

DYNA
http://dyna.medellin.unal.edu.co/

© The authors; licensee Universidad Nacional de Colombia.

DYNA 81 (185), pp. 139-144. June, 2014 Medellín. ISSN 0012-7353 Printed, ISSN 2346-2183 Online

Discrete Particle Swarm Optimization in the numerical solution of a

system of linear Diophantine equations

Optimización por Enjambre de Partículas Discreto en la Solución

Numérica de un Sistema de Ecuaciones Diofánticas Lineales

Iván Amaya a, Luis Gómez b & Rodrigo Correa c

a PhD(c), Universidad Industrial de Santander, Colombia. ivan.amaya2@correo.uis.edu.co
b BSc on Electronics Engineering, Physicist, Universidad Industrial de Santander, Colombia. luisgomezardila@gmail.com

c Professor, PhD School of Electric, Electronic and Telecommunication Engineerings, Universidad Industrial de Santander, Colombia.
crcorrea@uis.edu.co

Received: February 25th, 2013. Received in revised form: January 31th, 2014. Accepted: April 3th, 2014.

Abstract

This article proposes the use of a discrete version of the well known Particle Swarm Optimization, DPSO, a metaheuristic optimization

algorithm for numerically solving a system of linear Diophantine equations. Likewise, the transformation of this type of problem (i.e.

solving a system of equations) into an optimization one is also shown. The current algorithm is able to find all the integer roots in a given

search domain, at least for the examples shown. Simple problems are used to show its efficacy. Moreover, aspects related to the

processing time, as well as to the effect of increasing the population and the search space, are discussed. It was found that the strategy

shown herein represents a good approach when dealing with systems that have more unknowns than equations, or when it becomes of

considerable size, since a big search domain is required.

Keywords: Linear Diophantine equations; objective function; optimization; particle swarm.

Resumen

El presente artículo propone utilizar una versión discreta del bien conocido algoritmo metaheurístico de optimización por enjambre de

partículas, DPSO, para solucionar numéricamente un sistema de ecuaciones Diofánticas lineales. Así mismo, se muestra la

transformación de este tipo de problema (es decir, la solución de un sistema de ecuaciones), en uno de optimización. El presente

algoritmo es capaz de encontrar todas las raíces enteras en un dominio de búsqueda dado, al menos para los ejemplos mostrados. Se

utilizan algunos problemas sencillos para verificar su eficacia. Además, se muestran algunos aspectos relacionados con el tiempo de

procesamiento, así como con el efecto de incrementar la población y el dominio de búsqueda. Se encontró que la estrategia mostrada aquí

representa una propuesta adecuada para trabajar con sistemas que tienen más incógnitas que ecuaciones, o cuando se tiene un tamaño

considerable, debido a que se requiere un gran dominio de búsqueda.

Palabras clave: Ecuaciones Diofánticas lineales; enjambre de partículas; función objetivo; optimización.

1. Introduction

With each passing day is easier to see the boom that the

modeling and description of systems have generated in

science and engineering, especially through Diophantine

equations. Areas such as cryptography, integer factorization,

number theory, algebraic geometry, control theory, data

dependence on supercomputers, communications, and so on,

are some examples [1]. Moreover, there is a strong

mathematical foundation for this type of equations and their

solutions (both, at a fundamental and at an applied level).

These vary from the fanciest and most systematic

approaches, up to the most recursive ones, but it is evident

that there is no unified solution process, nor a single

alternative for doing so. Furthermore, some equations may

have a single solution, while others may have an infinite

number, or, possibly, may not even have a solution in the

integer or rational domains. This also applies for linear

systems with this kind of equations (i.e. Diophantine ones)

[2]. Matiyasevich, during the early 90s, proved that it was

not possible to have an analytic algorithm that allows to

foresee if a given Diophantine equation has, an integer

solution , or not [3]. This problem may have been one of the

engines that have boosted the search for numerical

alternatives.

In order to solve a system of linear Diophantine

equations, a variable elimination method (which is quite

similar to Gauss's) is a good approach for small systems, but

it becomes demanding for bigger ones. The specialized

literature report some methods like those based on the

Amaya et al / DYNA 81 (185), pp. 139-144. June, 2014.

