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Abstract 
We simulated the pattern formation on silicon surfaces. For this purpose, we used Lattice-Boltzmann method assuming two non-ideal 
interacting fluids using a lattice velocity D2Q9. The experiment was carried out with a multiline (1064, 532 and 355 nm) Nd: YAG 
pulsed laser that employs an energy range from 310 to 3100 J on a surface p-type monocrystalline silicon oriented in the direction [111]. 
The whole system was subjected to argon gas blowing which is key in pattern formation. Computer simulation reproduces the overall 
behavior of the experimental geometric patterns expressed in oblique parallel ripples quite well. 
 
Keywords: Laser Ablation, monocrystalline, non-ideal fluids, Lattice-Boltzmann method. 
 
 

Método de Lattice-Boltzmann aplicado a la formación de patrones 
sobre estructuras superficiales periódicas generadas por láser de 

nanosegundos multilineas 
 
Resumen 
Hemos simulado la formación de patrones en superficies de silicio. Para este propósito, se utilizó el método de Lattice-Boltzmann 
suponiendo dos fluidos no ideales, que interactúan, utilizando una rejilla de velocidades D2Q9. El experimento se llevó a cabo con un 
láser de pulsos multilínea (1064, 532  y 355 nm) de Nd: YAG, que emplea un rango de energía 310 a 3.100 J, en una superficie de silicio 
monocristalino, tipo p, orientado en la dirección [111]. Todo el sistema se sometió a soplado de gas de argón que es clave en la 
formación de los patrones. La simulación computacional reproduce bastante bien, el comportamiento global de los patrones geométricos 
experimentales, expresados en ondulaciones paralelas oblicuas. 
 
Palabras clave: Ablación Láser, monocristalino, Fluidos no ideales, método de Lattice-Boltzmann. 
 
 
 
1.  Introduction 

 
The Lattice-Boltzmann method (LBM) has become one 

of the most popular techniques for studying the 
phenomenology of complex fluid dynamics in recent 
decades. This technique [1-3], is based on the discretization 
of the Boltzmann equation with Bathnagar, Groos y Krook 
(BGK) approximation [4] for the collision operator. In 
LBM, the statistical distribution of particles ௜  is 
located on a spatial grid, where each spatial point is 
assigned to a discrete and finite set of velocity vectors ௜, 

ௗ which point to the nearest sites. LBM solves 
a discrete kinetic equation for one particle distribution 

function ௜   along the above discrete set of velocities. 
For carrying out a LBM, a discrete velocity ௜ is chosen, in 
one-dimension D1Q3 and (D1Q5 are common. In two 
dimensions D2Q9 is well-known for 2D simulations and in 
3D we have the D3Q15, D3Q27 and D3Q19 lattices. 

A wide range of simulations has used these lattices up to 
now. Among them we can find simulation of ferrofluids [5], a 
competition between surface tension and dipolar interactions to 
model magnetic fluids [6], and the simulation of electroosmotic 
fluids in charged anisotropic porous material [7]. Using a 
higher moment method, it is also possible to give rise to the 
Kortweg-De Vries equation [8], and furthermore LBM has 
been used to simulate incompressible magnetohydrodynamics 
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in two or three dimensions [9]. Likewise, the application of 
LBM to the calculation of the ground state of Gross-Pitaevskii 
equation corresponding to the derivation of a quantum 
mechanical analysis is current [10]. Furthermore, using suitable 
boundary conditions, the effect of wettability on solid-fluid 
interfaces has been investigated, and also there have been 
studies of the effect of the influence of viscous coupling on 
two-phase flow applied to porous media [11]. Shan & Chen 
[12] presented an LBM model that is able to simulate flows of 
multiple phases, and Luo [13] developed a model based on the 
discretized Boltzmann equation for the two fluid phases. 

On the other hand, laser-matter interaction and the generation 
of surface periodic structures is a very important research area 
with enormous technological applications. In general, the surface 
periodicity can be understood as interference between the 
incident laser beam and the scattered beam parallel to the 
substrate [14]. Indeed, it is possible to add other physical effects 
such as surface waves attributed to roughness and in-
homogeneities, etc. [15]. Further, dielectric materials such as 
semiconductor surfaces have been used to produce periodic 
structures using femtosecond and picosecond lasers [16]. For 
silicon, which is an indirect band gap semiconductor material, 
low electro-optic efficiency limits its use. Some responses can be 
enhanced by modifying its surface by using different techniques, 
which involve the manipulation of the surface by changing the 
process parameters such as the treatment atmosphere, the energy 
density and the initial state of the material's surface, [17,18]. In 
general, morphological and structural changes on the surface of a 
material can produce changes in its optical, electrical and 
mechanical properties, which can potentially improve the 
performance of components made of such material [19,20].  

