈ 𝑋.  Therefore, 𝑎 is a solution for eq. (4) if, and only if, 𝑎 

minimizes the function 𝑔 defined in (5). 

An immediate consequence of the previous theorem is that if 

eq. (4) has a solution in 𝑋, then the global minimum of 𝑔 defined 

in (5) exists and is zero; even more, the following theorem exists: 

 

Theorem 3.  If the function 𝑔 defined in (5) has a global 

minimum in 𝑋 and this value is zero, then eq. (4) has a solution in 

𝑋. Moreover, all global minimizers of 𝑔 are solutions of eq. (4). 

 

Then, if for 𝑓(𝑥1, 𝑥2) = 𝑎1𝑥1 + 𝑎2𝑥2 − 𝑏 a region of the 

plane can be determined, where a global minimum of function 

𝑔, defined by (5), and its value is zero, then any global 

minimizer with integer coordinates, should it exist, serves as a 

particular solution of eq. (2).  Thus, the choice of the region is 

quite important to enclose, at least, a solution with integer 

coordinates. 

 

2.1.  System of linear equations 

 

Consider the following system of 𝑚 linear Diophantine 

equations, with unknowns 𝑥1, … , 𝑥𝑛. 

 

{
𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

⋮
𝑎𝑚1𝑥1 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

 (6)  

 

According to theorem 1, in order for the system (6) to have 

a solution, it is necessary, but not sufficient, that each of the 𝑚 

equations have a solution; this is equivalent to establishing if 

for each 𝑖 = 1, … , 𝑚 it holds that 𝑔. 𝑐. 𝑑. {𝑎𝑖1, … , 𝑎𝑖𝑛} divides 

𝑏𝑖. 

To see why this condition is not sufficient, consider the 

system of Diophantine equations defined by  

 

{
x + 3y = −1
x +   y =    4

 (7)  

 

Each equation from this system has a solution in the integer 

domain, but the system does not have a solution as a whole. 

Then, and in the same way that with systems of equations in 

real variables, the fact that one of the equations of a system has 

a solution, does not imply that the whole system also has.  

Even so, a method that generalizes finding all the roots 
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(in case they exist) of a system of equations over a given 

set, is shown below.  

Let 𝑋 be a non-empty subset of ℝ𝑛 and consider the 

system of equations (8), where for each 𝑖 = 1, … , 𝑚,  

𝑓𝑖: 𝑋 → ℝ is a function. 

 

{
𝑓𝑖(𝑥) = 0

⋮
𝑓𝑚(𝑥) = 0

      𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑋 (8)  

 

Let 𝑔: 𝑋 → ℝ be defined by: 

 

𝑔(𝑥) ≔ ∑[𝑓𝑖(𝑥)]2

𝑚

𝑖=1

 (9)  

 

Then for all 𝑥 ∈ 𝑋 it holds that 𝑔(𝑥) ≥ 0.   The following 

result is achieved: 

 
Theorem 4. Suppose that the system of equations (8) has a 

solution in 𝑋, and let 𝑎 ∈ 𝑋.  Then, 𝑎 is a solution of the system 

(8) if, and only if, 𝑎 minimizes the function 𝑔 defined in (9). 

The general condition of the theorem 4 about the feasibility of 

solving the system (8) is important, since it is possible that the 

function 𝑔 defined in (9) can be globally minimized but that the 

system (8) does not have a solution. 

An immediate consequence of theorem 4 is that if the system 

(8) has a solution in 𝑋, then the global minimum of 𝑔 defined in 

(9) exists and it is zero; moreover, the following result exists: 

 

Theorem 5.  If the function 𝑔 defined in (9) has a global 

minimum in 𝑋 and this value is zero, then the system (8) has a 

solution in 𝑋. Moreover, all global minimizers of 𝑔 are solutions 

of the system (8). 

Therefore, for the function 𝑔 defined in (9), if there does not 

exist a global minimum in 𝑋 or if it exists but is different from 

zero, then the system of equations (8) does not have a solution in 

𝑋. 