 140

theory of modules over main ideal domains, which are

somewhat more systematic when looking for all the

solutions of a given system, but, likewise, become too

complex when dealing with big systems of equations [4],

[5]. Some authors have previously proposed the solution of

a Diophantine equation through artificial intelligence

algorithms [6], [7]. This article proposes to solve, in case

the solution exists in the given search domain, a linear

system of Diophantine equations. Initially, some basic and

necessary related concepts are laid out, and then the

viability of using the numeric strategy is shown through

some examples.

2. Fundamentals

A linear Diophantine equation, with 𝑛 unknowns, is

defined by eq. (1), where 𝑎1, 𝑎2, … , 𝑎𝑛 are known rational,

or integer, numbers, and 𝑥1, 𝑥2 , …, 𝑥𝑛 are unknowns, i.e.,

the numbers that should satisfy them, [8]; 𝑏 is a known

integer. It is said that the integers 𝑡1, … , 𝑡𝑛 are a solution for

eq. (1) if, and only if, 𝑎1𝑡1 + ⋯ + 𝑎𝑛𝑡𝑛 = 𝑏.

𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 = 𝑏 (1)

One of the basic results of number theory that can be

applied to a linear Diophantine equation is the following

theorem, which allows determining whether it has a solution

or not (even if it is not able to calculate it):

Theorem 1. Let 𝑎1, … , 𝑎𝑛, 𝑏 be integers, where all 𝑎𝑖 not

zeros, and let 𝑑 = 𝑔. 𝑐. 𝑑. {𝑎1, … , 𝑎𝑛} be the g.c.d. of the numbers

𝑎1, … , 𝑎𝑛. Therefore, 𝑑|𝑏 if, and only if, exist 𝑡1, … , 𝑡𝑛 integers,

such that 𝑎1𝑡1 + ⋯ + 𝑎𝑛𝑡𝑛 = 𝑏.

Thus, the problem of determining whether a linear

Diophantine equation has a solution or not, is reduced to

showing if the greatest common divisor of the 𝑎𝑖

coefficients divide 𝑏 or not. Consider the case of two

unknowns, for example, with an equation as the one shown

by eq. (2), where 𝑎, 𝑏, 𝑐 are known integers, and whose

solution only exists if the g.c.d. of 𝑎 and 𝑏 is a divisor of 𝑐.

𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑦 = 𝑐 (2)

According to the previously mentioned theorem, this

equation has integer solutions, and it can be shown that if

(𝑥0, 𝑦0) is a particular one, then all its solutions are given

by eq. (3), where 𝛽 is an integer and 𝑑 is an integer which

represents the g.c.d.

𝑥 = 𝑥0 + 𝛽 ∗
𝑏

𝑑

𝑦 = 𝑦0 – 𝛽 ∗
𝑎

𝑑

(3)

Therefore, if a linear Diophantine equation with two

unknowns has a solution in the integers, then it has infinite

solutions of this kind. Even so, the problem now transforms

in finding a particular solution, which can be done using the

following method.

Let 𝑋 be a non-empty subset of ℝ𝑛 and consider eq. (4),

where 𝑓: 𝑋 → ℝ is a function.

𝑓(𝑥) = 0, 𝑥 ∈ 𝑋 (4)

The problem of finding all the possible solutions for eq.

(4) in the subset 𝑋 can be transformed into a global

optimization problem over 𝑋 as follows:

Let 𝑔: 𝑋 → ℝ be defined by:

𝑔(𝑥) ≔ [𝑓(𝑥)]2 (5)

Then, for every 𝑥 ∈ 𝑋 it holds that 𝑔(𝑥) ≥ 0.

Theorem 2. Suppose that eq. (4) has a solution in 𝑋, and let

𝑎 ∈ 𝑋. Therefore, 𝑎 is a solution for eq. (4) if, and only if, 𝑎

minimizes the function 𝑔 defined in (5).

An immediate consequence of the previous theorem is that if

eq. (4) has a solution in 𝑋, then the global minimum of 𝑔 defined

in (5) exists and is zero; even more, the following theorem exists:

Theorem 3. If the function 𝑔 defined in (5) has a global

minimum in 𝑋 and this value is zero, then eq. (4) has a solution in

𝑋. Moreover, all global minimizers of 𝑔 are solutions of eq. (4).

Then, if for 𝑓(𝑥1, 𝑥2) = 𝑎1𝑥1 + 𝑎2𝑥2 − 𝑏 a region of the

plane can be determined, where a global minimum of function

𝑔, defined by (5), and its value is zero, then any global

minimizer with integer coordinates, should it exist, serves as a

particular solution of eq. (2). Thus, the choice of the region is

quite important to enclose, at least, a solution with integer

coordinates.

