
 

 
 
 

 

 

 © The author; licensee Universidad Nacional de Colombia.  
DYNA 81 (187), pp. 209-214. October, 2014 Medellín. ISSN 0012-7353 Printed, ISSN 2346-2183 Online 

DOI: http://dx.doi.org/10.15446/dyna.v81n187.41333 

Application of Bayesian techniques for the identification of 
accident-prone road sections 

 
Thomas Edison Guerrero-Barbosa a & Gloria Estefany Amarís-Castro b 

 
a Universidad Francisco de Paula Santander Ocaña, Colombia. teguerrerob@ufpso.edu.co 

b Universidad del Norte Barranquilla, Colombia. gloriacastro-18@hotmail.com 
 

Received: December 28th, 2013.Received in revised form: May 29th, 2014.Accepted: November 5th, 2014 
 

Abstract 
The use of Bayesian techniques for the identification of accident-prone road sections has become very important in recent years. The 
objective of this investigation consisted of identifying accident-prone road sections in the Municipality of Ocaña (Colombia) using the 
Bayesian Method (BM); the modeling approach developed involved the creation of a database of accidents that occurred between the years 
2007 (January) and 2013 (August) and the application of the methodology on 15 sections of urban road. The final analyses show that the 
BM is an original and fast tool that is easily implemented, it provides results in which 4 accident-prone or dangerous road sections were 
identified and ranked them in order of danger, establishing a danger ranking that provides a prioritization for investments and the 
implementation of preventive and/or corrective policies that will maximize benefits associated with road safety. 
 
Keywords: Bayesian Method, accident-prone sections, hazard ranking, road safety. 
 
 

Aplicación de técnicas Bayesianas en la identificación de tramos 
viales propensos a accidentes 

 
Resumen 
El uso de técnicas bayesianas para la identificación de tramos de carretera propensos a accidentes ha llegado a ser muy importante en los 
últimos años. El objetivo de esta investigación consistió en identificar los tramos de carretera propensos a accidentes en el municipio de 
Ocaña (Colombia), utilizando el método bayesiano (BM); el enfoque de modelación desarrollado consistió en la conformación de una base 
de datos de accidentes ocurridos entre los años 2007 (enero) y 2013 (agosto) y la aplicación de la metodología en 15 tramos de carreteras 
urbanas. Los análisis finales muestran que el BM es una herramienta poderosa y rápida de fácil implementación, que proporciona resultados 
en los que se identificaron 4 tramos de carretera propensos a los accidentes o peligrosos y los clasificó por orden de peligro, el 
establecimiento de un ranking de peligro proporciona un orden de prioridades para las inversiones y la aplicación de políticas preventivas 
y / o correctivas que maximicen los beneficios asociados con la seguridad vial. 
 
Palabras clave: Método Bayesiano, tramos propensos a accidentes, ranking de peligrosidad, seguridad vial. 
 
 
 
1.  Introduction 

 
Accident rates are alarmingly high in Colombia, and this 

has become a public health problem with great economic 
impact. Official statistics show that the vulnerable groups are 
primarily pedestrians and motorcycle riders, which collectively 
account for 70% of deaths in road accidents. Statistics also 
show that between the years 2005 and 2010 there was an 
increase in deaths from traffic accidents, from 5.418 to 5.502, 
and in 2010 over 39.275 seriously injured persons were 
registered according to the National Institute of Legal Medicine 
and Forensic Sciences (INML), with traffic accidents becoming 

the number-one cause of death for children between five and 14 
years of age, and the second leading cause of death for people 
between 15 and 24 years of age. According to data provided by 
the INML, 2.044 people under the age of 30 died in traffic 
accidents in Colombia in the 2010 [1]. 

The identification of the accident-prone sections is one of 
the alternatives available to properly address the problem, 
and tends to be the first step in the investigation and 
implementation of road safety programs. This is because 
once these sections have been defined as high-risk, possible 
factors associated with the frequency of accidents are 
determined (e.g. volume of vehicles, environmental factors,  
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Table 1. 
Investment in Road Safety in the Americas 2006-2007 

Country 
Annual budget to fund 

the National Strategy for 
2008 (USD$) 

Population 
2007 

Expenditure 
per capita in 

USD$ 
Bahamas 10.100,00 331.278 0,03 
Canada 14.100.000,00 32.876.047 0,43 
Colombia 16.541,20 46.155.958 0,00 
Costa Rica 32.980.000,00 4.467.625 7,38 
Honduras 1.083.800,00 7.106.001 0,15 
México 8.706.240,00 106.534.880 0,08 
Nicaragua 1.179.035,20 5.603.190 0,21 
United States 838.000.000,00 305.826.246 2,74 

