

© The author; licensee Universidad Nacional de Colombia.
DYNA 82 (189), pp. 216-225. February, 2015 Medellín. ISSN 0012-7353 Printed, ISSN 2346-2183 Online

DOI: http://dx.doi.org/10.15446/dyna.v82n189.43068

Lottery scheduler for the Linux kernel

María Mejía a, Adriana Morales-Betancourt b & Tapasya Patki c

a Universidad de Caldas and Universidad Nacional de Colombia, Manizales, Colombia, mariah.mejia@ucaldas.edu.co

b Departamento de Sistemas e Informática at Universidad de Caldas, Manizales, Colombia, adriana.morales@ucaldas.edu.co
c Department of Computer Science, University of Arizona, Tucson, USA, tpatki@cs.arizona.edu

Received: April 17th, 2014. Received in revised form: September 30th, 2014. Accepted: October 20th, 2014

Abstract
This paper describes the design and implementation of Lottery Scheduling, a proportional-share resource management algorithm, on the
Linux kernel. A new lottery scheduling class was added to the kernel and was placed between the real-time and the fair scheduling class
in the hierarchy of scheduler modules. This work evaluates the scheduler proposed on compute-intensive, I/O-intensive and mixed
workloads. The results indicate that the process scheduler is probabilistically fair and prevents starvation. Another conclusion is that the
overhead of the implementation is roughly linear in the number of runnable processes.

Keywords: Lottery scheduling, Schedulers, Linux kernel, operating system.

Planificador lotería para el núcleo de Linux

Resumen
Este artículo describe el diseño e implementación del planificador Lotería en el núcleo de Linux, este planificador es un algoritmo de
administración de proporción igual de recursos, Una nueva clase, el planificador Lotería (Lottery scheduler), fue adicionado al núcleo y
ubicado entre la clase de tiempo-real y la clase de planificador completamente equitativo (Complete Fair scheduler-CFS) en la jerarquía
de los módulos planificadores. Este trabajo evalúa el planificador propuesto en computación intensiva, entrada-salida intensiva y cargas
de trabajo mixtas. Los resultados indican que el planificador de procesos es probabilísticamente equitativo y previene la inanición de
procesos. Otra conclusión es que la sobrecarga de la implementación es aproximadamente lineal en el número de procesos que corren.

Palabras clave: Planificador Lotería, Planificador de procesos, núcleo Linux, sistemas operativos.

1. Introduction

Process management is one of the major responsibilities

of any operating system. It involves allocating various
resources to processes. The CPU is the most important
resource that must be shared efficiently among many
competing processes in a given system. The scheduler
manages the running processes in the system and runs a
scheduling algorithm to service running those processes.
Different scheduling algorithms are better for particular
application types: real time, batch, and user-interactive.

There are many algorithms in the literature that provide
efficient and fair scheduling for a CPU. Some of these
algorithms are First-In-First-Out (FIFO), Round Robin, and
Fixed-Priority Preemptive Scheduling. There are basically
five criteria by which a scheduling algorithm can be
evaluated: fairness that makes sure each process gets its fair
share of the CPU, efficiency that keeps the CPU busy 100%

of the time, response time that minimizes response time for
interactive users, turnaround that minimizes the time batch
users must wait for output and, finally, throughput that
maximizes the number of jobs processed in a given
timeframe [1].

In 1994, Waldspurger et al. [2] proposed the Lottery
Scheduler, a randomized resource allocation algorithm that
efficiently implements proportional-share resource
management. This scheduling algorithm solves the problems of
starvation (perpetual denial of CPU time-slice) and priority
inversion, and is probabilistically fair, unlike other process
scheduling algorithms which do not ensure fairness.

For this work, the lottery scheduling algorithm was
implemented on the Linux 2.6.24 kernel. Although, the
actual stable Linux kernel version is 3.14.1, the scheduler
algorithm has not been modified mainly since the 2.6.23
version where the Completely Fair Scheduler (CFS) was
introduced [3,4]. The rest of this report has been organized

Mejía et al / DYNA 82 (189), pp. 216-225. February, 2015.

217

as follows. Section presents related work. Section provides
an overview of the lottery scheduling algorithm. Section
discusses the implementation of the lottery scheduling
algorithm in detail. It includes the implementation of the
lottery scheduling class, the integration of the scheduler
with the Linux kernel, and the experience with User-Mode
Linux which gives a virtual machine ideal for kernel
development that supports the Linux 2.6.24 without risking
the main Linux installation [14]. Section presents an
overview of test cases and test scenarios, followed by a
detailed discussion of the results obtained. Lastly, the
conclusion and future work sections are presented.