This paper deals with periodic surface structures over p-
type silicon surfaces using laser irradiation with a multiline 
(1064, 532, 355 nm) Nd:YAG pulsed laser were obtained. In 
section 2, we present a short review of the Lattice-Boltzmann 
method and the equilibrium function based on the D2Q9 
lattice scheme velocity is shown. In section 3, we present the 
potential interaction between particles. Section 4 outlines the 
experimental setup. Results are given in Section 5 and 
conclusions in Section 6. 

 
2.  The Lattice-Boltzmann Method 

 

 
Figure 1. D2Q9 scheme for the velocity lattice. (Figure elaborated in 
gnuplot [32]). 

A summary of the Lattice-Boltzmann method is as follows, 
[3]. This technique will be applied to the system to reproduce 
the surface pattern. The Lattice-Boltzmann equation is: 

 
௜,௝ ௫ ௜.௝ ௜,௝  (1) 

 
In the above expression, ௜,௝ represents the one-particle 

distribution function, ௜,௝ is the collision operator, which 
measures the rate of change of ௜,௝ during collision. Both  
and  represent the spatial and temporal discretization in 
the system. The density ௝ and the momentum density  
are defined as the moments of the distribution function  ௜,௝: 

 

௝
଴
௜,௝

௜

 (2) 

 

௝ ௜
଴
௜,௝

௜

 (3) 

 
The collision operator ௜,௝ , must satisfy the 

conservation of momentum equation and the total mass on 
the grid point, so: 

 

௜  (4) 

 

௜ ௜  (5) 

 
Doing a Taylor series expansion in space and time, Eq. 

(1), we obtain: 
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 (6) 

 
Where we have used ௫  ௬  and ௜

௫
డ

డ௫ ௬
డ

డ௬
. Also a perturbative expansion known as 

Chapman-Enskog expansion is employed, and the 
expansion parameter is defined as  which is the same for 
the spatial and time derivatives. Therefore: 

 

ଵ

ଶ
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 (7) 

 

ଵ
 (8) 

 

ଵ
 (9) 

 
Expanding the distribution function ௜,௝ in a perturbative 

series:  
 

௜,௝
଴
௜,௝

ଵ
௜,௝

ଶ ଶ
௜,௝ (10) 

 
Equation (7) assumes that time ଵ is much greater than ଶ. 

Similarly, the distribution function ௜ can formally be 
expanded around the distribution function of statistical 
equilibrium, as: 
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௜,௝
௘௤
௜,௝

௡௘௤
௜,௝ (11) 

 
Where ௘௤

௜,௝
଴
௜,௝. Moreover, using probability 

conservation the following conditions are imposed on ௘௤
௜,௝: 
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௝ ௜
௘௤
௜,௝

௜

 (13) 

 
In eq. (11), ௡௘௤

௜,௝ is the distribution function of the 

statistical non-equilibrium, and can be expanded as: 
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And it is subject to the following restrictions. For  

we have: 
 

௞
௜,௝  (15) 

 
௞
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We assume the BGK expansion, [4], for the collision 

operator ௜: 
 

௜,௝ ௜,௝
௘௤
௜,௝  (17) 

 
Where  measures the rate of change of the particle local 

distribution relaxing to equilibrium state. We replaced eqs. 
(6-10) in eq. (1), and it is obtained at order : 
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At order ଶ: 
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Replacing eq. (18) in eq. (19) and using definitions eqs. 

(12-13), we obtain:  
With 

௝
௝  (20) 
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With 
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And ௜,ఈ is the vector velocity component in  direction. 