A basic result of the mathematical analysis of the algorithm 

establishes that if 𝑋 is a compact set (i.e. closed and bounded) and 

𝑔 is continuous over 𝑋 then the global minimum exists. Now, for 

𝑔 to be continuous in 𝑋 it is enough that each 𝑓𝑖 is continuous in 𝑋. 

For the case of systems of Diophantine equations, unlike the 

particular case of an equation with two unknowns, the fact that a 

solution exists does not imply that others do, and even less that an 

infinite number exists.  

For the search of possible solutions of a system of Diophantine 

equations, it must hold that the set 𝑋 have points with integer 

coordinates, i.e. that 𝑋 ∩ ℤ𝑛 ≠ ∅. 

 

2.2.  The algorithm 

 

The implemented algorithm is built up from various 

interconnected blocks and is similar to the structure of 

traditional PSO (for real numbers), [9], [10]. A first stage is 

given by the random assignation of a swarm of user defined 

integers. Any size can be used here. Likewise, the definition 

of these values is subject to previous knowledge of the 

objective function (fitness), as well as to the presence of 

restrictions. Moreover, an initial speed of zero can be 

defined for the particles. After that, the algorithm evaluates, 

in the given search space, the objective function. With it, 

local and global best values are established, and both, speed 

and position, of each particle, are reevaluated as shown 

below. This procedure is iterative and is repeated until the 

convergence criteria are met, or until all solutions in the 

search domain are found.  

An algorithm, considered as a variant of the traditional 

PSO, was used, [9]. In the same fashion as said PSO, its 

version for discrete solutions includes two vectors Xi and Vi, 

related to the position and speed of each particle, for every 

iteration. The first one is a vector of random numbers, initially, 

in a valid solution interval. The second one can also be a 

random vector, but it can be assumed as zero for the first 

iteration, in order to keep it simple. When the problems 

become multidimensional, the vectors transform into a 

position and a speed matrices, since there is a value for each 

unknown, [9], [11]. Discrete PSO differs from its traditional 

version in which the new speed and position depend on both, 

an equation and a decision rule, which chooses among the 

local and global best values for the next iteration. Assuming 

there is a vector 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, ⋯ , 𝑦1𝑛) that allows the 

transition between continuous and discrete PSO, and which 

takes the value of (-1, 1, or, 0) according to eq. (10), where 

𝑔𝑙𝑜 is the global optimum of the swarm, and 𝑙𝑜𝑐 the local 

one,  [9].  

 

𝑦𝑖 = {

       1         if
   −1          if
       0         if
−1 𝑜𝑟 1   if

  

 Xi = 𝑔𝑙𝑜 
Xi = 𝑙𝑜𝑐

       Xi ≠ 𝑔𝑙𝑜 ≠ 𝑙𝑜𝑐
       Xi = 𝑔𝑙𝑜 = 𝑙𝑜𝑐

 (10)  

 

Afterwards, speed is updated according to eq. (11), 

where w is known as the inertia factor, which is used to 

limit the speed of the particles; c1, c2 are constants which is 

usually are considered as equal to two; and r1, r2 are 

random numbers between zero and one [10]. 

 
Vi+1 = Vi ∗ w + c1 ∗ r1

∗ (−1 − yi) + c2 ∗ r2

∗ (1 − yi) 

(11)  

 

Then, the decision parameter, vector 𝐵𝑖 =
(𝐵𝑖1,  𝐵𝑖2, ⋯ , 𝐵𝑖𝑛), is calculated according to eq. (12).  

 
𝐵𝑖 = 𝑦𝑖 + Vi+1 (12)  

 

This parameter decides if the next position of the 

particle is chosen as the local or global best, or if it is 

chosen as a random number in the search domain. Thus, 

position update is done according to eq. (13), where 𝛼 is a 

constant that defines the intensification (new position equal 

to the local or global bests) and the diversification (new 

position equal to a random number) [9]. 