Source: Adapted from [14] 
 
 

geometric characteristics of road infrastructure, and speed), 
and preventive and/or corrective policies are then proposed 
to decrease the indicators associated with the accidents. 
Evidence reports the effect of factors associated with road 
geometry [2-4], vehicle volumes [5,6], environmental 
conditions [3,7] and speed [8,9] on the occurrence of 
accidents, which is estimated with Poisson regression, 
negative binomial, generalized linear models. Likewise, the 
assessment of the effectiveness of road safety measures using 
the Bayesian empirical approach has also been reported in 
other studies [10-12]. 

According to [13], an element that is part of road 
infrastructure (sections of highways, intersections, curves, 
among others) may experience a high number of accidents due 
to two conditions: high random variations of traffic accidents 
during periods of observation and safety problems associated 
with the surroundings (high vehicular traffic, nature of the site, 
inappropriate geometric road design). The study and 
identification of accident-prone sites (also called hotspots, 
blackspots, sites with promise, high-risk locations, accident-
prone locations) can suffer from two types of common effects. 
The first effect, termed a false negative, corresponds to an 
unsafe site that does not show high rates of accidents. It is also 
possible to observe high accident rates in a relatively safe site, 
which is referred to as a false positive. The two situations above 
need to be taken into account in determining where to invest in 
road safety, because, in a bureaucracy such as that of Colombia, 
investments in road safety are restricted and limited (as shown 
in Table 1, which shows marked differences in investment in 
road safety in terms of per capita spending by country). False 
negatives lead to the loss of opportunities for effective road 
safety investments. As is to be expected, correct determinations 
of the safety of a site is essential, including the identification of 
a safe site as “safe” and an unsafe site as “unsafe.” For the 
purposes of this research, we sought accident-prone sections 
that produced the lowest proportion of false negatives and false 
positives using the BM. 

In reviewing the available research, it was found that 
there is evidence of other techniques parallel to the BM with 
which it is possible to identify accident-prone sections; these 
include the Classification Method [15,16] and the 
Confidence Interval Method [17], which use different 
approaches for the analysis and determination of accident-
prone sections. It was concluded that in some cases a large 
number of false positives are produced using these methods, 
while in other situations, when dealing with sites with 

relatively few accidents and low exposure, significant 
improvements cannot be evaluated and/or experienced [13]. 
Another method that has been used in the last few years as a 
reliable method providing pertinent results is the Quantile 
Regression Method [18]. The BM has greater credibility and 
better results in the identification of accident-prone sections, 
for which reason it is the subject of study in this research. 
Other studies [13, 19-23] have demonstrated that the BM 
offers a greater capacity to determine highly hazardous or 
risky sites in terms of safety. With regard to the hazard 
ranking of the accident-prone sections found, there are 
studies that report how prioritization for efficient investments 
can be achieved using the BM [24]. 

 
2.  Methodological bases 

 
2.1.  The Bayesian Method (BM) 

 
The use of the BM in the identification of accident-prone 

sections is based on relating n random variables (Y1, ..., Yn) 
corresponding to i sections (i = 1,..., n) under study, where a 
current ratio of accidents (λi) occurs during a specific time 
period. We assume that λi is distributed in accordance with a 
law of probability with a function of density f(λi | θi), where θi 
represents the mean number of accidents in section i (parameter 
of interest). The Bayesian approach, assuming a distribution 
with density π(θi) in θi, allows the incorporation of prior 
knowledge regarding the behavior of θi. This prior information 
is combined with the information presented by the sample in 
the subsequent distribution, represented by p(θi | λi). The 
subsequent distribution of θi is a direct application of Bayes’ 
theorem and has the form of the eq. (1) [25]: 

 

௜ ௜
௜ ௜ ௜

௜

௜ ௜ ௜

௜ ௜ ௜ ௜
 (1) 

 
Where m(λi) represents the function of unconditional 

marginal density of λi and f(λi|θ) is the probability of the data 
observed.  