2.1. System of linear equations

Consider the following system of 𝑚 linear Diophantine

equations, with unknowns 𝑥1, … , 𝑥𝑛.

{
𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

⋮
𝑎𝑚1𝑥1 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

 (6)

According to theorem 1, in order for the system (6) to have

a solution, it is necessary, but not sufficient, that each of the 𝑚

equations have a solution; this is equivalent to establishing if

for each 𝑖 = 1, … , 𝑚 it holds that 𝑔. 𝑐. 𝑑. {𝑎𝑖1, … , 𝑎𝑖𝑛} divides

𝑏𝑖.

To see why this condition is not sufficient, consider the

system of Diophantine equations defined by

{
x + 3y = −1
x + y = 4

 (7)

Each equation from this system has a solution in the integer

domain, but the system does not have a solution as a whole.

Then, and in the same way that with systems of equations in

real variables, the fact that one of the equations of a system has

a solution, does not imply that the whole system also has.

Even so, a method that generalizes finding all the roots

Amaya et al / DYNA 81 (185), pp. 139-144. June, 2014.

 141

(in case they exist) of a system of equations over a given

set, is shown below.

Let 𝑋 be a non-empty subset of ℝ𝑛 and consider the

system of equations (8), where for each 𝑖 = 1, … , 𝑚,

𝑓𝑖: 𝑋 → ℝ is a function.

{
𝑓𝑖(𝑥) = 0

⋮
𝑓𝑚(𝑥) = 0

 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑋 (8)

Let 𝑔: 𝑋 → ℝ be defined by:

𝑔(𝑥) ≔ ∑[𝑓𝑖(𝑥)]2

𝑚

𝑖=1

 (9)

Then for all 𝑥 ∈ 𝑋 it holds that 𝑔(𝑥) ≥ 0. The following

result is achieved:

Theorem 4. Suppose that the system of equations (8) has a

solution in 𝑋, and let 𝑎 ∈ 𝑋. Then, 𝑎 is a solution of the system

(8) if, and only if, 𝑎 minimizes the function 𝑔 defined in (9).

The general condition of the theorem 4 about the feasibility of

solving the system (8) is important, since it is possible that the

function 𝑔 defined in (9) can be globally minimized but that the

system (8) does not have a solution.

An immediate consequence of theorem 4 is that if the system

(8) has a solution in 𝑋, then the global minimum of 𝑔 defined in

(9) exists and it is zero; moreover, the following result exists:

Theorem 5. If the function 𝑔 defined in (9) has a global

minimum in 𝑋 and this value is zero, then the system (8) has a

solution in 𝑋. Moreover, all global minimizers of 𝑔 are solutions

of the system (8).

Therefore, for the function 𝑔 defined in (9), if there does not

exist a global minimum in 𝑋 or if it exists but is different from

zero, then the system of equations (8) does not have a solution in

𝑋.

A basic result of the mathematical analysis of the algorithm

establishes that if 𝑋 is a compact set (i.e. closed and bounded) and

𝑔 is continuous over 𝑋 then the global minimum exists. Now, for

𝑔 to be continuous in 𝑋 it is enough that each 𝑓𝑖 is continuous in 𝑋.

For the case of systems of Diophantine equations, unlike the

particular case of an equation with two unknowns, the fact that a

solution exists does not imply that others do, and even less that an

infinite number exists.

For the search of possible solutions of a system of Diophantine

equations, it must hold that the set 𝑋 have points with integer

coordinates, i.e. that 𝑋 ∩ ℤ𝑛 ≠ ∅.

2.2. The algorithm

The implemented algorithm is built up from various

interconnected blocks and is similar to the structure of

traditional PSO (for real numbers), [9], [10]. A first stage is

given by the random assignation of a swarm of user defined

integers. Any size can be used here. Likewise, the definition

of these values is subject to previous knowledge of the

objective function (fitness), as well as to the presence of

restrictions. Moreover, an initial speed of zero can be

defined for the particles. After that, the algorithm evaluates,

in the given search space, the objective function. With it,

local and global best values are established, and both, speed

and position, of each particle, are reevaluated as shown

below. This procedure is iterative and is repeated until the

convergence criteria are met, or until all solutions in the

search domain are found.