We use the D2Q9 velocity scheme shown in Fig. 1, [3]. The 

weights ௜ in the directions of each cell velocity point are: 
 

௜  (23) 

 
Addresses ௜,ఈ and weights ௜ satisfy the following 

tensorial relationships: 
 

௜ ߙ,݅  (24) 

 

௜ ߙ,݅ ߚ,݅ ఈ,ఉ (25) 

 

௜ ߙ,݅ ߚ,݅ ߛ,݅  (26) 

 
The general form of the equilibrium distribution 

function is given by, [3]: 
 

௘௤
௜,௝ ௜ ௜

ଶ ଶ  (27) 
  

Where a, b, c and d are lattice constants. Using 
equations (20), (21) and (eq22) we can show that eq. (27) is: 

 
௘௤
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Replacing eq. (28) in eq. (22), we obtain: 
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Where 
ଵ

ଶఛ
  is defined as the viscosity and 

we have assumed the state equation to be . 
Therefore, the momentum equation is, [3]: 

 
డ୳ഀ
డ௧ ߚ ఈ ఉ ߙ ߚ ߙ ఉ

ߚ ఈ   
(31) 

 
3.  Model of several fluids and potential interaction 
between particles  

 
For a system consisting of several fluids [2], we suppose 

that each one of them obeys a distribution function given by 
eq. (28), with a temporal evolution on a D2Q9 lattice 
velocity. Furthermore, the total density of the system is 
taken as an average over the individual densities, weighted 
by the rates of change ଵ and ଶ for the two fluids, which 
measure the approach to equilibrium. Therefore: 
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்௢௧௔௟ ଵ ଵ ଶ ଶ (32) 
 
Similarly, the components of the overall speed of the 

system are taken as a weighted average given by ଵ and ଶ, 
in the same manner as was done with ்௢௧௔௟, so: 

 

்௢௧௔௟,௫
ଵ,௫ ଵ ଶ,௫ ଶ

்௢௧௔௟
 (33) 

 

்௢௧௔௟,௬
ଵ,௬ ଵ ଶ,௬ ଶ

்௢௧௔௟
 (34) 

 
On the other hand, for each of the fluids, it is assumed 

on the grid point that a change of momentum is given by a 
repulsive potential, which interacts with its nearest 
neighbors, and it is defined by, [2], [21] and [22]: 

 
ᇱ

௥Ԧ,௥Ԧᇲ
ᇱ  (35) 

 
Where ௥Ԧ,௥Ԧᇲ  is a Green function  and ᇱ , are 

effective density distribution functions. Now, in view of the 
fact that we only consider interactions with nearest 
neighbors, we define the Green function as: 

 

ᇱ
௜,௜ᇲ

ᇱ

௜,௜ᇲ
ᇱ  (36) 

 
Where ௜,௜ᇲ  defines the weight of the interaction 

between the two systems and the sign determines whether 
the potential is attractive or repulsive. Therefore, the 
induced moment on the grid point is: 

 

௜

݅,݅′
௜ᇲ

 (37) 

 
Therefore, the momentum after the collision is: 
 

௜ ௜ (38) 

 
Given this model, we have made simulations and their 

results will be present in section 5. 
 

4.  Experimental setup 
 
The periodic consists of p-type silicon (boron doped, 

single crystalline orientation [111]) polished wafers with 
525 micron thickness and 0.01 to 0.02 Ωm resistance. 
Samples were prepared according to published experimental 
details in reference [23].  

The manufactured surfaces were determined using a 
ZEISS M700 laser confocal microscope and a Cary 5000 
UV-VIS-NIR spectrophotometer. With the help of its 
analytical software the 3D areal surface texture is identified. 

 (A) 

(B) 
 

Figure 2. Samples irradiated with 620 J. (A)- without gas and (B)- with Ar 
gas, [31]. Figures obtained using a confocal laser microscope. 

 
 
In the current literature, the formation of the periodic 

structures has been explained as being due to the polarization 
of the laser and the scanning of the sample by the laser [24], 
which impedes the interaction between the laser and the plasma 
(produced by evaporated material). Under our experimental 
conditions, we obtained incipient periodic structures without 
blowing gas, (Fig. 2 A), and with the gas, the formation of 
periodic structures is improved, due to the evacuation of the 
evaporated material, which has the same effect as the scanning 
of the sample with the laser figure (Fig. 2 B). 

