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Abstract 
In this document, we explore and develop techniques to automatically detect bumblebees flying freely inside a greenhouse, where 
illumination conditions are left unconstrained, and no artifact is used on their bodies. Specifically, we compare a Viola-Jones classifier 
and a Support Vector Machine (SVM) classifier to detect the presence of bumblebees. Our results show that the latter has a better 
classification performance.  
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Detección automática de abejorros usando análisis de video 
 
Resumen 
En este documento exploramos y desarrollamos técnicas para la detección de abejorros que vuelan libremente dentro de un invernadero, 
en donde las condiciones de iluminación no son controladas y ningún artefacto es colocado en sus cuerpos. En particular, comparamos 
clasificadores Viola-Jones y Máquinas de Soporte Vectorial (SVM) en su uso para la detección de abejorros. Nuestros datos muestran 
que el SVM ofrece mejores resultados de clasificación. 
 
Palabras clave: Clasificador tipo Support Vector Machine; Clasificador tipo Viola-Jones; detección de abejorros. 
 
 
 
1.  Introduction 

 
Pollination is a critical ecosystem service in agriculture 

[10]. It has been estimated that 75% of human food crops 
require pollination by insects for adequate production [6,11], 
bees (Hymenoptera: Apoidea) and bumblebees being the most 
used in managed pollination programs. To date, bumblebees 
are used as managed pollinators on more than 40,000 hectares 
of greenhouses tomato crop in the world [15]. Therefore, 
monitoring their activity is important from the perspective of 
ecological research, and when there is the need to know their 
patterns of activity and how they are affected by greenhouses 
management practices [5]. Currently, the study of pollination 
is based fundamentally on direct observations of plant-
pollination relationships [8], on offline video monitoring 
[9,13], and also with the aid of special tags attached to the 
bumblebees’ bodies [3]. Overall, the trend is toward the use of 
automatic techniques that facilitate biology studies.  

The objective of the present document is to report the use 
of computer vision algorithms to automatically detect the 
presence of bumblebees, for extended periods of time, and 
without the need to engineer the environment. To that end, the 

rest of the document is developed as follow. In Section 2, we 
survey the related literature. Then in Section 3, we describe 
the materials and methods used to perform the evaluation. 
Next, in Section 4, we describe our experimental results. 
Finally, in Section 5, we conclude the document summarizing 
our findings and describing potential lines for future research. 

 
2.  Related Works 

 
Automatic visual recognition of insects has been used 

when it has been possible to study static insects, with enough 
resolution, and in controlled lighting conditions. For instance, 
Larios et al. [7] represent insects by features based on the 
curvature of their profiles, analyzed on both local and global 
scales. On the other hand static and adaptive appearance 
templates for handling appearance change, and geometry-
constrained resampling of particles for handling unreliable 
features has been used in the past [19].  At their end, Yuefang 
et al.[4] identify insects by describing their wings with a 
combination of moment invariants. In addition, the interaction 
between insects and the environment can facilitate the use of 
clustering techniques based on color or intensity, as reported 
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by Jinhui et al. [17]. Furthermore, insects can be identified by 
their traces [12]. Nonetheless, there is a pressing need to 
increase our understanding for situations where the 
bumblebees interact freely with their environment. 

Detecting and tracking at the beehive entrance has been 
done in the past making use of computer vision technics in 
3D.[20] In our investigation  we focus only on the detection of 
insects either at the entrance of the beehive or at the time of 
pollination in the flower. Toward that objective, we compare 
the performance of a Viola-Jones classifier [16] and a Support 
Vector Machine classifier (SVM) [2]. This work further 
enhance a previous work [23], where we explored the use of 
tracking by detection to analyze the arrival of bumblebees to 
flowers and their motion around beehives. 