 

𝑋𝑖+1  =  {

 𝑔𝑙𝑜           if      𝐵𝑖  >   𝛼
 𝑙𝑜𝑐            if      𝐵𝑖 < − 𝛼

Int Rand    if  −𝛼 ≤ 𝐵𝑖 ≤ 𝛼
 (13)  
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3.  Results and Analysis 

 

This section shows the results achieved after solving 

some systems of linear Diophantine equations, as an 

example of the method. A computer with an AMD Turion 

X2 Dual Core RM-72 processor, at 2.1 GHz, and with 4 GB 

of RAM memory, was used. During all the examples, the 

following parameters were used: w = 0.75, c1 = 0.8, c2 = 

0.2, y, 𝛼 = 0.3. These values were chosen based on some 

preliminary tests and on the information available in the 

literature [1], [9].    

 

3.1.  System of equations A 

 

It is required to solve the system given by eq. (14), in the 

set of positive integers, which represents the amount of 

animals bought by a farmer and its cost. The full statement 

of the problem is as follows: "A farmer spent 10.000.000 

COP, on 100 animals: chickens (𝑥), pigs (𝑦) and cows (𝑧). 

if he bought the chickens at 5.000 COP, pigs at 100.000 

COP and cows at 500.000 COP, and if he acquired animals 

of all three classes, how many did he buy of each one?" 

[12].  

 
𝑥 +  𝑦 +  𝑧 =  100  

𝑥 +  20𝑦 +  100𝑧 =  2000 
(14)  

 

This system is equivalent, by Gaussian reduction, to the 

system {
𝑥 −

80

19
𝑧 = 0

𝑦 +
99

19
𝑧 = 100

   

Its general solution is given by: =
80

19
𝑡 , y= 100 −

99

19
𝑡 , 

𝑧 = 𝑡, which  for 𝑡 = 19 yields: 𝑥 = 80; 𝑦 = 1; 𝑧 = 19.  In 

order to solve this problem with the discrete PSO algorithm, 

the following objective function is created: 

 
𝐹 = (𝑥 + 𝑦 + 𝑧 − 100)2 + (𝑥 + 20𝑦 + 100𝑧 − 2000)2 = 0 

 

After 20 runs of the algorithm, with a swarm of 1000 

particles, the same answer was always achieved. Their 

duration, however, varied from 1.186 s, with 204 iterations, 

and up to 474.043 s, with 66832 iterations. It can then be 

concluded that, for this system, the algorithm delivers an 

answer with excellent precision and accuracy, even though 

the number of iterations and the duration were variable. It 

was found that their relationship is quite close to linearity 

(R2=0.9955). 

 

3.2.  System of equations B 

 

Afterwards, the system of seven linear Diophantine 

equations shown by (15) was solved, which represents a 

closed-loop control system, with unitary feedback, and 

where it is required to find the controller (𝐶(𝑆)), with six 

poles at 𝑆 = −1 for the plant G(s)  =
𝑆2+𝑆+1

𝑆3+3𝑆2+4𝑆+3
. 

 

𝑋1 − 1 = 0  (15

 

 
Figure 1. Convergence time as a function of iterations for system 

B. 

 
3𝑋1 + 𝑋2 − 6 = 0  

4𝑋1 + 3𝑋2 + 𝑋3 + 𝑋5 − 15 = 0 
3𝑋1 + 4𝑋2 + 3𝑋3 + 𝑋4 + 𝑋5 + 𝑋6 − 20 = 0 
3𝑋2 + 4𝑋3 + 3𝑋4 + 𝑋5 + 𝑋6 + 𝑋7 − 15 = 0 

3𝑋3 + 4𝑋4 + 𝑋6 + 𝑋7 − 6 = 0 
3𝑋4 + 𝑋7 − 1 = 0 

)  

 

The solution of the system can be found to be:     

 

𝑋1 = 1, 𝑋2 = 3, 𝑋3 = 2, 𝑋4 = 2, 𝑋5 = 0, 𝑋6 = −3, 𝑋7 =
−5   

 

From the first equation, 𝑋1 = 1; and from the second 

one, 𝑋2 = 3. The third equation yields 𝑋5 = 2 − 𝑋3, while 

from the fifth and sixth equations, 𝑋6 + 𝑋7 = 6 − 3𝑋3 −
4𝑋4 = 6 − 𝑋5 − 3𝑋4 − 4𝑋3, which means that 𝑋4 = 2.  