Put simply, the BM, as shown in [24], groups this 
estimate into two consecutive processes: in the first instance, 
it estimates the history of accidents for each of the sites (i) in 
order to define the distribution of probability of the ratio of 
accidents in each section studied locally. The second step 
consists of using this local probability distribution and the 
accident rate of each site (i) in order to obtain a more precise 
estimate of the probability distribution that is associated with 
the ratio of accidents of a particular site (i). In this way, it is 
possible to assess the probability that one of the sections 
under study may be dangerous. The function of accumulated 
distribution associated with the accident ratio (λi) is 
represented in the eq. (2): 
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 (2) 

 
Where Vi is the number of vehicles that transit along 

section i during the period of study, Ni is the number of 
accidents that occur in section i studied within the time frame 
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analyzed (for this case, the number of accidents that occurred 
between January 2007 and August 2013), and fi (λ│Ni,Vi) is 
the probability density function associated with the ratio of 
accidents in section i. Prior research [13] sets out two basic 
assumptions on which the BM bases its logic: 

Assumption 1: In a given place, the occurrence of crashes 
follows a Poisson-type counting process, where the 
probability that n accidents occur per unit of time (n = 0, 1, 
2,.) is given by the following eq. (3): 

 

௜
௜

௜
௜
௡ ିఒ௏೔

 (3) 

 
Assumption 2: The probability distribution Fr(λ) is of the 

population of the gamma-distributed sites, where g(λ) is denoted 
as the gamma probability density function (eq. 4) and is typically 
modeled as a function of the co-variables of the site. 

 

௥

ఈ ఈିଵ ିఉఈ

 (4) 

 
In these equations, α is the parameter of form and β is the 

parameter of scale of the gamma function, which can be 
estimated from the procedures set out by [26]. Finally, the 
BM permits two types of approximations from which it is 
possible to identify the accident-prone sections. The first 
makes use of the eq. 5 to determine them: 

 

௜
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଴
 (5) 

 
Where: λp is the mean of the ratios of accidents observed 

for all of the sections studied and λcr corresponds to the 
accident-prone rate in each section studied. 

For this first approximation, the probability (Prob) of λcr ≤ λr 
is estimated; this probability is defined according to a 95% 
confidence interval. In this way, values of λcr are estimated such 
that there is a probability of 95% and λcr ≤ λr is compared; if this 
verification is met, the null hypothesis (H0: λcr ≤ λr) is accepted, 
and it is said that a section is accident prone. 

The second approximation sets out the estimate of 
probability based on the following model (eq. 6): 

 
௜
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Where: λr is the accident ratio observed for all of the 

sections studied in the time period in which the observations 
were made. In the estimates based on the second 
approximation, the probability (Prob) is calculated and 
compared against that established in the 95% probability 
threshold. If this probability is greater than or equal to 95%, 
the null hypothesis (H0: Prob ≥ 95%) is accepted and it is said 
that a section is accident prone. 

 
2.2.  Criteria used to determine a hazard ranking 

 
Once the accident-prone sites have been identified, it is 

necessary to establish a hazard ranking and, in this way, 

prioritize investments and the implementation of preventive 
and/or corrective policies that will maximize benefits 
associated with road safety. Investment priorities must be based 
not only on a hazard ranking, but also cost-benefit analysis; 
however, this aspect was not considered for this research. There 
are two criteria that allow a hazard ranking to be determined: 

 
2.2.1.  Criterion 1 

 
This procedure relates the accident ratio observed in each 

section studied (λr) to the accident-prone rate in each section 
studied (λcr). This ratio must be greater than one (λr/ λcr ≥ 1). 

 
2.2.2. Criterion 2 

 
This criterion is defined by the eq. 7: 
 

௥ ௖௥  (7) 
 
Where the Average Daily Transit (ADT) and the time 

(years) for which there are accident records are related, 
estimated as follows (eq. 8): 

 

 (8) 

 
2.3.  Data and sections studied 

 
A database was prepared of the records of accidents that 

occurred in the urban perimeter of the municipality of Ocaña 
between January 2007 and August 2013. Based on other studies, 
time periods of between 3 and 6 years are suitable for this type of 
study [13]. In parallel, and based on prior studies [27] the BM was 
applied in 15 roads corridors of Ocaña. The length of the sections 
(L) is a variable identifying each road section. Each section is 
classified as homogeneous in terms of geometric and operational 
characteristics. However, at present the effects of the length of the 
identification section on the hotspot are still not as clear [28]. 
Some other evidence from the literature shows the variation in the 
length of sections of road [28-30]. 