An algorithm, considered as a variant of the traditional

PSO, was used, [9]. In the same fashion as said PSO, its

version for discrete solutions includes two vectors Xi and Vi,

related to the position and speed of each particle, for every

iteration. The first one is a vector of random numbers, initially,

in a valid solution interval. The second one can also be a

random vector, but it can be assumed as zero for the first

iteration, in order to keep it simple. When the problems

become multidimensional, the vectors transform into a

position and a speed matrices, since there is a value for each

unknown, [9], [11]. Discrete PSO differs from its traditional

version in which the new speed and position depend on both,

an equation and a decision rule, which chooses among the

local and global best values for the next iteration. Assuming

there is a vector 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, ⋯ , 𝑦1𝑛) that allows the

transition between continuous and discrete PSO, and which

takes the value of (-1, 1, or, 0) according to eq. (10), where

𝑔𝑙𝑜 is the global optimum of the swarm, and 𝑙𝑜𝑐 the local

one, [9].

𝑦𝑖 = {

 1 if
 −1 if
 0 if
−1 𝑜𝑟 1 if

 Xi = 𝑔𝑙𝑜
Xi = 𝑙𝑜𝑐

 Xi ≠ 𝑔𝑙𝑜 ≠ 𝑙𝑜𝑐
 Xi = 𝑔𝑙𝑜 = 𝑙𝑜𝑐

 (10)

Afterwards, speed is updated according to eq. (11),

where w is known as the inertia factor, which is used to

limit the speed of the particles; c1, c2 are constants which is

usually are considered as equal to two; and r1, r2 are

random numbers between zero and one [10].

Vi+1 = Vi ∗ w + c1 ∗ r1

∗ (−1 − yi) + c2 ∗ r2

∗ (1 − yi)

(11)

Then, the decision parameter, vector 𝐵𝑖 =
(𝐵𝑖1, 𝐵𝑖2, ⋯ , 𝐵𝑖𝑛), is calculated according to eq. (12).

𝐵𝑖 = 𝑦𝑖 + Vi+1 (12)

This parameter decides if the next position of the

particle is chosen as the local or global best, or if it is

chosen as a random number in the search domain. Thus,

position update is done according to eq. (13), where 𝛼 is a

constant that defines the intensification (new position equal

to the local or global bests) and the diversification (new

position equal to a random number) [9].

𝑋𝑖+1 = {

 𝑔𝑙𝑜 if 𝐵𝑖 > 𝛼
 𝑙𝑜𝑐 if 𝐵𝑖 < − 𝛼

Int Rand if −𝛼 ≤ 𝐵𝑖 ≤ 𝛼
 (13)

Amaya et al / DYNA 81 (185), pp. 139-144. June, 2014.

 142

3. Results and Analysis

This section shows the results achieved after solving

some systems of linear Diophantine equations, as an

example of the method. A computer with an AMD Turion

X2 Dual Core RM-72 processor, at 2.1 GHz, and with 4 GB

of RAM memory, was used. During all the examples, the

following parameters were used: w = 0.75, c1 = 0.8, c2 =

0.2, y, 𝛼 = 0.3. These values were chosen based on some

preliminary tests and on the information available in the

literature [1], [9].

3.1. System of equations A

It is required to solve the system given by eq. (14), in the

set of positive integers, which represents the amount of

animals bought by a farmer and its cost. The full statement

of the problem is as follows: "A farmer spent 10.000.000

COP, on 100 animals: chickens (𝑥), pigs (𝑦) and cows (𝑧).

if he bought the chickens at 5.000 COP, pigs at 100.000

COP and cows at 500.000 COP, and if he acquired animals

of all three classes, how many did he buy of each one?"

[12].

𝑥 + 𝑦 + 𝑧 = 100

𝑥 + 20𝑦 + 100𝑧 = 2000
(14)

This system is equivalent, by Gaussian reduction, to the

system {
𝑥 −

80

19
𝑧 = 0

𝑦 +
99

19
𝑧 = 100

Its general solution is given by: =
80

19
𝑡 , y= 100 −

99

19
𝑡 ,

𝑧 = 𝑡, which for 𝑡 = 19 yields: 𝑥 = 80; 𝑦 = 1; 𝑧 = 19. In

order to solve this problem with the discrete PSO algorithm,

the following objective function is created:

𝐹 = (𝑥 + 𝑦 + 𝑧 − 100)2 + (𝑥 + 20𝑦 + 100𝑧 − 2000)2 = 0

After 20 runs of the algorithm, with a swarm of 1000

particles, the same answer was always achieved. Their

duration, however, varied from 1.186 s, with 204 iterations,

and up to 474.043 s, with 66832 iterations. It can then be

concluded that, for this system, the algorithm delivers an

answer with excellent precision and accuracy, even though

the number of iterations and the duration were variable. It

was found that their relationship is quite close to linearity

(R2=0.9955).