Thus, the last equation provides 𝑋7 = −5.  Substracting the 

fourth and fifth equations, 𝑋3 = 2 is obtained, which means 

that 𝑋5 = 0.  Finally, the sixth equation yields 𝑋6 = −3. In 

order to solve it through the algorithm, the following 

objective function was defined: 

 
𝐹 = (𝑋1 − 1)2 + (3𝑋1 + 𝑋2 − 6)2

+ (4𝑋1 + 3𝑋2 + 𝑋3 + 𝑋5 − 15)2

+ (3𝑋1 + 4𝑋2 + 3𝑋3 + 𝑋4 + 𝑋5 + 𝑋6 − 20)2

+ (3𝑋2 + 4𝑋3 + 3𝑋4 + 𝑋5 + 𝑋6 + 𝑋7 − 15)2

+ (3𝑋3 + 4𝑋4 + 𝑋6 + 𝑋7 − 6)2

+ (3𝑋4 + 𝑋7 − 1)2 = 0 

 

Once again, 1000 particles were used and the algorithm 

was run 20 times. As a result, the same answer is achieved, so 

it is important to remark the excellent quality of the results (in 

terms of accuracy and precision), as well as, the variability in 

time and iterations, when looking for all the solutions in the 

integer domain. When compared to the previous system, it can 

be seen that the convergence time increased, and an almost 

linear relation between iterations and time can be seen in Fig. 

1. 

 

3.3.  System of equations C 

 

For this case a system of 12 linear Diophantine 

equations was selected: 

 
5𝑥1 − 6𝑥2 + 8𝑥4 − 5𝑥5 + 6𝑥6 + 10𝑥7 − 9𝑥9 + 3𝑥10 + 11𝑥11

− 15𝑥12 + 17𝑥13 = −1 
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7𝑥1 + 𝑥2 − 4𝑥4 + 6𝑥7 − 9𝑥8 + 5𝑥9 − 12𝑥10 + 3𝑥11 − 7𝑥12

