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Abstract 
In this paper we present a novel sub-Nyquist algorithm to perform Wideband Spectrum Sensing (WSS) for Cognitive Radios (CRs) by 
using the recently developed Sparse Fast Fourier Transform (sFFT) algorithms. In this case, we developed a noise-robust sub-Nyquist WSS 
algorithm with reduced sampling cost, by modifying the Nearly Optimal sFFT algorithm; this was accomplished by using Gaussian 
windows with small support. Simulation results show that the proposed algorithm is suitable for hardware implementation of WSS systems 
for sparse spectrums composed of highly-noisy multiband-signals. 
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Algoritmo para sensado de espectro de banda ancha basado en 
transformada dispersa de Fourier 

 
Resumen 
En este trabajo se presenta un nuevo algoritmo sub-Nyquist para realizar Sensado de Espectro de Banda Ancha (WSS) para Radios 
Cognitivos (CR) mediante el uso de los algoritmos de Transformada Dispersa de Fourier (sFFT) recientemente desarrollados. En este caso, 
hemos desarrollado un algoritmo sub-Nyquist robusto ante el ruido para WSS con reducción en el costo de muestreo, mediante la 
modificación del algoritmo sFFT casi óptimo; esto se logró mediante el uso de ventanas Gaussianas con soporte pequeño. Los resultados 
de simulación muestran que el algoritmo propuesto es adecuado para la implementación hardware de sistemas WSS sobre espectros 
dispersos compuestos por señales multibanda altamente ruidosas. 
 
Palabras clave: Radio Cognitiva; Sensado Compresivo; Transformada Dispersa de Fourier; Sensado de Espectro. 

 
 
 

1.  Introduction 
 
Cognitive Radio (CR) is becoming the new paradigm for 

developing the next generation of radio communication 
systems. CR addresses the issue of spectrum misuse of 
current radio communication systems by adding cognitive 
features to the radios such as: spectrum sensing (SS), power 
control and spectrum management [1,2]. These features are 
initially presented in the IEEE 802.22 [3] standard, which 
was developed in 2011 by the Institute of Electrical and 
Electronics Engineers (IEEE) and defines a Wireless 
Regional Area Network (WRAN) that uses the Very High 
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Frequency (VHF) and Ultra High Frequency (UHF) 
television (TV) bands by considering cognitive radio 
capabilities.  

One technical challenge in CR is the efficient 
implementation of the SS function for a higher bandwidth by 
minimizing the required sampling rate. The SS function 
detects Primary Users (PUs) or Secondary Users (SUs) in 
some regions of the spectrum, allowing an opportunistic 
usage of the available bands. The IEEE 802.22 standard has 
an informative annex that defines two categories of SS 
techniques: blind sensing and signal specific sensing. Blind 
sensing techniques use energy measures, and signal specific  
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Figure 1. Block diagram of a Sub-Nyquist WSS system. 
Source: [9]. 

 
 

sensing techniques use preambles and pilot signals. However, 
these sensing techniques are narrowband because they can 
only sense a single carrier frequency.  

On the one hand, measurements carried out by the 
Microsoft Spectrum Observatory at Washington DC [4] show 
that around 3% of the band between 30 MHz and 3 GHz is used 
sparsely to host most of the worldwide radio services [4]. This 
sparse occupancy of the radio electric spectrum has motivated 
the theoretical research about Wideband Spectrum Sensing 
(WSS) techniques during the last five years [5-7]. In this case, 
the research results have shown that sub-Nyquist sampling 
techniques such as Analog to Information Conversion (AIC) 
[6],[8], Modulated Wideband Conversion (MWC) [6][10] and 
Multi Coset (MC) sampling [6],11,12] are promissory 
candidates for developing WSS systems as the shown in Fig. 1  

The sub-Nyquist WSS systems are usually composed of 
a sub-Nyquist sampler, a spectral reconstruction block and a 
decision stage [5,6[9]. The spectral reconstruction block is 
usually constructed by using Compressive Sensing (CS) 
techniques [13,14].  

On the other hand, spectral reconstruction considering the 
Sparse Fast Fourier Transform (sFFT) algorithms [15-19] has 
not been well developed as these algorithms either require a 
high sampling cost for typical spectrum occupancy 
[15,16,[19], they are very noise sensitive [17], or they are too 
complex [18].  

In the context of WSS algorithms, the challenge is to 
achieve sub-Nyquist sampling rates using low-power and 
low-speed ADCs for highly-noisy signals. Thus, considering 
the above, the main contribution of this paper is the design of 
a new sub-Nyquist WSS algorithm that reduces the sampling 
cost by using a modified version of the sFFT algorithm with 
Gaussian small support windows. This proposed algorithm is 
very suitable for hardware implementation of WSS systems 
using ASICs or FPGAs, and to the best of our knowledge, it 
is the first that uses the recently developed Nearly Optimal 
Sparse Fourier Transform.  

The rest of the paper is organized as follows: Section 2 
presents some mathematical basics about the sub-Nyquist 
WSS algorithm we developed, Section 3 describes the 
proposed sub-Nyquist WSS algorithm, Section 4 presents 
simulation results performed on scenarios composed of 
highly-noisy multiband-signals, and, Section 5, presents our 
conclusions and suggestions for future work.   

 
2.  Mathematical background  

 
In this section, we present some fundamental concepts 

about the sub-Nyquist sFFT algorithm we developed. First, 

we explain some basics about DFT and sparse signals, and 
second, we describe the mathematical tools pseudo-random 
spectral permutation, filtering window, and hashing function.  

 
2.1.  Discrete Fourier transform and sparsity 

 
Given a discrete time signal 𝒙𝒙 ∈ ℂ𝑁𝑁 of length 𝑁𝑁, its 𝑁𝑁-

point Discrete Fourier Transform (DFT) 𝒙𝒙� ∈ ℂ𝑁𝑁 is defined in 
Eq. (1). 

 

𝒙𝒙�𝑘𝑘 = 1
𝑁𝑁  � 𝒙𝒙𝑛𝑛

𝑛𝑛∈[𝑁𝑁]
𝜔𝜔𝑘𝑘𝑛𝑛,𝑘𝑘 ∈ [𝑁𝑁] (1) 

 
Where 𝑁𝑁 is a power of two, [𝑁𝑁] denotes the set of 

indexes { 0,1, … ,𝑁𝑁 − 1}, and 𝜔𝜔 = 𝑒𝑒−i 2𝜋𝜋/𝑁𝑁 is the 𝑁𝑁-th root of 
unity. In this case, the number of non-zero elements of the 
vector 𝒙𝒙� is called the sparsity order 𝐾𝐾 and is defined in Eq. (2). 