2. Related work

Computer resource allocation has been a research target

in computer science with several works with different
approaches to this topic. Miller and Drexler [5] proposed
the escalating-bid auction mechanism in “Incentive
Engineering for Computational Resource Management” as
an alternative to be used for CPU allocation. The main goal
of the Share scheduler presented by Kay and Lauder [6] in
“A Fair Share Scheduler” is to grant fairness between users
encouraging load spreading and avoiding starvation. This
work describes an algorithm that grants users shares on a
system in a comparable way to the resource rights granted
to a user by lottery tickets. The Share scheduler seeks to
guarantee fair-share allocation of CPU resources, being
similar to lottery scheduling related to users’ resource rights
preservation. Waldspurger et al [7] implement a distributed
computational economy with CPU resource as the
commodity of the economy (SPAWN), proposing that
computer resource allocation can be performed according to
resource allocation in a marketplace. This approach can
solve the issue of fairness, but complexity and overhead are
big issues on the corresponding implementation. In contrast,
a lottery scheduler can also fairly manage resources with the
advantage of minimal overhead.

In “Lottery Scheduling: Flexible Proportional-Share
Resource Management”, Waldspurger and Weihl [8]
introduced the idea of lottery scheduling, giving each process
a set of numbered lottery tickets and picking a random number
that gives the winning process access to a required resource.
A process’ odds of receiving the CPU are directly related to
the number of lottery tickets that have been allocated to the
process. Also, Waldspurger and Weihl [9] on "Stride
Scheduling: Deterministic Proportional-Share Resource
Management" introduced another scheduler designed to retain
a high degree of control over proportional resource allocation
like the lottery scheduler, attempting to improve the variability
in process latency.

Fong & Squillante [10] presented TFS (Time-Function
Scheduling), which is similar to lottery scheduling, trying to
maintain a high degree of control over resource allocation.
With this approach, processes are grouped together in
classes that are defined by a time-function, putting on the
same class processes with similar scheduling objectives and
similar characteristics. Petrou, Milford and Gibson [11]
found some poor response time for I/O bound process on

Figure 1. Main ideas of the Lottery Scheduling Algorithm.
Source: Owner

the implementation of the lottery scheduling algorithm in
“Implementing Lottery Scheduling: Matching the
Specializations in Traditional Schedulers”. This work was
focused on the required changes to address the found
shortcomings and performance of one hybrid lottery
scheduler. Jennifer Spath [12] explores lottery scheduling in
the Linux Kernel. This work focuses on the implementation
of lottery scheduling in the Linux kernel. There is a
comparison between system performances with the standard
Linux scheduler. Compensations tickets are also
implemented to ensure equal CPU time for interactive
process.

Zepp [13] explores how the Linux OS performs using
the lottery method scheduling as compared to priority based
scheduler, and “fair-share” scheduling in managing the CPU
resource. All the tests are performed on vanilla 2.4 kernel,
using the Linux user account as the trust boundary form
modular resource management. This work focuses on the
scheduler’s capacity to manage CPU bound and I/O bound
processes.

3. Background – Lottery Scheduling

Lottery scheduling is a probabilistic process scheduling

algorithm. Each process is assigned a few lottery tickets,
and the scheduler holds a lottery to draw a random ticket.
The CPU is granted to the process with the winning ticket.
The ticket distribution could be non-uniform. If a process
has more tickets than other processes, it has a higher
probability of winning and being selected for execution.
Since a process with at least one ticket will eventually win a
lottery, the problem of starvation is solved and probabilistic
fairness is ensured. See Fig.1.The throughput of the system
as well as the responsiveness depends on the distribution
and allocation algorithm used [2]. The lottery scheduling
approach can be used for any other kind of resource as well,
not just the CPU [19,18]. In such situations, we refer to the
competing entities as clients.

Some techniques for implementing resource
management policies with lottery tickets are:

3.1. Ticket transfers

This technique is used in situations where a client is

blocked holding a resource due to some dependencies, and
another client is waiting for the first client to release the shared
resource. One solution is to transfer the tickets to the blocked

Mejía et al / DYNA 82 (189), pp. 216-225. February, 2015.

218

client, so that it has a higher probability of executing and can
finish the task faster and release the resource sooner from
which both clients will benefit. A client must have the ability
to transfer its tickets to one or more clients that it depends on.

3.2. Ticket inflation

This is considered an alternative to explicit ticket

transfers where a client can create more tickets for itself. On
one hand, this approach can present problems in the sense
that a client can monopolize a resource by creating a large
number of lottery tickets. On the other hand,
inflation/deflation can be used to adjust resource allocations
without any explicit communications between clients,
leading to a better throughput.

3.3. Compensation tickets

If a client uses only a fraction f of its allocated resource

unit (for example, CPU cycles/time), it can be assigned
compensation that inflates its number of tickets by a factor
of 1/f. This ensures fairness and better responsiveness in
case of process scheduling. Interactive processes show this
behavior frequently because they enter the wait state while
reading data from the disk/memory. Compensation helps
these processes get their fair share of the CPU.