3.2. System of equations B

Afterwards, the system of seven linear Diophantine

equations shown by (15) was solved, which represents a

closed-loop control system, with unitary feedback, and

where it is required to find the controller (𝐶(𝑆)), with six

poles at 𝑆 = −1 for the plant G(s) =
𝑆2+𝑆+1

𝑆3+3𝑆2+4𝑆+3
.

𝑋1 − 1 = 0 (15

Figure 1. Convergence time as a function of iterations for system

B.

3𝑋1 + 𝑋2 − 6 = 0

4𝑋1 + 3𝑋2 + 𝑋3 + 𝑋5 − 15 = 0
3𝑋1 + 4𝑋2 + 3𝑋3 + 𝑋4 + 𝑋5 + 𝑋6 − 20 = 0
3𝑋2 + 4𝑋3 + 3𝑋4 + 𝑋5 + 𝑋6 + 𝑋7 − 15 = 0

3𝑋3 + 4𝑋4 + 𝑋6 + 𝑋7 − 6 = 0
3𝑋4 + 𝑋7 − 1 = 0

)

The solution of the system can be found to be:

𝑋1 = 1, 𝑋2 = 3, 𝑋3 = 2, 𝑋4 = 2, 𝑋5 = 0, 𝑋6 = −3, 𝑋7 =
−5

From the first equation, 𝑋1 = 1; and from the second

one, 𝑋2 = 3. The third equation yields 𝑋5 = 2 − 𝑋3, while

from the fifth and sixth equations, 𝑋6 + 𝑋7 = 6 − 3𝑋3 −
4𝑋4 = 6 − 𝑋5 − 3𝑋4 − 4𝑋3, which means that 𝑋4 = 2.

Thus, the last equation provides 𝑋7 = −5. Substracting the

fourth and fifth equations, 𝑋3 = 2 is obtained, which means

that 𝑋5 = 0. Finally, the sixth equation yields 𝑋6 = −3. In

order to solve it through the algorithm, the following

objective function was defined:

𝐹 = (𝑋1 − 1)2 + (3𝑋1 + 𝑋2 − 6)2

+ (4𝑋1 + 3𝑋2 + 𝑋3 + 𝑋5 − 15)2

+ (3𝑋1 + 4𝑋2 + 3𝑋3 + 𝑋4 + 𝑋5 + 𝑋6 − 20)2

+ (3𝑋2 + 4𝑋3 + 3𝑋4 + 𝑋5 + 𝑋6 + 𝑋7 − 15)2

+ (3𝑋3 + 4𝑋4 + 𝑋6 + 𝑋7 − 6)2

+ (3𝑋4 + 𝑋7 − 1)2 = 0

Once again, 1000 particles were used and the algorithm

was run 20 times. As a result, the same answer is achieved, so

it is important to remark the excellent quality of the results (in

terms of accuracy and precision), as well as, the variability in

time and iterations, when looking for all the solutions in the

integer domain. When compared to the previous system, it can

be seen that the convergence time increased, and an almost

linear relation between iterations and time can be seen in Fig.

1.

3.3. System of equations C

For this case a system of 12 linear Diophantine

equations was selected:

5𝑥1 − 6𝑥2 + 8𝑥4 − 5𝑥5 + 6𝑥6 + 10𝑥7 − 9𝑥9 + 3𝑥10 + 11𝑥11

− 15𝑥12 + 17𝑥13 = −1

Amaya et al / DYNA 81 (185), pp. 139-144. June, 2014.