 
𝐾𝐾 = |supp(𝒙𝒙�)|0 (2) 

 
Where supp(𝒙𝒙�) is the set of indexes of the non-zero 

elements of the vector 𝒙𝒙�, and | |0 represents the 𝑙𝑙0-norm of 
the vector. Then, a time domain signal 𝒙𝒙 is sparse in the DFT 
domain if 𝐾𝐾 ≪ 𝑁𝑁. 

In this context, a set of algorithms called sFFT takes 
advantage of the signal sparsity in the DFT domain to speed 
up the runtime of the Fast Fourier Transform (FFT) 
algorithms used to calculate the DFT [15-18]. These sFFT 
algorithms, like the Nearly Optimal sFFT algorithm 
presented in [16], use the following mathematical tools: 
pseudo-random spectral permutation [15-19], filtering 
window [16] and hashing function [15,16]. 

 
2.2.  Pseudo-random spectral permutation 

 
This permutation isolates spectral components from each 

other [19] and is performed as described in Eq. (3). 
 
𝒙𝒙𝒑𝒑𝑛𝑛 = 𝒙𝒙𝜎𝜎(𝑛𝑛−𝑎𝑎)mod 𝑁𝑁 ,

𝒙𝒙𝒑𝒑�𝜋𝜋𝑝𝑝(𝑘𝑘,𝜎𝜎,𝑁𝑁) = 𝒙𝒙�𝑘𝑘𝜔𝜔𝜎𝜎𝑘𝑘𝑎𝑎 (3) 

 
Where 𝒙𝒙𝒑𝒑 and 𝒙𝒙𝒑𝒑�  are the permuted spectrum signals in 

the time domain and the DFT domain, respectively; 
𝜋𝜋𝑝𝑝(𝑘𝑘,𝜎𝜎,𝑁𝑁) = 𝜎𝜎𝑘𝑘 mod 𝑁𝑁 is the spectral permutation 
function; and 𝜎𝜎 ∈ {2𝑐𝑐 + 1|𝑐𝑐 ∈ [𝑁𝑁/2]} and 𝑎𝑎 ∈  [𝑁𝑁] are the 
spectral permutation parameters. The spectral permutation 
function translates the frequency bin from the 𝑘𝑘-th location 
to the 𝜋𝜋𝑝𝑝(𝑘𝑘,𝜎𝜎,𝑁𝑁)-th location, in this case 𝜎𝜎−1 mod 𝑁𝑁 exists 
for all odd 𝜎𝜎 if 𝑁𝑁 is a power of two. The sFFT algorithm 
randomly chooses the spectral permutation parameters 𝜎𝜎 and 
𝑎𝑎 from a uniform distribution. Thus, the spectral permutation 
with these pseudo-random parameters is related to a pseudo-
random sampling scheme [15-19]. 

 
2.3.  Filtering window 

 
The filtering window is a new mathematical tool that reduces 

the size of the FFT from points 𝑁𝑁 to 𝐵𝐵. This is accomplished in 
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the Nearly Optimal sFFT algorithm by extending a flat passband 
region of width 𝑁𝑁/𝐵𝐵 around each sparse component; this 
approach replaces the filter bank of previous sFFT algorithms 
[19,20] and avoids the use of non-equispaced data FFTs [21]. 
Nonetheless, this flat window has a support that is not small 
enough to achieve sub-Nyquist sampling rates. 

Thus, in order to reduce the sampling cost of the sFFT 
algorithm, we designed a small support window 𝑮𝑮,𝑮𝑮�′ such 
that |supp(𝑮𝑮)|0 = 𝐵𝐵; nevertheless, this small support can 
reduce the accuracy, which is not a big issue in the case of 
WSS systems. In this case, the window in the time domain is 
designed with an ideal low-pass filter using a Gaussian 
window with finite duration to truncate the impulse response. 
The cutoff frequency of the low-pass filter is 2𝐶𝐶, where 𝐶𝐶 =
1/(2𝐵𝐵), and the standard deviation 𝜎𝜎𝑔𝑔  of the Gaussian 
window is obtained from the 68-95-99.7 rule [22], as 
described in Eq. (4). 

 

𝜎𝜎𝑔𝑔  = 𝐵𝐵
6  (4) 

 
Eq. (5)-(6) describe the Gaussian window in the time 

domain and the DFT domain, respectively. 
 

𝑮𝑮
𝑛𝑛+𝑁𝑁2mod 𝑁𝑁

  =  2 𝐶𝐶 𝑒𝑒
−(𝑛𝑛−𝑁𝑁/2)2

2𝜎𝜎𝑔𝑔2 sinc(2𝐶𝐶(𝑛𝑛

− 𝑁𝑁/2))/𝑮𝑮�𝑁𝑁/2  ,𝑛𝑛 ∈ [𝑁𝑁]   
(5) 

 
𝑮𝑮�′

𝑘𝑘+𝑁𝑁2mod 𝑁𝑁
= 

⎩
⎪⎪
⎨

⎪⎪
⎧

0, if |𝑘𝑘 − 𝑁𝑁/2| ≥  𝑁𝑁(𝐶𝐶 + 1/𝜎𝜎𝑔𝑔)

ncdf�2𝜋𝜋𝜎𝜎𝑔𝑔 �
𝑘𝑘 − 𝑁𝑁

2
𝑁𝑁 + 𝐶𝐶�� − ncdf�2𝜋𝜋𝜎𝜎𝑔𝑔 �

𝑘𝑘 − 𝑁𝑁
2

𝑁𝑁 − 𝐶𝐶��

𝑮𝑮�𝑁𝑁
2  

, otherwise

,𝑘𝑘

∈ [𝑁𝑁]  

(6) 

 
Where vector 𝑮𝑮′ is the approximated window and 

ncdf(𝑥𝑥) = erfc(−𝑥𝑥 / √2)/2 is the Normal Cumulative 
Distribution Function [23].  

The Gaussian window is normalized both in the time 
domain and the DFT domain in order to achieve unit DC gain, 
and its total bandwidth in DFT domain is given by Eq. (7). 

 
𝐵𝐵𝑊𝑊𝑮𝑮′  =  13𝑁𝑁/𝐵𝐵  (7) 

 
Finally, the windowing process is described in Eq. (8), 

and it is performed in the time domain after the pseudo-
random spectral permutation is carried out. 

 
𝑦𝑦 =  𝑥𝑥𝑥𝑥 ∘  𝐺𝐺  (8) 

 
Where, 𝒚𝒚 is the windowed signal in the time domain. 
 