Fig.2 shows an example of how this algorithm works. For
selecting the winning process, the algorithm generates a
random number between one and the total number of tickets in
the system. It then traverses the run-queue by accumulating
the number of tickets it has seen so far. For each process in the
queue, it checks whether the accumulated number of tickets is
greater than the random number. If it is, then this would be the
winning process which holds the randomly drawn lottery
ticket. Observe that the total number of tickets in the system is
40 and the random number is 35. For each process, we check
whether the number of tickets accumulated so far is greater
than 35. We continue until we reach the fourth process, which
is declared to be the winner and is granted the CPU.

4. Implementation

We present an overview of User-mode Linux and the

existing Linux 2.6 scheduler followed by a detailed
description of our implementation on the Linux 2.6.24 kernel.

4.1. User-mode Linux

User-Mode Linux (UML) [14] is a virtual machine

environment that lets us run Linux guest systems in user-

Figure 2. Lottery Scheduling.
Source: Adapted from [2]

space. It is used for multiple purposes, such as kernel
development, testing new distributions and patches, hosting
of virtual servers, and running network services
independently of a real system.

Instead of interacting directly with the hardware, the UML
kernel interacts with a Linux kernel like a user-space program.
In addition, given that it is a virtual machine, it allows the user
to run programs on top of it as if they were running under a
normal kernel. Even if UML crashes, the host kernel is still
working and is unaffected by the error. This makes UML an
ideal platform for kernel development. It is possible to modify
and program an instance of a kernel without suffering any
damage in the host Linux. UML can also be debugged like
any other normal process using standard debuggers like gdb.
In other words, it is possible to carry out new development
and testing at the kernel level in a safe way.

Despite its advantages, UML is limited and does not
offer all the functionality that a host Linux system would
offer. For instance, it does not support multiple virtual
consoles or terminals that are important when testing the
kernel, and it is very difficult to set up networking. Another
limitation is that testing for multiple users is not feasible.
Because of these shortcomings, we could not test our
implementation in a multiuser setup as UML did not return
to the shell promptly after setting a user, rendering it
impossible to set another user. We also had to run our
processes in the background, as we had access to only one
terminal screen and we could not launch multiple processes
in the foreground and test them.

UML can be downloaded and built from source by using
the ARCH=um option while configuring and building the
source. UML has a detailed installation guide [14,15].

4.2. Overview of the Linux 2.6 Scheduler

The Linux 2.6 kernel introduced an O(1) process

scheduling algorithm that was independent of the number of
runnable tasks in the system. The previous scheduler was an
O(n) scheduler which was slow and lacked scalability. The
pre-2.6 scheduler also used a single run-queue for all the
processors and used a single run-queue lock, which further
degraded performance [1,16].

One of the main differences in the earliest Linux 2.6
scheduler is that each processor has its own run-queue, which
helps in reducing lock contention. Additionally, the concept of
a priority array is introduced which uses the active array and
the expired array to keep track of tasks in the system. The
O(1) running time is obtained with the help of these new data
structures. The scheduler puts all processes that used their
time-slice in the current scheduling run into the expired array.
When there are no active processes left in active array, it
swaps active array with expired array. The scheduler always
schedules the task with the highest priority first, and if
multiple tasks exist at the same priority level, they are
scheduled in a round robin fashion. The scheduler also
achieves load balancing by migrating tasks from busy
processors to idle processes. The earliest 2.6 kernel supports
SCHED_FIFO and SCHED_RR for real-time scheduling, and
the SCHED_NORMAL uses the O (1) policy. In kernel
2.6.23, the Completely Fair Scheduler (CFS) was introduced.

Mejía et al / DYNA 82 (189), pp. 216-225. February, 2015.

219

This scheduler, instead of relying on run queues, uses a red-
black tree implementation for task management.

Linux 2.6 kernel also introduced the notion of
scheduling classes, and a hierarchy of scheduler modules.
Each scheduling class encapsulates a scheduling policy.
These classes are maintained as a linked list, and provide an
extensible framework. The current implementation includes
the CFS class, and the RT (Real Time) class which
comprises of the SCHED_FIFO and SCHED_RR policies.
When the policy of a task is set to SCHED_NORMAL or
SCHED_IDLE, the CFS scheduling policy is used. This
concept of scheduling classes led to a significant refactoring
of the process scheduling code.

We now provide a brief overview of the important data
structures and the schedule() function from the Linux 2.6
scheduler. We discuss the fields that are most relevant to our
implementation. The next subsection then illustrates how our
code integrates with the data structures discussed here.

4.2.1. Struct task_struct

This is the Process Control Block. Every process in the

system is represented by a task_struct. This is a very large
data structure that holds together all information related to a
process. When a process or a thread is created, the kernel
allocates a new task_struct for it. The kernel then stores this
in a circular linked list called task_list. The most important
fields from this structure from the point of view of
implementing a scheduling algorithm are:

 state: describes the current state of a process, which
could correspond to TASK_RUNNING,
TASK_INTERRUPTIBLE,
TASK_UNINTERRUPTIBLE, TASK_ZOMBIE or
TASK STOPPED.

 policy: holds a value of scheduling policies.
 sched_class: a pointer to schedule class.