 143

7𝑥1 + 𝑥2 − 4𝑥4 + 6𝑥7 − 9𝑥8 + 5𝑥9 − 12𝑥10 + 3𝑥11 − 7𝑥12

+ 8𝑥13 = 26

5𝑥1 − 24𝑥2 + 32𝑥3 − 49𝑥4 + 3𝑥5 + 19𝑥6 − 21𝑥7 − 17𝑥8

+ 33𝑥9 + 9𝑥10 − 12𝑥11 − 𝑥13 = 475

20𝑥1 + 27𝑥2 − 23𝑥4 − 30𝑥5 + 34𝑥6 + 𝑥7 − 7𝑥9 + 11𝑥10

− 28𝑥11 + 4𝑥12 − 36𝑥13 = 103

5𝑥1 − 10𝑥3 + 2𝑥5 − 6𝑥7 − 13𝑥9 + 34𝑥11 − 9𝑥13 = −352

𝑥2 + 22𝑥4 − 26𝑥6 − 17𝑥8 + 19𝑥10 − 4𝑥12 = −84

30𝑥1 + 24𝑥2 − 55𝑥3 − 15𝑥4 − 25𝑥5 + 10𝑥6 + 40𝑥7 − 10𝑥8

+ 8𝑥9 − 3𝑥10 − 16𝑥11 + 4𝑥12 − 20𝑥13

= 283

5𝑥1 − 13𝑥2 + 7𝑥4 + 𝑥6 − 19𝑥7 + 19𝑥8 − 2𝑥9 + 6𝑥10 + 5𝑥11

− 26𝑥12 = −468

𝑥1 + 28𝑥2 + 33𝑥3 − 100𝑥5 + 5𝑥6 + 13𝑥7 − 𝑥8 − 𝑥9 + 11𝑥10

− 7𝑥11 − 3𝑥12 + 𝑥13 = −100

7𝑥3 − 21𝑥4 + 35𝑥5 − 42𝑥6 + 7𝑥7 + 14𝑥8 − 35𝑥9 + 28𝑥10

− 7𝑥11 + 14𝑥12 + 56𝑥13 = 329

5𝑥7 + 5𝑥8 + 10𝑥9 − 50𝑥10 + 20𝑥11 − 25𝑥12 + 30𝑥13 = −345

2𝑥1 − 4𝑥2 + 4𝑥3 − 2𝑥4 − 6𝑥5 + 8𝑥6 + 10𝑥7 + 9𝑥8 − 12𝑥9

+ 20𝑥10 + 6𝑥11 − 30𝑥12 + 16𝑥13 = −78

whose solution is:

𝑥1 = 1; 𝑥2 = −3; 𝑥2 = 2; 𝑥4 = −1; 𝑥5 = 3; 𝑥6 = 7; 𝑥7 =
9; 𝑥8 = −4; 𝑥9 = 5; 𝑥10 = 5; 𝑥11 = −5; 𝑥12 = 10; 𝑥13 =
6

The objective function is, once again, built using the

squared sum of each equation. A search space between -10

and 10 was defined, and 100 particles were used. On the

same computer, an excellent quality answer (in terms of

accuracy and precision) was found, but it required an

average time of 129632 s (around 36 hours) and 1026435

iterations. It is worth mentioning that it was not possible to

find these roots by using commercial software nor through

traditional means. Fig. 2 shows the exponential increment in

time, when expanding the search domain.

3.4. System of equations D

In order to further test the algorithm's effectiveness,

some other Diophantine systems were used. However, in

this case they do not have a solution in the set of integers,

e.g. the system given by eq. (16), which has a range A =

range (A ,C) = 2, and a g.c.d. (2,1,3) = g.c.d (8,−5,−3) = 1| {

7,11}.

Figure 2. Convergence time as a function of the search domain.

2𝑥 + 𝑦 + 3𝑧 = 7
8𝑥 − 5𝑦 + 3𝑧 = 11

(16)

The discrete PSO algorithm reports that after 20 or more

runs, for different swarm sizes and parameters, it was not

possible to find an answer. It was also observed that if a

system, e.g. the one given by eq. (17), has infinite solutions,

a search domain must be defined, striving to locate solutions

over this given set.