2.4.  Hashing function 
 
The hashing function obtains 𝐵𝐵 points from the 𝑁𝑁-point 

spectrum of the signal 𝒚𝒚, these points are separated by 𝑁𝑁/𝐵𝐵 bins, 
and they are obtained by calculating the 𝐵𝐵-point DFT of the sub-

sampled signal obtained from 𝒚𝒚. The vector that has the hashes 
of signal 𝒚𝒚 is  𝒖𝒖� ∈  ℂ𝐵𝐵 and it is calculated using Eq. (9) [15,16]. 

 

𝒖𝒖�𝒋𝒋 = 𝐷𝐷𝐷𝐷𝐷𝐷 � � 𝒚𝒚𝑗𝑗+𝐵𝐵𝐵𝐵
𝐵𝐵∈[𝑁𝑁/𝐵𝐵]

 � , 𝑗𝑗 ∈ [𝐵𝐵]  (9) 

 
From Eq. (7)-(9), it is possible to note that for each sparse 

component of the signal 𝒙𝒙 there are 14 non-zero hashes 
located in the offsets given by Eqs. (10) and (11). 

 
𝑜𝑜𝑓𝑓𝑘𝑘(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵) = 𝜋𝜋𝑥𝑥(𝑗𝑗,𝜎𝜎,𝑁𝑁)− (ℎ𝑓𝑓(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵)

−𝑘𝑘)𝑁𝑁/𝐵𝐵,𝑘𝑘 ∈  {0,1, … ,6}  (10) 

 
𝑜𝑜𝑐𝑐𝑘𝑘(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵) = 𝜋𝜋𝑥𝑥(𝑗𝑗,𝜎𝜎,𝑁𝑁)

− (ℎ𝑐𝑐(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵)
+ 𝑘𝑘)𝑁𝑁/𝐵𝐵,𝑘𝑘 ∈  {0,1, … ,6}  

(11) 

 
Where ℎ𝑓𝑓(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵) − 𝑘𝑘 mod 𝐵𝐵, 𝑘𝑘 ∈ {0,1, … ,6} and 

ℎ𝑐𝑐(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵) + 𝑘𝑘 mod 𝐵𝐵, 𝑘𝑘 ∈ {0,1, … ,6} are the 14 indexes 
of the hashes  𝒖𝒖� for each hashed single sparse component, 
and ℎ𝑓𝑓(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵) = ⌊ 𝜋𝜋𝑝𝑝(𝑗𝑗,𝜎𝜎,𝑁𝑁)𝐵𝐵/𝑁𝑁 ⌋ is the floor-hash 
function and ℎ𝑐𝑐(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵) = ⌈𝜋𝜋𝑝𝑝(𝑗𝑗,𝜎𝜎,𝑁𝑁)𝐵𝐵/𝑁𝑁⌉ is the ceil-
hash function. 

Finally, it has to be noted that the use of pseudo-random 
spectral permutation and small support windows leads to a 
sub-Nyquist random sampling scheme; where, under certain 
conditions, the average sampling rate is below Nyquist. 

 
3.  Sub-Nyquist wideband spectrum sensing algorithm  

 
In this section, we describe the Sub-Nyquist WSS 

algorithm, called SNSparseWSS, which presents a reduced 
sampling rate compared to the sFFT algorithm described in 
[16]. This improvement is achieved by using the window 
described in the past section and by performing several 
modifications to the procedures presented in [16].  

The SNSparseWSS algorithm, described in Alg. 1, 
calculates the spectrum occupancy 𝑿𝑿𝑟𝑟𝑓𝑓𝑐𝑐𝑎𝑎 with constant False 
Alarm Probability (𝑃𝑃𝐹𝐹𝐹𝐹) [2],[11], and has the following input 
parameters: the sparse bandwidth 𝐵𝐵𝑊𝑊 in Hz, the total 
bandwidth 𝑊𝑊 in Hz, the duration of the sensing window 𝜏𝜏 in 
seconds, the noise power 𝜎𝜎𝑛𝑛, and the constants of the sFFT 
algorithm 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑠𝑠 [16]. 

The algorithm calculates the spectrum occupancy using 
four processing stages: the first one performs sub-Nyquist 
sampling on the wideband complex signal 𝑥𝑥(𝑡𝑡); the second 
one locates the sparse components by using the vector 𝒙𝒙𝑙𝑙, the 
set of permutation parameters 𝑷𝑷𝑙𝑙, and the modified 
LocateSignal procedure [16],[24]; the third one estimates the 
DFT values by using the vector 𝒙𝒙𝑒𝑒, the set of permutation 
parameters 𝑷𝑷𝑒𝑒, and the modified EstimateValues procedure 
[15]; and the fourth one detects the occupied bands with 
constant 𝑃𝑃𝐹𝐹𝐹𝐹 using the ConstantPfaRecovery procedure, 
which determines whether a channel is occupied or not by a 
PU. Therefore, it is necessary to test two spectrum sensing 
hypotheses, 𝐻𝐻0 for vacant channel and 𝐻𝐻1 for occupied 
channel [2], by using a detector with constant 𝑃𝑃𝐹𝐹𝐹𝐹 [2],[11] as 
described in Eq. (12) [11]. 
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Algorithm 1. SNSparseWSS algorithm. 
Input: Sparse bandwidth 𝐵𝐵𝑊𝑊 in Hz, total bandwidth 𝑊𝑊 in Hz, sensing 
time 𝜏𝜏 in seconds, number 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 of estimation loops, threshold 𝑠𝑠 for 
location, noise power 𝜎𝜎𝑛𝑛 
Output:  𝑿𝑿𝑟𝑟𝑐𝑐𝑓𝑓𝑎𝑎 
SNSparseWSS 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 (𝐵𝐵𝑊𝑊,𝑊𝑊, 𝜏𝜏,𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒, 𝑠𝑠,𝜎𝜎𝑛𝑛)  

//Window generation 

𝑁𝑁 = 2⌊log2(𝑊𝑊×𝜏𝜏)⌋;  
𝐾𝐾 = ⌈𝐵𝐵𝑊𝑊/𝑊𝑊 × 𝑁𝑁⌉;  
𝐵𝐵 = 2⌊log2 𝐾𝐾⌋+1;  
𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐 = ⌊log2 log2 𝑁𝑁⌋;  
Calculate Gaussian Window (𝑮𝑮,𝑮𝑮�′) by using Eqs. (5) and  (6). 
//Sub-Nyquist sampling set genration 
Pre-calculate all permutation parameters in 𝑷𝑷𝑙𝑙 for 1 location loop 
[16]; 
Pre-calculate all permutation parameters in 𝑷𝑷𝑒𝑒 for 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 estimation 
loops  [16]; 