4.2.2. Struct rq

 The kernel creates a run-queue of type struct rq for

each available processor at boot time. This structure
further contains a run-queue for each scheduling
policy and holds the following information:

 nr_running: number of runnable tasks on the run-
queue

 nr_switches: number of context switches
 cfs: run-queue for the CFS scheduling policy
 rt: run-queue for the real-time scheduling policy
 curr: pointer to the currently executing task
 lock: spin lock for the run-queue
 active: the active priority array, contains tasks that

have not used up their time-slices
 expired: the expired priority array, contains tasks that

have used up their time-slices

4.2.3. Struct sched_class

This structure provides the framework to implement a

new scheduling class. It uses the following callback
functions. To implement a new scheduling policy, we need

Figure 3. The Schedule() function in brief.
Source: Owner

to define a new scheduling class. A run-queue has to be
created, and queue operations such as enqueue, dequeue,
requeue need to be implemented. These are discussed
below.

 enqueue_task: called when a task enters a runnable
state; increments nr_running

 dequeue_task: called when a task needs to go to the
wait state; decrements nr_running

 requeue_task: called when the time-slice of a task
expires and it needs to be requeued

 check_preempt_curr: checks if a task that entered the
runnable state should preempt the currently
executing task

 pick_next_task: chooses the task that should run next
from the run-queue

 next: This is a pointer to the next scheduling class in
the hierarchy

4.2.4. The Schedule() function

The schedule() function is the most important function in

the sched.c file. It is in-charge of selecting the next process
based on the scheduling classes and for performing a context
switch between the currently executing process and the
process that has been selected to be executed. This function is
called when a timer-interrupt occurs (scheduler_tick), when a
process wants to sleep or when a process voluntarily yields
the CPU (sys_sched_yield). Fig.3 and the call graph in Fig.4
provides an overview of this process.

The first general instruction of the schedule() is to
disable preemption. It then retrieves the run-queue based on
current processor by calling smp_processor_id() followed
by cpu_rq(). Then, it releases the kernel lock on the current
task and obtains the lock on the current run-queue. The next
step is to invoke the pre_schedule() method. At this point, it
is time to determine which task should be executed next,
and this is done by calling pick_next _task(). The scheduler
invokes the function based on the scheduling policy, and
looks for the appropriate implementation in the
corresponding scheduling class. Once the next task has been
chosen, the schedule function checks not only whether the
current task is the same as the next task but also whether a
context switch is really required. If the two tasks are the
same, it simply releases the lock of running queue and
executes post_schedule(). Otherwise, it performs a context
switch and then executes post_schedule().

Mejía et al / DYNA 82 (189), pp. 216-225. February, 2015.

220

Figure 4. Call graph for schedule() function.
Source: Owner

4.3. Implementing the Lottery Scheduler

This subsection describes the detailed implementation of

the lottery scheduling policy. We begin by stating our
assumptions and the data structures that we introduced in
the kernel. We then discuss the scheduling class that we
added. Further, Section 4.4 explains our debugging and
logging mechanisms [11,17].

4.3.1. Assumptions

For the scope of this implementation, we make the

following 3 assumptions: 1) Every new process will be
initialized to three tickets. 2) At any point in time, a process
can possess a maximum of five tickets, and a minimum of
one ticket. And 3) Compensation would favor interactive
processes and punish processes that have been luckier than
others. If less than 10ms have elapsed since the last time the
process was on the CPU, the process loses one ticket. If
more than 100ms have elapsed since the last time the
process was on the CPU, the process gains one ticket [11].
See Fig.5 for the complete process undertaken every time
the scheduler has to pick the next task for being processed
in the CPU , taking into account the assumptions for Lottery
scheduling.

4.3.2. Initialization and Data Structures

To beg in wi th , a new pol icy wi th the name

SCHED_LOTTERY was added to include/linux/sched.h and a
configuration option was set up for the lottery scheduler in
arch/um/KConfig. The copy_process() function in fork.c was
modified to initialize three tickets to each task that was being
created in the system. We then modified the process control
block structure, task_struct and added two fields to this
structure that let us account for the number of tickets that the
process held at the time, and the previous jiffies value, which
is compared to the current jiffies value to check for
compensation. A new run-queue that would hold tasks

Figure 5. Assumptions for the Lottery scheduling implemented in this
work.
Source: Owner

that have their scheduling policy set to SCHED_LOTTERY
was declared in kernel/sched.c. An instance of the lottery
run-queue was created in struct rq. The following code
snippets illustrate these changes.

4.3.3. Implementation of the lottery_sched_class

As discussed in Section 4.2, to implement a new

scheduling policy, we need to introduce a new scheduling
class in the kernel. This involves creating a new run-queue
for the scheduling policy, implementing the queue
operations and the callback functions in the scheduling
class, and making the design decision of where to place this
scheduling class in the existing hierarchy of schedulers.

The lottery scheduling algorithm is not real-time, so we
decided to place it between the real-time scheduling class
and the fair scheduling class. This would mean that any
process that is not real-time and has its policy set to
SCHED_LOTTERY would be given preference over the
regular SCHED_NORMAL policy, which is the CFS
algorithm. This is illustrated in Fig.6.