+ 8𝑥13 = 26 

5𝑥1 − 24𝑥2 + 32𝑥3 − 49𝑥4 + 3𝑥5 + 19𝑥6 − 21𝑥7 − 17𝑥8

+ 33𝑥9 + 9𝑥10 − 12𝑥11 − 𝑥13 = 475 

20𝑥1 + 27𝑥2 − 23𝑥4 − 30𝑥5 + 34𝑥6 + 𝑥7 − 7𝑥9 + 11𝑥10

− 28𝑥11 + 4𝑥12 − 36𝑥13 = 103 

5𝑥1 − 10𝑥3 + 2𝑥5 − 6𝑥7 − 13𝑥9 + 34𝑥11 − 9𝑥13 = −352 

𝑥2 + 22𝑥4 − 26𝑥6 − 17𝑥8 + 19𝑥10 − 4𝑥12 = −84 

30𝑥1 + 24𝑥2 − 55𝑥3 − 15𝑥4 − 25𝑥5 + 10𝑥6 + 40𝑥7 − 10𝑥8

+ 8𝑥9 − 3𝑥10 − 16𝑥11 + 4𝑥12 − 20𝑥13

= 283 

 
5𝑥1 − 13𝑥2 + 7𝑥4 + 𝑥6 − 19𝑥7 + 19𝑥8 − 2𝑥9 + 6𝑥10 + 5𝑥11

− 26𝑥12 = −468 

𝑥1 + 28𝑥2 + 33𝑥3 − 100𝑥5 + 5𝑥6 + 13𝑥7 − 𝑥8 − 𝑥9 + 11𝑥10

− 7𝑥11 − 3𝑥12 + 𝑥13 = −100 

7𝑥3 − 21𝑥4 + 35𝑥5 − 42𝑥6 + 7𝑥7 + 14𝑥8 − 35𝑥9 + 28𝑥10

− 7𝑥11 + 14𝑥12 + 56𝑥13 = 329 

5𝑥7 + 5𝑥8 + 10𝑥9 − 50𝑥10 + 20𝑥11 − 25𝑥12 + 30𝑥13 = −345 

2𝑥1 − 4𝑥2 + 4𝑥3 − 2𝑥4 − 6𝑥5 + 8𝑥6 + 10𝑥7 + 9𝑥8 − 12𝑥9

+ 20𝑥10 + 6𝑥11 − 30𝑥12 + 16𝑥13 = −78 

 

whose solution is: 

 

𝑥1 = 1; 𝑥2 = −3; 𝑥2 = 2; 𝑥4 = −1; 𝑥5 = 3;  𝑥6 = 7; 𝑥7 =
9; 𝑥8 = −4; 𝑥9 = 5; 𝑥10 = 5; 𝑥11 = −5; 𝑥12 = 10;  𝑥13 =
6 

 

The objective function is, once again, built using the 

squared sum of each equation. A search space between -10 

and 10 was defined, and 100 particles were used. On the 

same computer, an excellent quality answer (in terms of 

accuracy and precision) was found, but it required an 

average time of 129632 s (around 36 hours) and 1026435 

iterations. It is worth mentioning that it was not possible to 

find these roots by using commercial software nor through 

traditional means. Fig. 2 shows the exponential increment in 

time, when expanding the search domain. 

 

3.4.  System of equations D 

 

In order to further test the algorithm's effectiveness, 

some other Diophantine systems were used. However, in 

this case they do not have a solution in the set of integers, 

e.g. the system given by eq. (16), which has a range A = 

range (A ,C) = 2, and a g.c.d. (2,1,3) = g.c.d (8,−5,−3) = 1| { 

7,11}. 

 

 
Figure 2. Convergence time as a function of the search domain. 

2𝑥 + 𝑦 + 3𝑧 = 7 
8𝑥 − 5𝑦 + 3𝑧 = 11 

(16)  

 

The discrete PSO algorithm reports that after 20 or more 

runs, for different swarm sizes and parameters, it was not 

possible to find an answer. It was also observed that if a 

system, e.g. the one given by eq. (17), has infinite solutions, 

a search domain must be defined, striving to locate solutions 

over this given set.  

 
10𝑤 + 3𝑥 + 3𝑦 + 8𝑧 = 1 

6𝑤 − 7𝑥 − 5𝑧 = 2 
(17)  

4.  Conclusions 

 

This research proved that it is possible to numerically 

solve a system of linear Diophantine equations through an 

optimization algorithm. Also, it was observed that it is 

possible to solve this optimization problem without using 

conventional approaches. It was shown, through some 

simple examples, that, at least for these systems, solutions 

with high precision and accuracy are achieved. Moreover, it 

was found that the convergence time and the number of 

iterations are random variables that mainly depend on 

factors such as the algorithm parameters, the initial swarm 

and the size of the system. Obviously, when solving a 

squared, small system, traditional approaches, including the 

ones found in most of the commercial mathematical 

software, are far quicker, even those that find all the roots of 

the system. However, in case that it is required to solve a 

system with more unknowns than equations, a typical 

situation, they are out of the question. Likewise, if the 

system is of a considerable size, the convergence time 

drastically increases, since a big search domain is required 

(a case found during the current research), so the numerical 

strategy proposed here gains importance as a possible 

solution alternative. 
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