𝑺𝑺𝑙𝑙 = � 𝜎𝜎(𝑛𝑛 − 𝑎𝑎 + 𝛽𝛽) mod 𝑁𝑁
(𝜎𝜎,𝑎𝑎,𝛽𝛽)∈𝑷𝑷𝒍𝒍,𝑛𝑛∈supp(G)

; 

𝑺𝑺𝑒𝑒 = � 𝜎𝜎(𝑛𝑛 − 𝑎𝑎) mod 𝑁𝑁
(𝜎𝜎,𝑎𝑎)∈𝑷𝑷𝒆𝒆,𝑛𝑛∈supp(G)

; 

//Parallel random sampling of signal 
𝒙𝒙𝑺𝑺𝑙𝑙 = 𝑥𝑥(𝑺𝑺𝑙𝑙/𝑊𝑊); 
𝒙𝒙𝑺𝑺𝑒𝑒 = 𝑥𝑥(𝑺𝑺𝑒𝑒/𝑊𝑊); 
//sFFT calculation 
//Location of Components 
𝑳𝑳 =  𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝒆𝒆𝑺𝑺𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝒍𝒍�𝒙𝒙𝑙𝑙 ,𝟎𝟎,𝐵𝐵,𝑷𝑷𝑙𝑙 ,𝑮𝑮,𝑮𝑮�′, 𝑠𝑠,𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐�; 

//Estimation of Components 
{𝒘𝒘� , 𝑱𝑱} = 𝑬𝑬𝑬𝑬𝑳𝑳𝑳𝑳𝑬𝑬𝑳𝑳𝑳𝑳𝒆𝒆𝑬𝑬𝑳𝑳𝒍𝒍𝒖𝒖𝒆𝒆𝑬𝑬�𝒙𝒙𝒆𝒆,𝟎𝟎,𝐵𝐵,𝑷𝑷𝑒𝑒 ,𝑮𝑮,𝑮𝑮�′, 𝑳𝑳, 3𝐾𝐾𝑟𝑟 ,𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒�;  

𝑿𝑿𝒓𝒓 =�𝒘𝒘�𝑱𝑱�2
2 

𝑿𝑿𝑟𝑟𝑓𝑓𝑐𝑐𝑎𝑎 = 𝑪𝑪𝑳𝑳𝑳𝑳𝑬𝑬𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑷𝑷𝒇𝒇𝑳𝑳𝑹𝑹𝒆𝒆𝑳𝑳𝑳𝑳𝑹𝑹𝒆𝒆𝒓𝒓𝒚𝒚(𝑿𝑿𝑟𝑟 ,𝜎𝜎𝑛𝑛,𝑁𝑁,𝑃𝑃𝐹𝐹𝐹𝐹); 
end 

return  𝑿𝑿𝑟𝑟𝑓𝑓𝑐𝑐𝑎𝑎 
Source: Authors. 

 

𝑿𝑿𝑟𝑟𝑐𝑐𝑓𝑓𝑎𝑎𝑗𝑗 = �
𝐻𝐻1, 𝑿𝑿𝑟𝑟𝑗𝑗 ≥ 𝜓𝜓𝑗𝑗
𝐻𝐻0, otherwise

  (12) 

 

Where, 𝜓𝜓𝑗𝑗 = 𝜎𝜎𝑛𝑛2 ��
2
𝑁𝑁3𝑄𝑄

−1(𝑃𝑃𝐷𝐷𝐹𝐹) + 1/𝑁𝑁� is the decision 

threshold. 
 

3.1.  Modified procedures 
 
We modified the HashToBins, LocateSignal, 

LocateInner, and EstimateValues procedures described in 
[16] in order to use the proposed filtering window and to 
reduce the execution time. 

 
3.1.1. HashToBins procedure 

 
This procedure, presented in Alg. 2, calculates the hashes-

error by subtracting the hashes of the instantaneous estimation 𝒛𝒛� 
from the hashes  𝒖𝒖� [16], and it has the following input 
parameters: the time domain signal 𝒙𝒙; the instantaneous 
estimation 𝒛𝒛� of 𝒙𝒙�; the parameter 𝐵𝐵; the spectral permutation 
parameters 𝜎𝜎, and 𝑎𝑎; and the vectors 𝑮𝑮,𝑮𝑮�′ of the filtering window 
in the time domain and the DFT domain respectively.  

Algorithm 2. Modified Hash to bins function. 
Input: 𝒙𝒙 ∈ ℂ𝑁𝑁 , 𝒛𝒛� ∈ ℂ𝑁𝑁 , 𝐵𝐵 ∈ {2𝑐𝑐|𝑐𝑐 ∈ [log2 𝑁𝑁]}, 𝜎𝜎 ∈
�2𝑐𝑐 + 1�𝑐𝑐 ∈ �𝑁𝑁

2
�� ,𝑎𝑎 ∈  [𝑁𝑁], 𝑮𝑮 ∈ ℝ𝑩𝑩,𝑮𝑮�′ ∈ ℝ𝟏𝟏𝟏𝟏𝟏𝟏/𝑩𝑩 

Output:  𝒖𝒖� ∈ ℂ𝐵𝐵 
HashToBins procedure �𝒙𝒙 , 𝒛𝒛�,𝐵𝐵,𝜎𝜎, 𝑎𝑎,𝑮𝑮,𝑮𝑮�′�  
𝒖𝒖𝑗𝑗   = 0 ∀ 𝑗𝑗 ∈ [𝐵𝐵]; 
//Spectral permutation and sub-sampling 
for 𝑗𝑗 ∈ {𝑁𝑁 − |supp(𝑮𝑮)|0/2, 𝑁𝑁 + |supp(𝑮𝑮)|0/2 − 1} do  

𝒖𝒖𝑗𝑗 mod 𝐵𝐵 =  𝒖𝒖𝑗𝑗 mod 𝐵𝐵 + 𝒙𝒙𝜎𝜎(𝑗𝑗−𝑎𝑎)mod 𝑁𝑁𝑮𝑮𝑗𝑗−𝑁𝑁+|supp(𝑮𝑮)|0/2; 
end 
//Sub-sampled DFT 
𝒖𝒖� = FFT𝐵𝐵(𝒖𝒖); 
//Efficient convolution calculation 
for 𝑗𝑗 ∈ 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥(𝒛𝒛�) do 

for 𝑘𝑘 ∈ [6] do 
𝒖𝒖�ℎ𝑓𝑓(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵)−𝑘𝑘 mod 𝐵𝐵 = 𝒖𝒖�ℎ𝑓𝑓(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵)−𝑘𝑘 mod 𝐵𝐵