The following code snippet shows the definition of the
lottery scheduling class.

Figure 6. Hierarchy of scheduler modules including the Lottery scheduler.
Source: Owner

Mejía et al / DYNA 82 (189), pp. 216-225. February, 2015.

221

As discussed earlier, the main algorithm for a scheduling

policy is contained in pick_next_task. For the lottery
scheduler, this function uses the following algorithm:

Step 1: Check for compensation
This is done by subtracting the value of p->prevJiffies

from jiffies. The number that we obtain gives us the time
elapsed since the last time the process p was on the CPU. If
this is less than 10ms, the process loses one ticket. If this is
greater than 100ms, the process gains one ticket. While
using jiffies is fine-grained enough for compensation, we
realized that using a high-resolution timer like RDTSC
could produce more accurate values. We modified our
initial implementation to use exact CPU cycles and the
processor clock frequency to obtain the elapsed time. A
detailed discussion on timers can be found in Section 4.5.

Step 2: Count the total number of tickets in the system
We traverse the run-queue and add the total tickets present

in the system at this time. Note that this depends on the
number of runnable processes available, and is a linear scan.

Step 3: Draw a lucky ticket randomly
The get_random_bytes function is used to draw a

random ticket in the range of 1 to total number of tickets in
the system (as calculated in Step 2).

Step 4: Search for the winning process
As discussed in Section 3, we now scan the queue and

search for the process with the lucky ticket. This is done by
accumulating the tickets of the processes we have seen so far
in the queue, and then checking whether the current process
has the lucky ticket. This check is performed by comparing
the accumulated value with the random value obtained in
Step 3. This algorithm scans the entire queue in the worst
case, and is hence linear in the number of runnable processes.

Step 5: Set next to the winning process, update the
prevJiffies (or TSC value) and return.

This step returns back the control to the schedule
function that had invoked pick_next_task. The schedule
function then does a context switch and allocates the CPU
to the winning process. A code snippet of pick_next_task
has been attached in Appendix A.

Table 1 lists all files that were modified or added in
order to implement the lottery scheduling algorithm on
Linux 2.6.24 kernel.

4.4. Debugging and logging information from the kernel

One of the most challenging issues when writing kernel

code is debugging. Kernel code cannot be easily traced or

Table 1.
List of files modified or added to Linux 2.6.24 and the main changes.

Linux 2.6.24
kernel - File

Main changes

include/linux/sched.h
task_struct (process control block),
declaration of sch_event and
sch_event_log, register_sch_event().

kernel/fork.c copy_process() initialize tickets.

kernel/sched.c
runqueue structures, sched_init(),
schedule(), sched_fork(),
_set_scheduler().

kernel/sched_lottery.c
Scheduling class for our policy,
pick_next_task(),queue operations.

fs/proc/proc_misc.c
sch_operations (sch_open, sch_read,
sch_release).

Source: Owner

attached to a debugger. The most common debugging
technique for application programming is to use printf
statements. The same can be accomplished in kernel code
with the help of the printk statement. Priorities, or log-
levels, can be associated with printk statements. These log-
levels are defined as macros. Some examples of log-levels
include KERN_INFO, KERN_ALERT, KERN_ERR,
KERN_CRIT and KERN_DEBUG. Depending on the log-
level, the message could be printed to the console or
terminal. If the klogd and syslogd daemons are running on
the system, these messages are appended to
/var/log/messages. If klogd is not running, the message
would have to be retrieved by reading the /proc/kmesg file.
The printk function writes messages out to a circular buffer.
The klogd process retrieves these and dispatches them to
syslogd, which in turn decides whether or not to print the
message to the console based on its priority.

Although printk can be successfully used for debugging,
it can slow down the system substantially. This is because
syslogd needs to synchronize all the output file views,
which means that every printk would incur a disk I/O
penalty. syslogd tries to write everything out to the disk as
soon as possible because the system might encounter a fatal
state or could crash after printing out information from the
kernel. Because of this limitation, debugging by printing is
not considered to be the best practice when writing kernel
code. The better approach is to query the system for relevant
information when needed, instead of continuously
producing data that might not necessarily be read. Thus, it is
more appropriate to add a new file to the /proc/ file system
and use the strategy of debugging by querying. We provide
a brief overview of how the /proc/ file system works and
discuss our event-logging mechanism in the next
subsection.

4.4.1. Adding a Log to the /proc/File System

The /proc/ file system is widely used in Linux to obtain

statistical and configuration information. It is a pseudo file
system that is used by the kernel to export its internal
information and state to the user space. Files in the /proc/
file system do not map to physical files on disks and hence
do not take up any space. The contents of the files are
generated dynamically when a user attempts to read the file
and are stored in memory as opposed to the disk. The /proc/

Mejía et al / DYNA 82 (189), pp. 216-225. February, 2015.