In Figs. 3 A-F, we show the experimental results. figures 
A-B were produced at the threshold energy range 465 J for a 
periodic well-defined structure formation. Surfaces Figs. 3 
C-D show sharp structures, but with some non-removed 
areas, perhaps, due to the gas low efficiency of removal of 
ablated material during laser irradiation. Figs. 3 E-F show a 
sample handled with 3100 J that almost shows the spatial 
periodicity structure, suggesting an optimal energy level 
(i.e. 620 J) for generating clear periodic structures.  

The formation of a periodic structure through the 
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simultaneous incidence of the three laser lines on the 
surface of silicon is due to the energy supplied by the three 
wavelengths, which increases the surface temperature of 
silicon to 1613 K. At this temperature, the melting point of 
silicon is reached. This allows the formation of a non-ideal 
fluid, which generates the periodic structure once the 
surface sample is solidified. Based on this hypothesis, we 
constructed a computer simulation that reproduces the 
experimental pattern, which is discussed later.  

Moreover, experimental results show that there is an 
energy threshold for the formation of the periodic 
structure. This energy threshold can be defined as the 
energy required for melting the silicon surface enough to 
obtain a periodic structure. In our study, this energy is 
found to be 620J. 

The importance of using the laser lines to produce 
periodic structure lies in the fact that electro-mechanical 
systems are not necessary in order to scan the sample with 
the laser, nor are optical devices (beam splitters, focal 
lenses, mirrors and beam expanders) [25-26]. Furthermore, 
the mean square depth (500-700nm) of the periodic 
structure fabricated with the laser lines is higher than those 
reported for periodic structures formed with one only laser 
line (10-30nm) [27]. This difference is important for the 
development of optical devices such as optic filters and 
pass-bands. 

 
5.  Simulation Results 

 
In order to explain the patterns seen in Figs. 2 and. 3, 

which show experimental results, we proposed a two non-
miscible non-ideal fluid system. We assume that the line 
component of the incident laser 355 nm, the most energetic 
one, and the 532 nm close to the experimental average 
distance between peaks 547 ± 13 nm, [23] on the surface, 
cause a melting of material, becoming two non-ideal 
interacting fluids. The third, the lowest energy, is 
transparent for the system. Basically, the action of the laser 
on the silicon surface creates a two fluid phase, resulting in 
a final state given by the patterns. 

We did simulations with a system size of 186x186, 
for a simulation time of 200, and assuming an initial 
random distribution for the distribution function. The left 
panel in Fig. 4 shows the simulation result based on the 
Lattice-Boltzmann simulation result for the density, ρ, of 
the system, and the right one exhibits the confocal 
microscope images result. Clearly, the simulation results 
show the formation of parallel oblique long stripes, or 
ripples, which are the fundamental geometric structure of 
the experimental patterns, and they are shown in the right 
panel of Fig. 4. 

It is possible to explain the pattern formation as being 
produced by the excited electrons in the band structure 
generating the crystalline disorder at the surface. However, 
as long as the energy flux on surface persists, the long range 
order holds, avoiding reaching the statistical equilibrium. 
Therefore, this instability, out of equilibrium, can be 
considered as the interplay between surface roughening and 
surface smoothing [28]. 

 
(A)                                            (B) 

 

 
(C)                                            (D) 

 

 
(E)                                         (F) 

Figure 3. Confocal microscope images of samples irradiated with different 
amounts of energy and argon gas blowing, [23], [31]. Figures obtained 
using a confocal laser microscope. 

 

 
 

Figure 4. Comparison between simulation for a 186x186 lattice size using a 
Lattice-Boltzmann simulation, left panel, and experimental result, right 
panel. Simulation result elaborated in gnuplot [32], and right figure 
obtained using a confocal laser microscope. 
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These two physical effects can be modeled using some 
type of Cahn-Hilliard/Kuramoto-Sivashinsky differential 
equation (CHKS) [29-31], which constitutes a mean field 
approach to problems at the mesoscopic level, and offers 
pattern structures such as stripes, squares etc. This 
theoretical approach is also shared by Lattice-Boltzmann 
[3], and for this reason the simulation is able to reach a 
possible result offered by a CHKS procedure. 

 
6.  Conclusions 

 
Using the hypothesis of a two non-ideal fluids 

interaction governed by lattice Boltzmann method, we can 
reproduce quite well the periodic parallel diagonal stripes 
structures found experimentally with the use of a 
nanosecond multiline Nd:YAG laser on a single-crystalline 
silicon.  
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