− 𝑮𝑮�′�𝑙𝑙𝑓𝑓𝑓𝑓(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵)�𝒛𝒛�𝑗𝑗𝜔𝜔𝜎𝜎𝑎𝑎𝑗𝑗  ; 
𝒖𝒖�ℎ𝑐𝑐(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵)−𝑘𝑘 mod 𝐵𝐵 = 𝒖𝒖�ℎ𝑐𝑐(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵)−𝑘𝑘 mod 𝐵𝐵

− 𝑮𝑮�′|𝑙𝑙𝑐𝑐𝑓𝑓(𝑗𝑗,𝜎𝜎,𝑁𝑁,𝐵𝐵)|𝒛𝒛�𝑗𝑗𝜔𝜔𝜎𝜎𝑎𝑎𝑗𝑗  ; 
𝐩𝐩𝐞𝐞𝐩𝐩 

end 
return  𝒖𝒖� 
Source: Adapted from [16]. 

 
This procedure calculates the hashes-error using three 

processing stages: the first one simultaneously calculates in 
the time domain the pseudo-random spectral permutation, the 
windowing, and the hashing process; the second calculates 
the DFT domain hashes 𝒖𝒖� by performing the 𝐵𝐵-point FFT of 
the time domain hashes 𝒖𝒖; and the third one calculates the 
hashes-error by subtracting the DFT domain hashes of 𝒛𝒛� from 
the hashes 𝒖𝒖�, in this case there are 14 hashes for each sparse 
component in 𝒛𝒛�. 

 
3.1.2.  LocateSignal procedure 

 
This procedure, presented in Alg. 3, calculates the set 𝑳𝑳 ∈

 ℕ𝑂𝑂(𝐵𝐵) of frequency bins corresponding to 𝑂𝑂(𝐵𝐵) sparse 
components found in 𝒙𝒙; and it has the following input 
parameters: the time domain signal 𝒙𝒙; the instantaneous 
estimation 𝒛𝒛� of 𝒙𝒙�; the parameter 𝐵𝐵; the spectral permutation 
parameters 𝑷𝑷𝑙𝑙; the vectors 𝑮𝑮,𝑮𝑮�′ of the filtering window in the 
time domain and the DFT domain respectively; the threshold 
constant for location 𝑠𝑠 [16]; and the number of location 
iterations 𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐 [16]. 

This procedure locates the sparse components of 𝒙𝒙 using 
four processing stages: the first one sets the initial conditions, 
the second one adjusts the frequency locations, the third one 
reduces the search region, and the fourth one inverts the 
spectral permutation. The setting of initial conditions is 
performed by first calculating a reference hashes vector  𝒖𝒖�; 
second pre-calculating an initial guess of value 𝒍𝒍𝑗𝑗

(0) =
𝑗𝑗𝑁𝑁/𝐵𝐵 ∀ ~ 𝑗𝑗 ∈ [𝐵𝐵] of frequency locations in the permuted 
spectrum; and third by pre-calculating the initial values of 𝑤𝑤, 
𝑡𝑡, and 𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚, where 𝑤𝑤 is the width of the region for searching 
the frequency adjustment, 𝑡𝑡 is the number of candidate 
adjustments in 𝑤𝑤, 𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚 is the number of  
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Algorithm 3. Modified locate signal function. 
Input: 𝒙𝒙 ∈ ℂ𝑂𝑂(𝐾𝐾), 𝒛𝒛� ∈ ℂ𝑁𝑁 , 𝐵𝐵 ∈ {2𝑐𝑐|𝑐𝑐 ∈ [log2 𝑁𝑁]},𝑷𝑷𝑙𝑙 ∈ ℕ3×𝑂𝑂(𝐾𝐾),𝑮𝑮 ∈

ℝ𝑩𝑩,𝑮𝑮�′ ∈ ℝ
𝟏𝟏𝟏𝟏𝟏𝟏
𝑩𝑩 ,   𝑠𝑠 ∈ ℝ, 𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐 ∈  ℕ 

Output:  𝑳𝑳 ∈  ℕ𝑂𝑂(𝐵𝐵) 
LocateSignal 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 �𝒙𝒙, 𝒛𝒛�,𝐵𝐵,𝑷𝑷𝑙𝑙 ,𝑮𝑮,𝑮𝑮�′, 𝑠𝑠,𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐�  

Choose 𝑎𝑎 and 𝜎𝜎 from 𝑷𝑷𝑙𝑙; 
𝒖𝒖� =HashToBins�𝒙𝒙 , 𝒛𝒛�,𝐵𝐵,𝜎𝜎, 𝑎𝑎,𝑮𝑮,𝑮𝑮�′� 
𝒍𝒍𝑗𝑗

(0) = 𝑗𝑗𝑁𝑁/𝐵𝐵 ∀ ~ 𝑗𝑗 ∈ [𝐵𝐵]; 
𝑤𝑤0 = 𝑁𝑁/𝐵𝐵; 
𝑡𝑡 = log2 𝑁𝑁 ; 
𝑡𝑡′ = 𝑡𝑡/4; 
𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚    = ⌈ log𝑒𝑒′  (𝑤𝑤0 + 1)⌉; 
//Main loop 
for 𝐷𝐷 ∈ [𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚] do  

𝒍𝒍(𝐷𝐷+1) = 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝒆𝒆𝑳𝑳𝑳𝑳𝑳𝑳𝒆𝒆𝒓𝒓(𝒙𝒙 , 𝒛𝒛�,𝐵𝐵,𝜎𝜎, 𝑎𝑎,𝑷𝑷𝑙𝑙 ,𝑮𝑮,𝑮𝑮�′, 𝑠𝑠,𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐 ,𝑤𝑤0

/(𝑡𝑡′ )𝐷𝐷 , 𝑡𝑡,𝒖𝒖�, 𝒍𝒍(𝐷𝐷)); 
end 
𝑳𝑳 = �𝜎𝜎−1   �  𝒍𝒍𝑗𝑗

(𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚)  + 0.5 � �𝑗𝑗 ∈  [𝐵𝐵]�  ; 
return 𝑳𝑳 
Source: Adapted from [16]. 

 
 

adjustments, and 𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐 is the number of location iterations for 
each adjustment. The adjustment of frequency locations is 
performed by using 𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚 times the procedure LocateInner. 
The reduction of the search region is performed by dividing 𝑤𝑤 
by a factor 1/(𝑡𝑡′ )𝐷𝐷 at the 𝐷𝐷-th adjustment, this reduction 
allows a systematic refining of the frequency location. Finally, 
the spectral permutation inversion is performed by calculating 
the function 𝜋𝜋𝑥𝑥−1(𝑘𝑘,𝜎𝜎,𝑁𝑁) on each located frequency. 