222

file system registers itself with the Virtual File System
(VFS), however, when VFS requests it for i-node or
directory information, it creates these files/directories on the
fly from information within the kernel. It thus provides a
view into the running kernel.

The linux/proc_fs.h header file provides the API that can
be used to create /proc/ entries. /proc/ entries are created
based on the proc_dir_entry structure, that links the created
entry to the callback functions that would be used when it is
read/written to. The following code segment depicts this.

The next code segment explains how we implemented the

logging mechanism in our kernel. Here, sch_event is defined as
the basic unit of logging in the /linux/sched.h file. This
structure comprised of an action (like enqueue, dequeue,
context switch or debug) that identified a significant event, a
time-stamp to record when the event occurred, and a message
that could contain some extra information about the event. A
structure for holding the log that would record a series of
events that occurred is also created. We further defined
functions that would help initialize and obtain the log and
register an event. The register_sch_event() is the key function
that gets called whenever an event needs to be logged. Fig.7
shows a call graph that explains how this works.

4.5. Accurate time-stamping

Another important aspect of this implementation was the

resolution of the timers that we used for compensation and time-
stamping. The kernel keeps track of time using timer interrupts.
These interrupts are generated by the timing hardware, and an
architecture-dependent value for this is defined in the Hz
variable in linux/param.h. This value specifies the number of
interrupts that would occur per second, and is usually set to 100,
or 1000. Every time a timer interrupt occurs, a counter
maintained by the kernel called jiffies is incremented. This
counter must be treated as read-only when writing kernel code.
If the Hz value is set to 1000, a timer interrupt would occur
every millisecond (1000 times in a second), and jiffies would be
incremented every millisecond. A lower value of the Hz
variable would mean lesser interrupt handler overhead and
slower wrap around; however, this would lead to a low
resolution and sampling rate of the kernel time-line.

Figure 7. Call graph for register_sch_event().
Source: Owner

Lottery scheduling uses compensation tickets, which

means that a process that has not been “lucky” enough to
win and has not been scheduled recently needs to be favored
by granting it additional tickets. This requires accurate
information about the time associated with the process.
Also, when measuring scheduling overhead, we want to
measure the time taken by the pick_next_task() to scan the
queue and select the next task to be run. Both these
operations, namely, checking for compensation and
measurement of overhead need higher resolution timers than
jiffies. The main reason for higher resolution is that modern
processors have a clock cycle of the order of GHz, and this
means that they perform tasks faster and need to be sampled
at a resolution in the range of 0.5 to 1 nanoseconds.

To address this issue, the RDTSC time stamp counter,
which is a 64-bit machine specific register available on
Pentium machine was used. This counts the number of
processor cycles, and is incremented once per clock cycle
making it highly accurate. RDTSC can be accessed from
user space as well as kernel space with the help of the API
present in asm/msr.h. This header file provides three
functions to read the RDTSC value. These are rdtsc (low,
high), rdtscl(low) and rdtscll(long_val). The first function
reads the lower and higher order bits of the register in the
low and high variables. The second function reads the lower
order bits into low, and the third function reads the entire
64-bit value in an unsigned long long variable long_val.

The following code snippet shows the usage of the

Mejía et al / DYNA 82 (189), pp. 216-225. February, 2015.

223

rdtscl() function to gather the lower-order 32-bits of the
RDTSC counter. We used this to measure scheduling
overhead and also to calculate compensation accurately by
measuring processor cycles.

5. Evaluation

As discussed in Section 1, the goals of a scheduler are to

ensure fairness, prevent starvation, provide a good response
time for interactive processes and have a high system
throughput. In a multi-user system, it is also important to
ensure load insulation. Another important aspect to be
considered when evaluating a scheduling policy is the
overhead incurred by the algorithm. We address these
aspects in this section and present our results.

All our experiments were run with root permissions, in a
single-user, User-mode Linux setup with SMP disabled.
UML was launched with 512MB of memory.

5.1. Test cases

We used two test-cases to evaluate the performance of our

scheduler. The first test-case was compute-bound. This test
spawns four processes, and each process runs a long
computational loop. To preclude the compiler from optimizing
the loops, it is necessary to generate values that cannot be
determined by the compiler in advance. Also, the loop
termination condition needs to be unpredictable. This ensures
that poor cache performance for the loop and that the
computations cannot be incrementally calculated. This is
important when evaluating fairness, because processes spawned
later could take advantage of relevant data being present in the
cache, and this would bias the results greatly.

The second test-case is I/O-intensive. A structure that
comprises of integer, floating-point and string data that is a
little bigger than the memory page size is declared. We then
write out thousands of such records to the disk, and read these
in both random and sequential manner. After each operation, a
cache flush is performed to ensure that we have a fair
comparison between processes.

5.2. Test scenarios

Equipped with the test-cases described previously, we

evaluated how fair our scheduling policy is. The following
test scenarios were considered:
 Compute-intensive workload
 I/O-intensive workload
 Mixed workload, which comprises of both compute-

intensive and I/O-intensive processes.