 
3.  Materials and Methods  

 
A flying cage ( ) was covered with an 

antiaphid net. Inside we placed five tomato (Solanum 
lycopersicum) and Serrano chili (Capsicum annuun) flowering 
plants. A MINIPOL™ (Koppert) hive, containing 30 Bombus 
impatiens (Hymenoptera: Apidae) workers was introduced 
into the cage two hours before the experiment began. The 
bumblebees were free to fly inside the cage and a JAI camera 
model CV-S3200 with an analog interface connected to a 
National Instrument NI PCI 1411 acquisition board was used 
to obtain images at a 640 x 480 resolution and a frame rate of 
30 fps.  Acquisition was done during the day making use of 
direct sunlight as illumination. The camera was mounted on a 
metallic support focused at times on a tomato flower as well as 
to the hive (see Fig. 1). In order to analyze the performance of 
each classifier, 2,082 images with bumblebees were selected 
as positive samples and 3,483 without bumblebees as negative 
samples employing cross-validation. The images included the 
natural changes of illumination caused by the apparent Sun 
movement and the occasional Sun occlusion due to clouds. To 
train the classifiers, we selected 80% of the samples at random 
using the rest for testing. To construct the Viola-Jones 
classifier, we used the Open CV library [1], which uses Haar-
like features. To construct the SVM classifier, we used the 
implementation provided by Matlab with a linear kernel, with 
Histogram of Oriented Gradients (HOG) as features [18]. We 
constructed Viola-Jones classifiers for 24  24 pixel 
subimages, with 10, 15, 18, 20, and 22 stages. Their 
corresponding training time was around 4, 8, 12, 18, and 24 
hours, respectively. For the HOG features, we used 64  64 
pixel images, with 8  8 pixel cells, and 2  2 cell blocks, as 
seen in Fig. 3. The SVM works by constructing a feature 
space where the classes to be distinguished are separated using 
a certain type of kernel. The search for a bumblebee in a 
particular image takes place using a hierarchical search of a 
pyramid structure, where each level has twice the resolution 
[24]. We accepted bumblebee detection when the Viola-Jones 
classifier gave a positive response and when the margin of the 
SVM classifier was positive. We use the Receiver Operating 
Characteristic (ROC) curve [14] to verify the performance of 
the classifiers. The computer used for these experiments has 
an Intel 5 microprocessor with four cores, operating at 
3.33GHz, with 8 GB of RAM and running on the Windows 7, 
64 bit, operating system. 

4.  Experimental Results 
 
For the Viola-Jones classifier, as the number of stages was 

varied in the classifier, the performance improved. Fig. 2 
illustrates the results as a ROC curve [14]. The reduction of the 
False Positive Rate (FPR) after the addition of just a few stages 
in the classifier is remarkable. For instance, the FPR is reduced 
from ~1.0 to ~0.4 upon changing from a 10-stages classifier to 
a 15-stages classifier. In fact, the FPR for the 18-stages 
classifier is 0.04, while the True Positive Rate (TPR) is 0.85. 
Of course, the TPR decreases accordingly but it does so at a 
smaller rate. Note that while the TPR is 0.99 with the 10-stages 
classifier, it is 0.87 and 0.85 with the 15 and 18-stages 
classifiers, respectively. Similarly, the FPR is below 0.01 for 
the 20- and 22-stages classifiers, while the TPR is ~0.75. With 
the SVM classifier, the TPR is 0.98 and the FPR 0.003. These 
results show a superior performance of the SVM classifier. 

 
5.  Conclusion 

 
In this document, we applied Viola-Jones and SVM 

classifiers to the problem of detecting bumblebees in an 
unconstrained,green-house-like environment. Furthermore, our 
results show that the Support Vector Machine classifier, with 
HOG features, outperforms the Viola-Jones classifier. 
Managed pollinators like bumblebees are frequently monitored 
at the hive entrance to determine the foraging activity rate by 
counting the number of bees coming in or out the hive [21]. 
This activity rate is an important element of practical 
pollination studies in greenhouses [22]. A system counting 
automatically the number of bees flying in and out of the hive 
or the number of bumblebees arriving to a flower with high 
accuracy would be very informative. However, in some 
computer vision systems the illumination changes could affect 
the outcome of the detection.   HOG features are less affected 
by possible illumination changes, because they are based on the 
orientation of gradients and the normalization of image blocks. 
Keeping the natural illumination conditions is important in 
order not to disturb the behavior of bumblebees. More research 
should increase the performance of the detectors, highlight 
other aspects of the insect-pollinators activity, and lead the 
development of more flexible monitoring tools. For instance, a 
possible way to increase the performance of either one of the 
classifiers could involve the use of a detection-and-tracking 
strategy. Such strategy could be used in combination to fill the 
gaps whenever a bumblebee is not detected. 

 
6.  Figures 

 

  
(a) (b) 

Figure 1. Bumblebee detection scenarios.  (a) When the bumblebees visit 
flowers, and (b) flying in and out their beehive. 
Source: The authors 
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Figure 2. Viola-Jones classifier performance. The solid red line indicates 
the performance of the Viola-Jones classifiers for a different number of 
stages. The numbers around the circles in the solid line inform the number 
of stages. 
Source: The authors 

 

 

 
Figure 3. Bumblebee detection using the SVM classifier.  (a) Blue squares 
correspond to the 64 x 64 pixel subimages classified as positive samples in 
the whole image, and (b) in each group of adjacent squares, only the one 
with the features mapped farther to the hyperplane used for classification is 
kept and the others are filtered out. 
Source: The authors 
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