 
3.1.3.  LocateInner procedure 

 
This procedure, presented in Alg. 4, calculates the 

adjustment 𝒍𝒍′ ∈  ℕ𝑂𝑂(𝐵𝐵) of the frequency locations in the 
permuted spectrum, and it has the following input parameters: 
the time domain signal 𝒙𝒙; the instantaneous estimation 𝒛𝒛� of 𝒙𝒙�; 
the parameter 𝐵𝐵; the spectral permutation parameters 𝜎𝜎, 𝑎𝑎, and 
𝑷𝑷𝑙𝑙; the vectors 𝑮𝑮,𝑮𝑮�′ of the filtering window in the time domain 
and the DFT domain respectively; the threshold constant for 
location 𝑠𝑠; the number of location iterations 𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐; the width of 
search region 𝑤𝑤; the number of candidate adjustments 𝑡𝑡; the 
reference hashes vector  𝒖𝒖�; and the current estimation of 
frequency locations 𝒍𝒍.   

This procedure performs the adjustment of the frequency 
location using five processing stages: the first one sets the 
initial conditions, the second calculates the hashes-error, the 
third calculates the angles of the hashes-error and candidate 
frequency bins, the fourth performs the voting stage, and the 
fifth locates the frequency bins. The setting of initial 
conditions clears the vote counters of the 𝑡𝑡 candidate 
adjustments for the 𝐵𝐵 candidate frequency bins. The hashes 
calculation stage obtains 𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐 hashes vectors 𝒖𝒖�′, which are 
calculated from the signal 𝒙𝒙 by using the HashToBins 
procedure with pseudo-random permutation parameters of 
the form (𝜎𝜎,𝑎𝑎 + 𝛽𝛽). The angle calculation stage obtains the 
vector 𝑳𝑳, which represents the angle differences between the 
reference hashes 𝒖𝒖� and the hashes 𝒖𝒖�′. The voting stage 
increments the vote counter 𝑹𝑹𝑗𝑗,𝑞𝑞 corresponding  

Algorithm 4. Modified locate signal inner function. 
Input: 𝒙𝒙 ∈ ℂ𝑁𝑁 , 𝒛𝒛� ∈ ℂ𝑁𝑁 , 𝐵𝐵 ∈ {2𝑐𝑐|𝑐𝑐 ∈ [log2 𝑁𝑁]},𝜎𝜎 ∈

�2𝑐𝑐 + 1�𝑐𝑐 ∈ �𝑁𝑁
2
�� ,𝑎𝑎 ∈  [𝑁𝑁], 𝑮𝑮 ∈ ℝ𝑩𝑩,𝑮𝑮�′ ∈ ℝ

𝟏𝟏𝟏𝟏𝟏𝟏
𝑩𝑩 , 𝑠𝑠 ∈ ℝ, 𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐 ∈  ℕ+,𝑤𝑤 ∈

 ℝ, 𝑡𝑡 ∈ ℕ+, 𝒖𝒖� ∈ ℂ𝐵𝐵, 𝒍𝒍 ∈  ℕ𝑂𝑂(𝐵𝐵) 
Output:  𝒍𝒍′ ∈  ℕ𝑂𝑂(𝐵𝐵) 
LocateInner procedure �𝒙𝒙 , 𝒛𝒛�,𝐵𝐵,𝜎𝜎, 𝑎𝑎,𝑷𝑷𝑙𝑙 ,𝑮𝑮,𝑮𝑮�′, 𝑠𝑠,𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐𝑤𝑤, 𝑡𝑡,𝒖𝒖�, 𝒍𝒍�  

𝑹𝑹𝑗𝑗,𝑞𝑞 = 0 ∀ (𝑗𝑗, 𝑞𝑞) ∈ [𝐵𝐵] ×  [𝑡𝑡]; 
//Main loop 
for  𝑖𝑖 ∈ [𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐] do 

Choose 𝛽𝛽 from 𝑷𝑷𝑙𝑙; 
𝒖𝒖�′ =HashToBins�𝒙𝒙 , 𝒛𝒛�,𝐵𝐵,𝜎𝜎, 𝑎𝑎 + 𝛽𝛽,𝑮𝑮,𝑮𝑮�′�; 
for  𝑗𝑗 ∈ [𝐵𝐵] do 

if 𝒍𝒍𝑗𝑗 ≠ ⊥ then 
𝑟𝑟𝑗𝑗 = 𝒖𝒖�𝑗𝑗/𝒖𝒖�𝑗𝑗′; 
𝑐𝑐𝑗𝑗 = arctan2(ℑ{𝑟𝑟𝑗𝑗},ℜ{𝑟𝑟𝑗𝑗}); 
if 𝑐𝑐𝑗𝑗  <  0 then 

𝑐𝑐𝑗𝑗 = 𝑐𝑐𝑗𝑗 + 2𝜋𝜋; 
end 
for 𝑞𝑞 ∈ [𝑡𝑡] do 

𝑚𝑚𝑗𝑗,𝑞𝑞 = 𝒍𝒍𝑗𝑗  +
𝑞𝑞 + 1/2

𝑡𝑡
 𝑤𝑤; 

𝜃𝜃𝑗𝑗,𝑞𝑞 = 2𝜋𝜋𝛽𝛽𝑚𝑚𝑗𝑗,𝑞𝑞

𝑁𝑁
 mod 2𝜋𝜋;   

if min {�𝜃𝜃𝑗𝑗,𝑞𝑞 − 𝑐𝑐𝑗𝑗�, 2𝜋𝜋 −  �𝜃𝜃𝑗𝑗,𝑞𝑞 − 𝑐𝑐𝑗𝑗�} < 𝑠𝑠𝜋𝜋 then 
𝑹𝑹𝑗𝑗,𝑞𝑞 = 𝑹𝑹𝑗𝑗,𝑞𝑞 + 1; 

end 
end 

end 
end 

end 
 

for  𝑗𝑗 ∈ [𝐵𝐵] do 
𝑸𝑸 = �𝑞𝑞 ∈ [𝑡𝑡]  �𝑹𝑹𝑗𝑗,𝑞𝑞  > 𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐/2�;     
if 𝑸𝑸 ≠ ∅ then     

𝒍𝒍𝑗𝑗′ = 𝒍𝒍𝑗𝑗 + min
𝑞𝑞∈𝑸𝑸

 𝑞𝑞𝑤𝑤/𝑡𝑡;      

else 
𝒍𝒍𝑗𝑗′ =⊥; 

end 
end 

return 𝒍𝒍′ 
Source: Adapted from [16]. 