Since the BM allows relating the number of accidents 
allocated to each section with vehicle volumes, it was necessary 
to estimate the ADT for each of the 15 corridors to be studied. 
In summary, a total of 1,062 accidents were reported, spread 
out among the 15 sections studied. It must be clarified that in 
countries such as Colombia (particularly in Ocaña), accident 
records are obtained from the National Police and other entities, 
such as the Volunteer Firefighters' Corps and/or Ocaña Civil 
Defense, which are entities that deal with accidents. This 
involves some disadvantages, because there is no linkage 
and/or agreement between those reported by medical sources 
and those from police records, resulting in underestimates of the 
records; in addition, records of accidents with minor injuries, 
single-vehicle accidents and cyclist accidents are sometimes 
not reported [31,32]. 

 
3.  Study area 

 
Ocaña is a city located in the northwestern region of 

Colombia in the Norte de Santander department. It is the  
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Figure 1. Geographic Location of Ocaña (Colombia).  
Source: The Authors 

 
 

second largest town of the department after Cúcuta, with 
approximately a population of 100.000 including rural areas. It 
has elevation relative to sea level of 1202 m and a land area of 
460 km2, representing 2,2% of the surface of department. The 
geographic location of Ocaña is presented in Fig. 1: 

 
4.  Results and discussion 

 
As was already mentioned in the previous section, two 

types of approximations were used to determine whether or 
not a section is accident prone in terms of road safety. 
Parameters were estimated that allow for estimating the 
critical status of the section from the approximation where it 
is verified that λcr ≤ λr. The evaluation and identification of 
the accident-prone section and the estimate of the other 
parameters can be seen in Table 2. 

 
Table 2.  
Identification of Sections λcr ≤ λr 

Sectio
n (i) 

N ADT L λr λcr Prob State 

1 45 13.380 751,24 1,3163 2,1712 95,00% 
Non-

Critical 

2 38 20.047 1.007,66 0,7419 2,0941 95,00% 
Non-

Critical 

3 28 8.607 1.141,10 1,2733 2,2784 95,00% 
Non-

Critical 
4 226 14.158 1.801,56 6,2476 2,1594 95,00% Critical 

5 170 49.506 1.407,54 1,3440 2,0157 95,00% 
Non-

Critical 

6 179 10.791 4.084,26 6,4923 2,2200 95,00% Critical 

7 41 12.342 1.233,64 1,3002 2,1888 95,00% 
Non-

Critical 

8 13 18.568 685,18 0,2740 2,1074 95,00% 
Non-

Critical 

9 22 12.193 355,85 0,7062 2,1915 95,00% 
Non-

Critical 

10 4 15.692 374,85 0,0998 2,1386 95,00% 
Non-

Critical 

11 57 9.632 2.524,63 2,3162 2,2483 95,00% Critical 

12 25 15.745 732,16 0,6215 2,1380 95,00% 
Non-

Critical 

13 47 18.381 684,50 1,0008 2,1092 95,00% 
Non-

Critical 

14 17 10.958 667,54 0,6072 2,2163 95,00% 
Non-

Critical 

15 150 26.278 1.283,53 2,2341 2,0513 95,00% Critical 

Source: The Authors 

 
Figure 2. Location of the Accident-prone Sections. Source: The Authors 

 
 

Table 3.  
Identification of Sections Prob ≥ 95% 

Section (i) N ADT L λr Prob State 

1 45 13.380 751,24 1,3163 1,66% Non-Critical 

2 38 20.047 1.007,66 0,7419 0,00% Non-Critical 

3 28 8.607 1.141,10 1,2733 2,94% Non-Critical 

4 226 14.158 1.801,56 6,2476 100,00% Critical 

5 170 49.506 1.407,54 1,3440 0,38% Non-Critical 

6 179 10.791 4.084,26 6,4923 100,00% Critical 

7 41 12.342 1.233,64 1,3002 1,69% Non-Critical 

8 13 18.568 685,18 0,2740 0,03% Non-Critical 

9 22 12.193 355,85 0,7062 0,00% Non-Critical 

10 4 15.692 374,85 0,0998 0,13% Non-Critical 
11 57 9.632 2.524,63 2,3162 96,96% Critical 
12 25 15.745 732,16 0,6215 0,01% Non-Critical 

13 47 18.381 684,50 1,0008 0,00% Non-Critical 

14 17 10.958 667,54 0,6072 0,00% Non-Critical 

15 150 26.278 1.283,53 2,2341 99,65% Critical 
Source: The Authors 

 
 