For the compute-intensive workload, we executed up to
five instances of our compute-bound test-case. Similarly, for
the I/O-intensive workload, we ran up to five instances of
our I/O-bound test-case. For the mixed workload, we ran
one instance of the compute-bound and two instances of our
I/O bound test-case.

Since the lottery scheduler is expected to be linear in the
number of processes in the run-queue, it was necessary to
evaluate the overhead of our scheduling policy. As
discussed in section 4.5, an important aspect of measuring
this overhead was the accuracy and resolution of our time-
stamping mechanism. We used the RDTSC time stamp
counter to measure the exact number of CPU cycles taken
for the pick_next_task() function to count the total tickets in
the system, draw a random ticket and scan the queue to find
the process holding the winning ticket. All the results are
presented in the next sub-section.

5.3. Results

Figs. 8 and 9 illustrate the fairness results. The first set

of graphs shows compute-intensive workload, and the
second set of graphs illustrates the I/O-intensive and mixed
workloads. When ran individually, the CPU-bound process
(just one of the forked processes) takes about 3.5 seconds to
execute. When 12 such processes were launched, it was
observed that about half of these finished in less than 4
seconds. Two of the processes took as long as 4.6 seconds
to execute. Similarly, when twenty such processes were
launched, we observed that three of these took more than
4.5 seconds to execute, while most of the processes finished
in less than four seconds. We can conclude from these
results that the lottery scheduler is probabilistically fair, and
does not starve compute-bound processes. Also, as there is
some randomness involved, even with compensation, there
may be a few processes (about 10 – 15 % of the processes
launched) that may be slowed down significantly.

We ran a similar test for I/O-bound processes, and
observed the same phenomenon. When executed in
isolation, the I/O bound process takes a little over 0.55
seconds to finish. When five such processes were launched,
we observed that two of these finished a little earlier than
expected (in about 0.53 seconds), and two other processes
with the same workload took about 0.7 seconds.

For the mixed workload, we observed an important
trend-- the performance of the I/O-intensive tasks was not
influenced by the compute-intensive tasks. This depicts the
effectiveness of using compensation tickets. In sum, we
observed that the implementation of the lottery scheduler
was probabilistically fair, had good performance with I/O-
intensive workload, and prevented starvation.

Fig. 10 presents the overhead of our scheduling policy.
Theoretically, we expect the scheduler to take linear time in
the number of runnable processes, as we scan the run-queue
to determine the process with the winning ticket when we
pick the next task. We noted a few anomalies in our actual
results though, and we would attribute these to the error in
RDTSC measurements because of wrapping around of the
counter values. Also, we conducted the experiment on UML
and not on a real machine. Another thing to note here is that

Mejía et al / DYNA 82 (189), pp. 216-225. February, 2015.

224

the overhead includes the scheduling overhead for
background processes and daemons that were running in the
system, such as the kthreadd, ksoftirq, and keventd. We
observed that the overhead is still roughly linear, especially
after a queue length of six, beyond which most processes
are the user-space processes.

Figure 8. Fairness of CPU-intensive workload.
Source: Owner

Figure 9. Fairness for I/O-intensive and mixed workload.
Source: Owner

Table 2.
Existing solutions vs. Lottery scheduling.

Priority Based
Schedulers

Fair Share
Scheduling

Lottery Scheduling

Tasks are given
absolute priority.
Issues: Starvation and
difficult to compose or
abstract inter- module
priority relations

CPU usage is equally
distributed among
clients.
Issues: Complexity
and overhead.

Probabilistic resource
allocation. Solves
starvation and it is
fairness. Efficient and
responsive over
relative execution
rates of computation.

Source: Owner

Figure 10. Overhead of the Lottery Scheduler.
Source: Owner

6. Conclusions

We presented the design and implementation of the

lottery based process scheduling algorithm for the Linux 2.6
kernel. The results indicate that the scheduling policy is fair,
and that compensation tickets help in boosting the
performance of I/O-bound processes. Also, the scheduler
prevents starvation and priority inversion. We also
measured the scheduling overhead and observed that the
algorithm is roughly linear in the number of runnable
processes, as expected.

Some suggested enhancements would include
implementing a O(log n) algorithm for picking the next
task. This would reduce the overhead of the scheduler
significantly. Also, as discussed in [2,4] the performance
can be further improved by using kernel priorities and
abbreviated quanta.

References

[1] Silberschatz, A., Galvin, P.B. and Gagne, G., CPU Scheduling.

operating system concepts, Ninth Edit., John Wiley & Sons, Inc.,
2012, 972 P.

[2] Waldspurger, C.A. and Weihl, W.E., Lottery scheduling : Flexible
proportional-share resource management. Interface. 19, pp. 1-11,
1994.

[3] The Linux kernel archives. [Online]. Available at:
https://www.kernel.org/.

[4] Linux kernel newbies. [Online].Available at:
http://kernelnewbies.org/.