 
 
to the 𝑗𝑗-th frequency bin and 𝑞𝑞-th adjustment, if Eq. (13) 

is satisfied. 
 
min {�𝜃𝜃𝑗𝑗,𝑞𝑞 − 𝑐𝑐𝑗𝑗�, 2𝜋𝜋 −  �𝜃𝜃𝑗𝑗,𝑞𝑞 − 𝑐𝑐𝑗𝑗�} < 𝑠𝑠𝜋𝜋  (13) 
 
Where 𝜃𝜃𝑗𝑗,𝑞𝑞 is the angle of the 𝑗𝑗-th candidate frequency bin for 

the 𝑞𝑞-th adjustment, that is, 𝜃𝜃𝑗𝑗,𝑞𝑞 is related to the 𝑞𝑞-th candidate 
frequency adjustment 𝑞𝑞𝑤𝑤/𝑡𝑡. Additionally, the above calculation 
converges if 𝛽𝛽 is chosen at random from the set {⌊𝑠𝑠𝑁𝑁𝑡𝑡/
4𝑤𝑤⌋, … , ⌊𝑠𝑠𝑁𝑁𝑡𝑡/2𝑤𝑤⌋} with enough small threshold 𝑠𝑠.  Finally, the 
frequency location stage selects the minimum 𝑞𝑞 from the set 𝑸𝑸 =
�𝑞𝑞 ∈ [𝑡𝑡]  �𝑣𝑣𝑗𝑗,𝑞𝑞  > 𝑅𝑅𝑙𝑙𝑙𝑙𝑐𝑐/2�; thus the estimated 𝑗𝑗-th permuted-
frequency bin is refined using Eq. (14). 

 
𝒍𝒍𝑗𝑗′ = 𝒍𝒍𝑗𝑗 + min

𝑞𝑞∈𝑸𝑸
 𝑞𝑞𝑤𝑤/𝑡𝑡  (14) 
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Algorithm 5. Modified estimate values function. 
Input: 𝒙𝒙 ∈ ℂ𝑁𝑁 , 𝒛𝒛� ∈ ℂ𝑁𝑁 , 𝐵𝐵 ∈ {2𝑐𝑐|𝑐𝑐 ∈ [log2 𝑁𝑁]},𝑷𝑷𝑒𝑒 ∈ ℕ2×𝑂𝑂(𝐾𝐾),𝑮𝑮 ∈

ℝ𝑩𝑩,𝑮𝑮�′ ∈ ℝ
𝟏𝟏𝟏𝟏𝟏𝟏
𝑩𝑩 ,𝑳𝑳 ∈  ℕ𝑂𝑂(𝐵𝐵),𝐾𝐾′ ∈  ℕ+,𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 ∈  ℕ+ 

Output:  𝑳𝑳 ∈  ℕ𝑂𝑂(𝐵𝐵) 
EstimateValues 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 �𝒙𝒙 , 𝒛𝒛�,𝐵𝐵,𝑮𝑮,𝑮𝑮�′, 𝑳𝑳,𝐾𝐾′,𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒�  

𝒘𝒘�𝑗𝑗 = 0 ∀ 𝑗𝑗 ∈ [|𝑳𝑳|0]; 
//Main loop 
for 𝑖𝑖 ∈ [𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒] do  

Choose 𝜎𝜎𝐵𝐵 and 𝑎𝑎𝐵𝐵 from 𝑷𝑷𝑒𝑒; 
𝒖𝒖� =HashToBins�𝒙𝒙 , 𝒛𝒛�,𝐵𝐵,𝜎𝜎𝐵𝐵 , 𝑎𝑎𝐵𝐵 ,𝑮𝑮,𝑮𝑮�′�; 
for 𝑗𝑗 ∈ [|𝑳𝑳|0] do 

𝒖𝒖�𝐵𝐵,𝑗𝑗′ = 𝒖𝒖�ℎ�𝑳𝑳𝑗𝑗,𝜎𝜎𝑖𝑖,𝑁𝑁,𝐵𝐵�mod 𝑩𝑩 𝜔𝜔−𝜎𝜎𝑖𝑖𝑎𝑎𝑖𝑖𝑳𝑳𝑗𝑗/𝑮𝑮�|𝑙𝑙�𝑳𝑳𝑗𝑗,𝜎𝜎𝑖𝑖,𝑁𝑁,𝐵𝐵�|
′ ;     

end 
end 
for 𝑗𝑗 ∈ [|𝑳𝑳|0] do 

// Median for real and imaginary parts 
separately across the i dimension 
𝒘𝒘�𝑗𝑗 = median𝐵𝐵 𝒖𝒖�𝐵𝐵,𝑗𝑗′       

end 
𝑱𝑱 = arg max

|𝑱𝑱|0=min{|𝑳𝑳|0,𝐾𝐾′}
�𝒘𝒘�𝑱𝑱�2  

 
return  {𝒘𝒘�𝑱𝑱, 𝑱𝑱} 
Source: Adapted from [16]. 

 
3.1.4.  EstimateValues procedure 

 
This procedure, presented in Alg. 5, calculates the DFT 

estimation adjustment  𝒘𝒘�𝑱𝑱, and it has the following input 
parameters: the time domain signal 𝒙𝒙; the instantaneous 
estimation 𝒛𝒛� of 𝒙𝒙�; the parameter 𝐵𝐵; the spectral permutation 
parameters 𝑷𝑷𝑒𝑒; the vectors 𝑮𝑮,𝑮𝑮�′ of the filtering window in 
the time domain and the DFT domain respectively; the set of 
located sparse components 𝑳𝑳; the number of sparse 
components to estimate 𝐾𝐾′; and the number of estimation 
iterations 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 [16]. This procedure calculates the DFT 
estimation adjustment  𝒘𝒘�𝑱𝑱  using three processing stages: the 
first one calculates the 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 sets of hashes-error from the 
signal 𝒙𝒙 by using the HashToBins procedure and considering 
different pseudo-random permutation parameters; the second 
one separately calculates the median of the real and 
imaginary parts of the calculated hashes-error by only 
considering the set of located sparse frequency bins in 𝑳𝑳, and 
by cancelling the pseudo-random spectral permutation and 
the effect of the windowing in the DFT domain; and the third 
one saves the 𝐾𝐾′  most energetic components 𝒘𝒘�𝑱𝑱. 

 
4.  Simulation results of SNSparseWSS algorithm 

 
This section presents the simulation results of the 

SNSparseWSS algorithm for sub-Nyquist sampling and 
verification results for Wideband Spectrum Sensing. 