From the analysis and the estimates made with the first 

approximation, it can be observed that four sections were 
identified as accident-prone or dangerous sections. The 
accident-prone sections correspond to those identified as 4, 
6, 11 and 15, which are shown in Fig. 2. 
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Table 4.  
Hazard Ranking Criterion 1 

Section (i) λr λcr (λr/λcr)>1 Ranking 
4 6,25 2,16 2,89 2 
6 6,49 2,22 2,92 1 

11 2,32 2,25 1,03 4 
15 2,23 2,05 1,09 3 

Source: The Authors 
 
 
Table 5.  
Hazard Ranking Criterion 2 

Section (i) λr a λcr (λr-λcr)*a Ranking 

4 6,25 36,17 2,16 147,89 1 

6 6,49 27,57 2,22 117,79 2 

11 2,32 24,61 2,25 1,67 4 

15 2,23 67,14 2,05 12,28 3 
Source: The Authors 

 
 

 
Figure 3. λcr (BM) and λcr (Poisson) Trends.  
Source: The Authors 

 
 
The estimates, presented in Table 3, show the accident-

prone sections to be those given by the second 
approximation; these results show that the BM is an accurate 
and reliable methodology. The BM offers reductions of 50% 
in false positives and false negatives as identified by other 
methods [13]. 

Having identified the four accident-prone sections of the 
15 originally defined sections, it is necessary to determine a 
hazard ranking of accident-prone sections, given that 
investments in road safety are very scarce and the efficiency 
and optimization of these resources is necessary in order to 
maximize their benefits in terms of road safety. The 
estimated results per criterion 1 and criterion 2 of the hazard 
ranking are shown in Table 4 and Table 5. Note that the two 
analyzed criteria differ. According to criterion 1, the most 
dangerous section is 6, followed by 4, while criterion 2 puts 
section 4 in first place in the ranking and then section 6. This 
situation may be due to criterion 2 giving more weight to the 
parameter associated with the ADT and its relation to the 
accidents, thus producing the discrepancy in the ranking of 
the described situation; however, to be clear, other sections 
analyzed have the same place in the ranking under both 
criteria. The sections identified as 4 and 6 correspond to the 
road section between La Ondina until Defensa Civil and 

Avenida Circunvalar, respectively. 
It was possible to estimate the parameters λcr following a 

Poisson-type counting process, which is suitable for this type 
of analysis. These values are graphed with the values of λcr 
obtained by the BM. The comparison of both trends is 
observed in Fig. 3, in which the adjustment of both curves to 
a logarithmic model is easily predictable, where the curve 
corresponding to λcr (Poisson) is below the curve λcr (BM). 
This observation has a direct relationship to the effect of 
regression towards the mean, thereby producing a more 
conservative curve, as is also shown by [24]. 

 
5.  Conclusions 

 
It was possible to identify four accident-prone sections 

from the application of the approaches used (λcr ≤ λr and Prob 
≥ 95%). The two types of Bayesian approximations were 
used in this research in order to identify four accident-prone 
sites in which similar results were found, minimizing in this 
way the identification of false positives or false negatives that 
would influence the results of the research and divert 
investment of resources to road sections where it is not 
necessary. These approximations also allow controlling for 
the effect of regression towards the mean, which is very 
common in this type of modeling. The estimation results with 
the MB allow be certain of which are the true accident-prone 
sections in the municipality of Ocaña. 

It was possible to apply the hazard ranking to the four 
sections identified as accident prone using two criteria. 
Although identical results were not obtained using both criteria. 
They are similar, however, and their use is recommended for 
the prioritization of investments, the explanation of their 
importance having already been provided. 

The methodological approach of the MB applied to the 
urban area of the municipality of Ocaña gives coherent and 
accurate results, corroborating that this method contributes to 
and is suitable for studies of accident rates, and, more 
specifically, for the identification of accident-prone sites. 

It must be clarified that accident data were used in this 
research, i.e. those that had occurred in the field (not 
simulated). This is an advantage, given that when one works 
with real data it is possible to identify accident-prone 
sections, whereas in the use of other approaches uncontrolled 
observational environments are evident [23]. 

The parameter estimation λcr (Poisson) and λcr (BM) shows 
consistency of results and relevance in the use of the 
methodology applied; the behavior of the curve for both 
approaches was as expected and supports the results obtained. 

Future research may measure the effectiveness of the BM 
against other methods such as Quantile Regression, 
Confidence Intervals or the Classification Method. 
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