20
18
16
14
12
10
8
6
4
2

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

P
ro
ce
ss

Time (secs)

CPU Bound Processes

5

2

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

P
ro
ce
ss

Time (secs)

I/O Bound Processes

B

3
1

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

P
ro
ce
ss
es

Time (secs)

Mixed Workload

Mejía et al / DYNA 82 (189), pp. 216-225. February, 2015.

225

[5] Drexler, K.E. and Miller, M.S., Incentive engineering for
computational resource management. Huberman, B.A. (Ed.), The
Ecology of Computation, pp. 231-266, 1998.

[6] Kay, J. and Lauder, P., A fair share scheduler. Communications of
the ACM, 31 (1), pp. 44-55, 1979.

[7] Waldspurger, C.A., Hogg, T., Huberman, B.A, Kephart, J. and Scott,
W., Spawn: A distributed computational economy, 18 (2), pp. 103-
117, 1992.

[8] Waldspurger, C.A. and Weihl, W.E., Lottery scheduling: Flexible
proportional-share resource management. Interface. 19, pp. 1-11,
1994.

[9] Waldspurger, C.A. and Weihl, W.E., Stride scheduling:
Deterministic proportional-share resource management. Technical
Memorandum MIT/LCS/TM- 528. Cambridge, MA: MIT
Laboratory for Computer Science, 1995.

[10] Fong, L.L. and Squillante, M.S., Time-function scheduling: A general
approach to controllable resource management. Yorktown Heights,
NY: IBM Research Division, T.J. Watson Research Center, 1994, 230
P.

[11] Petrou, D., Milford, J.W. and Gibson, G.A., Implementing lottery
scheduling: Matching the specializations in traditional schedulers,
USENIX, pp. 1-14, 1999.

[12] Spath, J., Lottery scheduling in the Linux kernel. College of William
and Mary, Williamsburg, Virginia, 1998.

[13] Zepp, D., Lottery scheduling in the Linux kernel: A closer look.
MSc. Thesis, California Polytechnic State University, San Luis
Obispo, USA, 2012.

[14] The User-mode Linux kernel. [Online]. Available at: http://user-
mode-linux.sourceforge.net/.

[15] Dike, J., User mode Linux. Prentice Hall, 2006.
[16] Bovet D.P. and Cesati M., Process scheduling. Understanding the

Linux kernel, O’REILLY, 2000, 704 P.
[17] Grimm, R., Lottery Scheduling. [Online]. Available at:

https://cs.nyu.edu/rgrimm/teaching/sp07-os/lottery.pdf.
[18] Zahedi, S.M. and Lee, B.C., REF: Resource elasticity fairness with

sharing incentives for multiprocessors, Proceedings of the 19th
international conference on Architectural support for programming
languages and operating systems, Salt Lake City, Utah, USA, 2014.

[19] Nykiel, T., Potamias, M., Mishra, Ch., Kollios, G. and Koudas, N.,
Sharing across multiple MapReduce jobs, ACM Transactions on
Database Systems (TODS), 39 (2), pp.1-46, 2014.

M. Mejía, received the BS. in Computer science at Universidad Autónoma
de Manizales, Colombia and a MSc. in Computer Science from both
Instituto Tecnológico de Monterrey-Universidad Autónoma de
Bucaramanga and the University of Arizona, USA. She also attended the
University of Arizona for a PhD in Computer Science. She was awarded
the Fulbright PhD Program Scholarship in 2009-2011. She interned at
IBM-Almaden Research Center, CA, USA in 2010. She is currently an
Associate Professor at Universidad Nacional de Colombia and she is Head
of the Graduate office at Universidad de Caldas, Manizales, Colombia. Her
research interests include activity recognition, machine learning and data
mining.
ORCID id: 0000-0002-0682-7338

A. Morales-Betancourt, received the BS. Eng. Electronica from the
Universidad Nacional de Colombia. Is Sp. for a Networking from the
Universidad de Manizales-Universidad Autónoma de Bucaramanga,
Colombia. She is currently an Associate Professor at Universidad de
Caldas, colombia and a MSc. student from the Universitat Oberta de
Catalunya, Spain.

T. Patki, received the BS. in Computer Science and Engineering in 2007,
from Guru Gobind Singh Indraprastha University, New Delhi, India and
was awarded the University's Gold Medal. She is a PhD (c) student at the
Dept. of Computer Science, University of Arizona, USA. Her areas of
interest include Memory Systems, Power/Performance Modeling and High
Performance Computing.

APPENDIX A

Code snippet for the pick_next_task function. The
algorithm was explained in Section 4.3.

Área Curricular de Ingeniería
de Sistemas e Informática

Oferta de Posgrados

Especialización en Sistemas
Especialización en Mercados de Energía

Maestría en Ingeniería - Ingeniería de Sistemas
Doctorado en Ingeniería- Sistema e Informática

Mayor información:

E-mail: acsei_med@unal.edu.co
Teléfono: (57-4) 425 5365

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [612.000 792.000]
>> setpagedevice