 
4.1.  Sub-Nyquist capabilities 

 
In order to verify the sampling cost, we need to know all 

the spectral permutation parameters 𝜎𝜎𝐵𝐵 and 𝑎𝑎𝐵𝐵 that are 
pseudo-randomly generated by the SNSparseWSS algorithm; 
thus, the set of sampling points can be calculated using Eq. 
(15). 

 
Figure 2. Percent of Nyquist Sampling Rate versus Spectrum occupancy 
percent for SNSparseWSS algorithm. 
Source: Authors. 

 
 

𝑺𝑺 = � ��𝜎𝜎𝐵𝐵  (𝑛𝑛 − 𝑎𝑎𝐵𝐵)� mod 𝑁𝑁�
𝑛𝑛 ∈ supp(𝑮𝑮)

    (15) 

 
Considering the set of sampling points 𝑺𝑺, it is possible to 

calculate the average sampling rate 𝑓𝑓𝑒𝑒𝑎𝑎 of the SNSparseWSS 
algorithm using Eq. (16). 

 

𝑓𝑓𝑒𝑒𝑎𝑎 = 𝑓𝑓𝑁𝑁𝑁𝑁𝑞𝑞
|𝑺𝑺|0

∑ 𝛻𝛻𝑺𝑺𝑘𝑘𝑘𝑘∈supp(𝑺𝑺)
  (16) 

 
Where, 𝑓𝑓𝑁𝑁𝑁𝑁𝑞𝑞 is the Nyquist frequency, and 𝛻𝛻𝑺𝑺𝑘𝑘 = 𝑺𝑺𝑘𝑘 −

𝑺𝑺𝑘𝑘−1 is a finite-backward difference to estimate the average 
separation between samples. Fig. 2 shows the percentage of 
Nyquist frequency versus the percentage of spectrum 
occupancy for the SNSparseWSS algorithm.  

From Fig. 2, we can see that the algorithm reaches a 
sampling rate of close to 0.6 × 𝑓𝑓𝑁𝑁𝑁𝑁𝑞𝑞 for a spectrum 
occupancy between 2% and 3%; thus, for typical scenarios 
where the spectrum occupancy is close to 2% the 
SNSparseWSS algorithm is very suitable for implementing 
sub-Nyquist WSS systems and its performance is comparable 
to the WSS systems based on MC sampling [11]. 

 
4.2.  Verification of the SNSparseWSS algorithm 

 
In order to verify the WSS capabilities of the 

SNSparseWSS algorithm, we considered as test vehicle a 
highly-noisy multiband-signal scenario composed of 5 time 
domain signals located in the center frequencies 317-576-
1300-984-163 MHz, and a total bandwidth 𝑊𝑊 of 1.5 GHz. 
Each signal has a bandwidth of 5 MHz, is composed of 
random 4-QAM symbols that are filtered using a raised 
cosine filter with roll-off factor r = 0.5, and has SNR values 
from -5 dB to 5 dB. The test signal with SNR=-5 dB is shown 
in Fig. 3. 
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Figure 3. Wideband spectrum of 1.5 GHz containing 5 signals each with 
bandwidth 𝑩𝑩𝑩𝑩 = 5 MHz and SNR = -5 dB. 
Source: Authors. 

 
 
In this case, the duration of the spectrum sensing window 

is 𝜏𝜏 = 160 𝜇𝜇𝑠𝑠 which implies that an FFT with 𝑁𝑁 =  217 must 
be used, and the total sparse bandwidth is 25 MHz (5 signals 
× 5 MHz) which leads to a sub-sampled FFT with 𝐵𝐵 =
 8192. The algorithm was parameterized with 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 = 10 
estimation iterations and a location threshold of 𝑠𝑠 =  0.1, 
with these settings the SNSparseWSS algorithm achieves an 
average sampling rate of 𝑓𝑓𝑒𝑒𝑎𝑎 = 0.599 × 𝑓𝑓𝑁𝑁𝑁𝑁𝑞𝑞. 

Fig. 4 shows the recovered spectrum using the SNSparseWSS 
algorithm. In this figure, we can see that the Gaussian small 
support window increases the total error of estimated DFT value; 
this issue can be mitigated using appropriate settings for the 
constant 𝑃𝑃𝐹𝐹𝐹𝐹 detector, which implies that the occupied channels 
can be detected with constant 𝑃𝑃𝐹𝐹𝐹𝐹 [11]. 

Fig. 5 shows the WSS simulation results using the constant 
𝑃𝑃𝐹𝐹𝐹𝐹 detector with 𝑃𝑃𝐹𝐹𝐹𝐹  =  0.01. In this figure, we can see that the 
algorithm can perform WSS by detecting the occupied channels 
by the Pus. If additional information about the multiband-signal 
is available, such as the minimum channel separation 𝛥𝛥𝑓𝑓 [11], the 
detection can be improved by reducing the 𝑃𝑃𝐹𝐹𝐹𝐹.  

 

 
Figure 4. Recovered spectrum for 𝜏𝜏 = 160 𝜇𝜇𝑠𝑠 (𝑁𝑁 =  217) 𝐵𝐵 =  8192, , 1 
location iteration, 10 estimation iterations, and Gaussian window with 
|supp(𝑮𝑮)|0 = 𝐵𝐵. 
Source: Authors. 

 
Figure 5. Wideband spectrum sensing result by using the constant false alarm 
probability detector. 
Source: Authors. 

 
 

 
Figure 6. False alarm probability performance for different SNRs. 
Source: Authors. 

 
 
Fig. 6 shows simulation results for the false alarm 

probability with SNR values of -5 dB, -2.5 dB, 0 dB, 2.5 dB, 
and 5 dB. In this figure we can see that the 𝑃𝑃𝐹𝐹𝐹𝐹 is 
approximately constant regardless the SNR of the multiband-
signals. 

 
5.  Conclusions and future work 

 
In this paper, we present the design of a novel algorithm 

for sub-Nyquist Wideband Spectrum Sensing based on a 
modified Nearly Optimal sFFT algorithm. This WSS 
algorithm was verified using several tests. From the 
verification results we can conclude that the proposed 
algorithm is suitable for implementing the spectrum sensing 
function of wideband cognitive radios in highly-noisy 
environments. To the best of our knowledge, the proposed 
WSS algorithm is the first that uses the new Nearly Optimal 
Sparse Fourier Transform algorithm, and it has a reduced 
sampling cost by using flat Gaussian small support windows 
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and modified procedures. 
 Future work will addressed efficient hardware 

implementation of the modified Nearly Optimal sFFT 
algorithm using an FPGA. 
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