10𝑤 + 3𝑥 + 3𝑦 + 8𝑧 = 1

6𝑤 − 7𝑥 − 5𝑧 = 2
(17)

4. Conclusions

This research proved that it is possible to numerically

solve a system of linear Diophantine equations through an

optimization algorithm. Also, it was observed that it is

possible to solve this optimization problem without using

conventional approaches. It was shown, through some

simple examples, that, at least for these systems, solutions

with high precision and accuracy are achieved. Moreover, it

was found that the convergence time and the number of

iterations are random variables that mainly depend on

factors such as the algorithm parameters, the initial swarm

and the size of the system. Obviously, when solving a

squared, small system, traditional approaches, including the

ones found in most of the commercial mathematical

software, are far quicker, even those that find all the roots of

the system. However, in case that it is required to solve a

system with more unknowns than equations, a typical

situation, they are out of the question. Likewise, if the

system is of a considerable size, the convergence time

drastically increases, since a big search domain is required

(a case found during the current research), so the numerical

strategy proposed here gains importance as a possible

solution alternative.

References

[1] Abraham, S., Sanyal, S., and Sanglikar, M., Particle Swarm

Optimization Based Diophantine Equation Solver, ArXiv, pp.1–15, Mar.

2010.

[2] Bonilla E., M., Figueroa G., M., and Malabare, M., Solving the

Diophantine Equation by State Space Inversion Techniques : An

Illustrative Example, Proceedings of the 2006 American Control
Conference, pp.3731–3736, 2006.

[3] Matiyasevich, Y. V., Hilbert’s Tenth Problem. MIT Press, , 1993.

[4] Wu - Shr-Hua. Time-varying feedback systems design via Diophantine
equation order reduction, thesis (Ph.D. on Electrical Engineering), United

States, The University of Texas at Arlington, 2007, pp. 1–140.

[5] Cohen, H., Number Theory, Vol. I: Tools and Diophantine Equations
and Vol. II: Analytic and Modern Tools. Springer-Verlag, New York,

2007.

[6] Lugar, G., Artificial Intelligence: Structures and Strategies for Complex
Problem Solving. Addison-Wesley, Boston, 2006.

[7] Abraham, S. and Sanglikar, M., Finding Numerical Solution to a

Diophantine Equation: Simulated Annealing as a Viable Search Strategy,

Proceedings of the International Conference on Mathematical Sciences, 2,

pp.703–712, 2008.

Amaya et al / DYNA 81 (185), pp. 139-144. June, 2014.

 144

[8] Contejean, E., An Efficient Incremental Algorithm for Solving Systems

of Linear Diophantine Equations, Information and Computation, (113),
pp.143–172, 1994.

[9] Jarboui, B., Damak, N., Siarry, P., and Rebai, A, A combinatorial

particle swarm optimization for solving multi-mode resource-constrained
project scheduling problems, Applied Mathematics and Computation, 195

(1), pp.299–308, Jan. 2008.

[10] Amaya, I., Cruz, J., and Correa, R., Real Roots of Nonlinear Systems
of Equations Through a Metaheuristic Algorithm, Revista Dyna, 78 (170),

pp.15–23, 2011.

[11] Amaya, I., Cruz, J., and Correa, R., Solution of the Mathematical
Model of a Nonlinear Direct Current Circuit Using Particle Swarm

Optimization, Revista Dyna, 79 (172), pp.77–84, 2012.

[12] Gonzáles - F. J. Ecuaciones Diofánticas, thesis (Apuntes de
Matemática Discreta), Universidad de Cádiz, 2004, pp. 353–354.

I. Amaya, received his bachelor degree on Mechatronics Engineering from

Universidad Autónoma de Bucaramanga, Bucaramanga, Santander
(Colombia). Currently, he is with the School of Electrical, Electronic and

Telecommunications Engineerings and is pursuing his PhD on Engineering

at Universidad Industrial de Santander, Bucaramanga, Santander
(Colombia). His research interests include global optimization and

microwaves.

ORCID: 0000-0002-8821-7137

L. Gómez, received his bachelor degree on Physics from Universidad

Industrial de Santander Bucaramanga, Santander (Colombia), and also a
bachelor degree on Electronics Engineering from the same University. His

research interests include global optimization and Diophantine equations.

R. Correa, received his bachelor degree on Chemical Engineering from

Universidad Nacional de Colombia, Bogotá, Cundinamarca (Colombia),
and his master degree on Chemical Engineering from Lehigh University,

Bethlehem, Pensilvania (USA) and from Universidad Industrial de

Santander, Bucaramanga, Santander (Colombia). He received his PhD from

Lehigh University on Polymer Science and Engineering and is currently a

professor at Universidad Industrial de Santander. His research interests

include microwave heating, global optimisation, heat transfer and
polymers.

